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Ahttuct- In this short note, we present three types 
of adaptive puameter update law for the rigid body 
robot d p u k t o r  baeed on the epeed gradient alge 
dthm which ie introduced by Fradkov. In the deriva- 
tion of the new adaptive parameter update laws, we 
refer the dynamics of rigid body robot manipulators 
and it’s error dynamics which were derived by Slo- 
tine. It is shown that the parameter update law which 
was derived by Slotine belongs to one of three types 
of adaptive parameter update law proposed in this pa- 
per. The three types of adaptive parameter update 
laws proposed in this paper can ensure the global sta- 
bility under -me conditiOn8 auch .II attdnabllity and 
convexity in the error dynamite. Computer simulation 
shows that proposed control algorithm can be used for 
the tracking problem of rigid body robot manipulators. 

I. INTRODUCTION 

Robot manipulators are multi-dimensional, flexible geometry, 
progarmmable meckanical systems which are ideally suited for 
applications in a flexible automation environment and may be 
used in hazardous or in unsafe environment such as in space, 
in deep water and in radioactive environments. However, their 
dynamics are inherently nonlinear and time-varying; e.g. their 
inertia characteristics of the manipulator depend on its config- 
uration as well as its time-varying payload. As a consquence, 
standard lineu feedback controllers are not able to realize the 
manipulator’s full potential for speed and accuracy. Respond- 
ing the need to overcome the problem mentioned above, a num- 
ber of techniques have been proposed in recent years. Among 
these, adaptive control approaches have been receiving an in- 
creasing attention because these can adapt to the partially un- 
known and time-varying parameters in the robot dynamics, 
such as the load and link parameters. The earliest work on 
model reference adaptive control for robot manipulators was 
based on linear decoupled model and steepest descent param- 
eter adaptation [I]. The first work on adaptive controls of 
mechanical manipulator based on the stability analysis was 
proposed by Horowitz [2]. Also Arimoto proposed adaptive 
control approach based on Lyapunov stability theory [3]. In 
these works the unknown parameters in the manipulator dy- 
namic equations are assumed to be constants in the stability 
analysis even though they depend on the configuration of ma- 
nipulator. Craig et al. proposed an adaptive version of the 
computed torque method for the control of robot manipulator 
[4]. In these method, they suggested a parameter update law 
for the stability of the over all systems in the Lyapunov sense 
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by using the properties of poeitive r e d  transfer function. How- 
ever, in their method, the inverse of the inertia metrix D(g) 
must be estimated and calculated, even though they showed 
the stability of their controller rigoronaly. Spong and Ortega 
presented m alternative formulation of adaptive inverse dy- 
namic control which overcome the boundedness of the inverse 
of the estimated inertia matrix and the subsequent need to 
modify the parameter update law. This scheme requires the 
joint acceleration in the expression for the joint torque as well 

in parameter update law [5]. Slotine et al. proposed the 
adaptive control algorithms which consist of a PD feedback 
part and a full dynamic feedforward compensation part, with 
the unknown link and payload parameters being estimated on 
line [6, 7, 8, 91. 

Their algorithm ww computationally simple because of an 
effective exploitation of the physical properties of manipula- 
tor dynamics, i.e., they made use of the fact that the matrix 
d D ( q ) / d t  - 2C(q,q) iil skew symmetric. They dso designed 
the dynamic structure of the robot linearly in terms of a suit- 
ably selected set of link and payload parameters and used the 
variable structure system theory in the parameter adaptation 
for the robustness of their control algorithms. Ham proposed 
an adaptive control algorithm brsed on the Lyapunov stability 
theory and showed the global stability 1111. He also suggested 
the method how to derive the dynamic model of robot manip- 
ulator which can be expressed linearly in terms of the paramo 
ters of links and payload and showed that the dynamic model is 
suitable not only for the pure identification of the manipulator 
but also for implementation of adaptive control. 

In this paper, we introduce the speed gradient algorithm 
which was suggested by Fradkov based on the convexity and 
attainability [13, 141. Three types of parameter update law are 
proposed based on the adaptive control scheme and error dy- 
namics derived by Slotine et al.. It is ale0 demonstrated that 
the proposed adaptive control algorithms have the global sto- 
bility. 
The paper is organized as follows. In section 2, dynamic equa- 
tions of robot manipulator and control aim are presented. In 
section 3, control law and error dynamics are derived based on 
the control scheme proposed by Slotine et  al.. In section 4, 
speed gradient algorithm is introduced and three types of pa- 
rameter update law are suggested based on the control law and 
error dynamics derived by Slotine et  al.. Computer simulation 
results demonstrating the validness of the proposed adaptive 
control algorithm for the twelink robot manipulator are pre- 
sented in section 5. Finally, section 6 contains the concluding 
remarks. 
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11. DYNAMIC EQUATIONS OF ROBOT MANIPULATORS 

The dynamic equations of the n -link robot manipulator are 
given as; 

T = M(q)g' + C(q, i)B + !?(d + f ( q ,  i )  (2.1) 

where 

M ( q ) :  link inertia matrix E R""" 
C(q, 6): centrifugd and Coriolis terms matrix E RnX" 
g ( q ) :  gravitational vector term E R" 
f ( q , q ) :  frictional vector term E R" 
T :  generalized applied torque vector E R" 
q: vector of joint angles E R" 

A relation exists between matrices D(q) and C(g, g) [ll]. 

where ctJ is the (i ,  j) element of matrix C(q,q), and d,, is the 
( i ,  j) element of matrix D(q) .  Therefore the matrix D(q ,  q )  - 
2C(q, q )  is skew symmetric. But in this paper, we don't use the 
above physical property and define the following term h ( q ,  q )  
which contains C(q, q ) q ,  g ( q )  and f ( q ,  q ) .  

h(q,  4) = C(q, 414 + d q )  + f ( q ,  4)  (2.3) 

Then dynamic equations of n-link robot mrnipnlator can be 
expressed as 

Assume the desired trajectory fjd, qd and (Id to be bounded. 
The tracking error vector 4 is defined as 

r = M(rl)fj + h(q9 4) (2.4) 

@ = Q - q d  ( 2 . 5 )  

The controller problem is to derive a control law for the gen- 
eralized forces/torquea r such that the tracking error vectors t 
and 6 converge to zero vectors as fast as possible. 

111. ERROR DYNAMICS AND CONTROL LAW 

In this section, error dynamics and control law which were de- 
rived by Slotine et al. are briefly discussed. A vector s which 
is used as a measure of tracking is defiened M 

s = i + A i  (3.1) 

where A is arbitrary n x n stable matrix. It is convenient to 
rewrite (3.1) as follows: 

(3.2) 
. .  

s = q - q r  

where qr is defiened as 

qr = - A t .  (3.3) 

We use the control law which is similar to the control law de- 
rived by Slotine et al. as follows: 

1 
r =  M(q)ir + h(q,  6) - z h ( q ,  6)s - ~s 

= qq, i ,  ir ,  S ) e  - K3 (3.4) 

where 

and K is arbitrary n x n pmitive definite matrix. Above control 
law requires that the parameters of robot manipulator must 
be known. However, in practice, the parameters of a robot 
manipulator are partially known or unknown. Hence we must 
replace the controller parameter vector I9 of a robot manipulator 
with the estimate of I9 and find a parameter updation law which 
can guarantee the stability of the over all system. We shall 
discuss this parameter updation law in the next section by wing 
the speed gradient algorithm. Under the aeenmption that 0 is 
partially known or unknown, we use the following control law 
where 8 is an estimate of 8 ,  

where. h?(q),  k (q ,  q )  and n i ( q ,  q )  are estimates of M ( q ) ,  h (q ,  q )  
and M ( q ,  q )  respectively. 
If we apply the above control law to (2.4),  we can obtain the 
following error dynamics. 

We shall use the above error dynamics in the derivation of 
parameter update laws based on the speed gradient algorithm. 

IV. SPEED GRADIENT ALGORITHM 

In this section, we shall introduce speed gradient algorithm and 
discuse three types of parameter update law with the stability 
analysis by using Lyapunov stability theory. Then we shall 
derive the new three types of puameter update laws baed on 
the error dynamics derived in the previous section. First, we 
shall introduce the definition of convex function and the well 
known theorem concerning convex function briefly. Its contents 
play important role in the stability analysis of speed gradient 
algorithm. 

Definition 4.1 Let S be a convez set in R" and let f : S --* R' 
be a real-valued function. We say that f ie a convex function 
on S if and only if f[Xzl + (1  - X)z2] 5 X ~(zI) + (1 - A)f(zz) 
for all 21, z2 E S and for all X such that 0 5 X 5 1.  

Note that convex functions are not defined if the domain is not 
a convex set. 

Theorem 4.1 Let S be a conuez set in R" and suppose that 
f : S --* R' 18 convez. Let zo be an interior point of S. 
(a) Then there are real numbers a], (12,.  . , an such that 

n 

f ( z )  L f(zo) + c = , ( z ,  - z?) , where z E S. (4.1) 
,=I  

(b) I f f  E C' , i .e.J first derivative of function f is continuous, 
on $O) ,  where do) denotes the set of interior point8 of S, then 

i = l  I ., n. ( 4 4  
at = -1 af 

a z ,  = = I o .  
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proof: See [15] 
In general error dynamics of adaptive control system is a non- 
linear differential equation and can be expressed a8 

i ( t )  = F ( z ,  4, t ) ,  t 1 0. (4.3) 
Where z(t) E R" is an error state vector,- +( t )  E R" is a 
parameter estimation error vector ( 4 ( t )  = 8 ( t )  - 8' ), F ( . )  : 
R"+"'+' -+ R" is a continuously dserentiable vector function 
in z,B . The control problem is to find the parameter update 
law 

e ( t )  = e(&, e:, t )  (4.4) 
according to some criterion of "good" functioning of the system, 
where notation zt and 8; mean the set { z(s),O 5 s 5 t },{ 
$(s),O 5 s 5 t } rapectively. Suppose thin criterion requires 
to provide low d u e s  of some aim functional Qt = Q(&, e:, t). 
Typically Qtmay be local form such LB Qt = Q ( z ( t ) ,  t ) ,  where 
Q ( z ( t ) , t )  2 0 ia-a rcalu smooth aim functional. Let us define 
a function W ( Z ,  8 ,  t) ae time derivative of Qt (the s p e d  of Qt 
which changes dong the trajectory of system). Then 

w ( z , e , t )  = (V.Q)TF(z,d,t) + VtQ (4.5) 
where V,Q, and VtQ denote the gradients of Q in z and t 
respectively. 
With the above definition, we will introduce three types of 
parameter update law proposed by Fradkov. 

Algorithm 4.1 . 
(differential tvpe) 

e ( t )  = - rvgw(z ,  e ,  t )  (4.6) 

(integral type) 

d ( t )  = -+(z, e ,  t )  - r V p ( z ,  8 ,  s)ds (4.7) I t  
(finite type) 

i ( t )  = eo(z, 2 )  - r ( z , t ) + ( z ,  e ,  t )  (4.8) 

where r is a symmetric, positive definite matrix, +(.) satisfies 
pseudo gradientity condition, i .e.,  +TVgw 2 0 , where Vgw 
denotes the gradient of w in 6 and r(z,t) > 0 is a scalar. 

Theorem 4.2 [14] Let system (#.3),(4.7) hove unique solution 
for any initial conditionsAz(0),8(0), and functions F ( z ,  8 ,  t ) ,  
V,Q(z, t ) ,  $(z, t ) ,  Vw(z,B, t) be !ocally bounded in t (bounded 
in some region { ( z , e , t )  : llzll +I l@ll  5 /3 5 CO, for t 1 0) ) and 
following conditions beheld: 
(a) Growth condition: inftQ(z, t) -. 00-0s 1 1 ~ 1 1  -* 00 . 
(b) Convezity condition: function w ( z ,  8 ,  t )  i s  conuez in 8 , 
(c) Attoinability condition: vector 8' E R" and a function 
p ( Q )  exists such that p(Q)  > 0 d e n  Q > 0 and 

4 2 ,  e', t )  I -AQ).  (4.9) 

Then all solution8 of system (4.3),(4.7) ore bounded and Qt --+ 

0 a s t + C O .  

Proof: The proof is based on the Lyapunov-like function 

By convexity and attainability condition, the following inequal- 
ities c ~ l l  be drived: 

w ( z , e , t )  - (& t )  - B')TVew 5 w ( z , 8 * , t )  5 - p ( Q ) .  (4.11) 

The time derivative of Vt along a trajectory of the system is 
given by 

fi = Qt - ( i ( t )  - 6' + $(z, e ,  t))TVgw(~, d', 1 )  (4.12) 

From the pseudo gradientity condition tOTVgw 2 0 , 

i: 5 w ( 2 ,  e,  t) - ( i ( t )  - B')TVgw(z,  P',t) (4.13) 

From (4.9),(4.11), can be expressed as 

~ 5 w ( z , 8 * , t )  5 - p ( Q )  < 0. (4.14) 

Therefore Qt -+ 0 ~8 t -+ 00 . I 
Theorem 4.3 Let Conditions of theorem 4.2 a n  fdjilled with 
p(Q) G 0 in (4.9). Then all solutions of syatem (4.3),(4.6) are 
bounded. 

Proof: The proof is similar to Theorem 4.2 but in this case, 

% I w ( z , e ' , t )  5 -p(Q) 5 0. (4.15) 

Therefore we can w u r e  that Qt is bounded. I 
Theorem 4.4 Let conditions of theorem 4.2 a n  fulfileed as 
well as strong pseudo gmdientity condition 

+(z, tITVgw(z, 8% t )  1 41vg+,e, t)lld (4.16) 

(4.17) 

for some IC > 0 and 6 2 1 and inequality 

t ) ~ l v ~ ~ ( ~ ,  e ,  t)l16-l 2 lie0 - 8.11 
then all the solutions of system (4.9),(4.8) a n  bounded and 
Q t - 0  O S ~ + O O .  

Proof: Let V, = Qt. The time derivative of V, dong the 
system trjectory is given by 

. .  
V, = Qt  = w ( ~ , e ^ ,  t )  

By convexity condition, 

(4.18) 
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Now we s h d  derive new types of parameter update law based 
on the error dynamics of robot manipulator & l i d  in sec- 
tion I11 by using the above speed gradient algorithm. First we 
choose the rim functional Qt M follows; 

1 01 = - s T M ( q ) s .  2 (4.22) 

By u!ing (3.7), we can find that w ( s ,  4, 1 )  which corresponds to 
w ( z ,  8, t )  defined in speed gradient algorithm can be expressed 
as 

1 -  = sT(fi(q)i, + q q ,  q )  - ?h(q, 6)s) - s T K s  

= sTW(q, q ,  ir, s)(i - e') - s T K s  (4.23) 

From the above equation, we can see that w ( s , d , t )  is linear 
in terms of 8 and that w(s ,  4, t )  is convex function in d .  Now 
we choose $(s, t ) T  which corresponds to $(z, 8, t ) T  defined in 
speed gradient algorithm as follow such that it satisfies pseudo 
gradientity condition, i .e . ,  $J~V,+J 2 0 .  

tlT = W(q, i ,  i r ,  31Ts (4.24) 

From the above discuoaion, we can see that al the conditions 
of theorem 4.2 ( growth condition, convexity condition and at- 
tainability condition) are satisfied. Therefore we C M  propose 
the following new three types of parameter update law for the 
adaptive control of robot manipulator which guarantee the sta- 
bility of the over all system. 

Algorithm 4.2 . 
(differential type)  

e ( t )  = -"q, q ,  ir, s ) T S  (4.25) 

(integro1 type) 

i ( t )  = --rwqq, q ,  ir, s ) T s  - r qq, q ,  ir, s ) T s d t  (4.26) 1' 
(finite type) 

B(t)  = e o ( s , t )  - 7 ( s ,  t)W(q, q ,  i r ,  s ) T s  (4.27) 

In the above parameter update laws, differential type is the 
same as the one which was proposed by Slotine et  al.. Even 
though Ham proposed a parameter update law similar to the 
integral type for the model reference adaptive control [12], in- 
tegral type and finite type has not been proposed yet by other 
researchers. 

V. COMPUTER SJMULATIONS 

Computer simulations are conducted to verify and demonstrate 
the effectiveness and performance of the proposed control al- 
gorithms. A two-link robot manipulator which is composed of 
two-point m a  (m Fk.1 ) is used for computer simulations. 
The RungoKutta fourth-order intergartion method is used for 
integrating the dynamics, and the parameters of the two-link 
robot manipulator are set as in Table 1. 

Table 1. Physical parametera of two-link robot mainpulator 

parameters I values 1 units U 
I[ ml 1 3  Ika  

h ( q ,  i )  = 

-mzI1I2S262(241 + q z )  + m2l&12 + (ml + m2)llgCl 
mAbSai1 + mzl2gClz 

Henceforth, whenever convenient we use the shorthand no- 
tation C, = cos(q , ) ,  S, = sin(q,),C,, = cos(q,  + q,),S,, = 
sin(q ,  + q J )  for trigonometric functions. We ruume that ml 
and ml are unknown, i .e . ,  8' m ddned  U 

1 

e * =  [ ml m2 1'. (5.2) 

(5.3) 

where 

and 

3 = [  ::I=[ !!:I-[; ; ] [  ;] 

The desired joint trajectory qd is given as 

] (5.4) 
qd = [ 'dl ] = [ 0.5 + O.Ssin(0.5t) 

-0.5 - O.Ssin(0.4t) 4dZ 

We set the initial value i ( 0 )  M [2.5 1.5IT. But after 8 aecond, 
masa m2 is changed from 2 kg to 3 kg. Matrices r and A are set 
to diagonal matrices 0.51 and 41 and 7 is set to constant 0.5. 
Figure 2, 3 and 4 show the angular displacements and parame- 
ter estimates when we are using differental type, integral type 
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and finite type parameter update law respectively. As we can 
see from the figures, the actual joint angles converge to their 
desired values within about 2 seconds. Even though the joint 
tracking errors converge to zero, the proposed algorithm does 
not guarantee that the estimates of parameter converge to its 
true values. The r e m n  is due to the fact that the mpeed gra- 
dient algorithm is originally designed such that the Lyapunov 
candidate function L not a Lyapunov function with respect to 
the parameter estimation error vector even though it ia a Lya- 
punov function with respect to stste error vector. However, as 
we can see from the figures, the parameter estimates converge 
to thier true values because the sufficient rich conditions are 
satisfied. 

IV. CONCLUSION 

In this paper, we propose new parameter update laws for the 
adaptive control of robot manipulator brsed on the speed gra- 
dient dgorithm. It is as0 shown that the parameter update law 
which WFM considered by Slotine et al ia a special type among 
the three t y p o  of parameter update law proposed in this pa- 
per. The proposed adaptive control algorithm is simulated for 
the two-link robot manipulator under the assumption that we 
have no prior knowledge about its link masses. Even though 
the joint tracking errors converge to zero, the proposed algo- 
rithm does not guarantee that the d imaten  of pu-eter con- 
verge to its true values. The r e m a  is due to the fact that the 
speed gradient algorithm is Originally designed such that the 
Lyapunov candidate function is not a Lyapunov function with 
respect to the parameter estimation error vector even though it 
ia a Lyapunov function with respect to stste error vector. How- 
ever, the parameter estimates will converge to their true values 
rapidly under the assumption that the sufficient rich condition 
is satisfied. 

REFERENCES 

S.Dubowsky and D.T.DesForges, "The application of 
model reference adaptive control to robotic manipulators, 
" ASME Joumal of Dynamic Systems, Measurement and 
Control, vol. 101, pp.193-pp.200, 1979. 

R.Horowitz and M.Tomizuka, An adaptive control 
Bcheme for mechnical manipulators-compensation of non- 
linearity and decoupling control," ASME Journal of Dy- 
namic Systems, Measurement and Control, vol. 108, June, 
1986. 

M.Takegaki and S.Arimoto, " An adaptive trajectory con- 
trol of manipulators," Int. Journal of Control, vol. 34, 
pp.219-pp.230, 1981. 

J. J. Craig, P. HSU, and S. S. Saatry, "Adaptive control of 
mechanical Manipulators," Proc. of IEEE I n t l  Conference 
on Robotics and Automation, pp.190-pp.195, April 1986. 

M. W. Spong, and R. Ortega, "On adaptive inverse 
dynamics control of rigid robots," IEEE Tmns. Au- 
tomat.Contr., Vo1.35,pp.92-pp.95,Jan, 1990. 

J. J. E. Slotine and W. Li,"On the adaptive control of 
robot manipulators," Int7 J .  of Robotics Research, Vol. 6 
no. 3, pp.49-pp.59, Fall, 1987. 

780 

J. J. E. Slotine and W. Li,'Adaptive robot control: A 
new perspective," Proc. of the 26th IEEE Conference on 
Decirion and Control, , pp.192-pp.198, Dec, 1987. 

J. J. E. Slotine and W. Li,'Adaptive Btrategies in con- 
strained manipulation," Proc. of IEEE I n t l  Conference 
on Robotic. and Automation, , pp. 595-pp.601, 1987. 

J. J. E. Slotine and W. Li,'Adaptive manipulator control : 
A caae study," P m .  of IEEE Int 7 Confennee on Robotics 
and Automation, pp. 1392-pp.1400, 1987. 

J. J. E. Slotine and W. Li,'Adaptive manipulator control 
: A c u e  mtudy," IEEE nun#.  Automat. Contr., vo1.33, 

W.Ham ,' Adaptive control based on explicit model of 
robot manipulator," IEEE h n s .  Automat. Contr., vo1.38, 
Apr, pp.654-658, 1993. 

W.Ham A study on stability analysin and robustnew for 
adaptive control," Ph.D dissertation, Seoul Nat l  Univ., 
Aug, 1988. 

A.L.Fradkov, " Speed-gradient scheme and its application 
in adaptive control problems," Automation and Remote 
Control, pp.1333-pp.1342, 1979. 

A.L Fradkov, Large-Scale Control Systems, Leningrad, 
1990. 

M.H.Protter and C.B.Morrey, A First Course in Real 
Analyrb, Springer-Verly, New York, 1977. 

pp. 995- 1003, NOV, 1988. 

Fig. 1. 2-link robot manipulator. 

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on December 23, 2008 at 01:39 from IEEE Xplore.  Restrictions apply.



Fig. 2.r Angular dbplacemenb of joint 
(Merent id  type, T=lOmscc). 
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Fig. 3.r Angular dieplacements of joint 
(integral type, T=ILOmsec). 
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Fig. 4.a Angular displacements of joint 
(finite type, T=ZOmsec). 
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