IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS

Database Summarization Using Fuzzy ISA

Hierarchies
Do Heon LEE and Myoung Ho KIM

Abstract— Summary discovery is one of the major compo-
nents of knowledge discovery in databases, which provides
the user with comprehensive information for grasping the
essence from a large amount of information in a database.
In this paper, we propose an interactive top-down summary
discovery process which utilizes fuzzy ISA hierarchies as do-
main knowledge. We define a generalized tuple as a repre-
sentational form of a database summary including fuzzy con-
cepts. By virtue of fuzzy ISA hierarchies where fuzzy ISA
relationships common in actual domains are naturally ex-
pressed, the discovery process comes up with more accurate
database summaries. We also present an informativeness
measure for distinguishing generalized tuples that delivers
much information to users, based on Shannon’s information
theory.

Keywords— data mining, summary discovery, fuzzy set ap-
plication

I. INTRODUCTION

AS the rapid growth of database volumes has deep-
ened the gap between data generation and data un-
derstanding, knowledge discovery in databases has drawn
increasing interest from various data-intensive applica-
tions[1]. A database summary is one important type of
knowledge to be discovered, which provides the user with
comprehensive information for grasping the essence of a fo-
cused database portion in an understandable manner. It
also establishes a starting point to make useful inferences
from large collections of data, and facilitates easy commu-
nication of observations about the problem domain[2].

Informally, our definition of database summarization is:
a task that reduces a large number of actual database tuples
into a relatively small number of generalized descriptions,
i.e., generalized tuples. For example, a computer usage log
table whose attribute scheme is (PROGRAM, USER, TIME),
containing thousands of usage log records such as <vi, John,
23:20> and <emacs, Tom, 23:31>, could be reduced into
a few generalized tuples, say, <editor, programmer, around
midnight>, which delivers an assertion that programmers
have executed editor programs around midnight.

Among several requirements for effective summary dis-
covery techniques, we concentrate on the following ones:
Firstly, it must be allowed to represent database summaries
in terms of fuzzy concepts, i.e, concepts with fuzzy bound-
aries, since crisp concepts are occasionally too restrictive
to express complex situations[3], [4]. Secondly, it must be
possible to utilize fuzzy domain knowledge, since actual
domain knowledge is apt to include fuzziness inherently.
Thirdly, users must be able to interact with a summary

The authors are with the Department of Computer Science, Ko-
rea Advanced Institute of Science and Technology(KAITST), Taejon,
Korea. E-mail: {dhlee,mhkim}@dbserver.kaist.ac.kr

Crisp ISA hierarchy Fuzzy ISA hierarchy Computer Usage Log

all programs

N

editor documentation

all programs

- emacs :
120 records
-vi:
680 records
-word :
25 records

editor documentation

emacs Vi word | emacs vi word

@ (b) (c)

Fig. 1. (a)and (b) show crisp and fuzzy ISA hierarchies: Dotted lines
represent partial ISA relationships as strong as the augmented
fraction numbers between two incident concept nodes, while solid
lines denote complete ISA relationships. (c) depicts a situation
where database summarization is to be done.

discovery process to reflect their own discovery purposes.

ISA hierarchies are commonly used to exploit specializa-
tion relationships among domain concepts. However, ISA
hierarchies including only crisp ISA relationships are not
sufficient to express actual domain knowledge. For exam-
ple, suppose we know that programs emacs and vi are used
to edit source code, and a program word is used to write
documents. In addition, suppose we also know that some
users execute emacs and vi to write documents only on rare
occasions. With only crisp relationships, there is no other
way to represent the above mentioned domain knowledge
except as shown in Figure 1-(a). If fuzzy relationships can
be expressed, however, we would have an ISA hierarchy as
shown in Figure 1-(b). Let us consider how different are
the results that these two ISA hierarchies yield, in database
summarization. Suppose a computer usage log table dur-
ing a certain period contains 120, 680 and 25 log records
of emacs, vi and word executions, respectively, as shown in
Figure 1-(c), and we want to determine whether editor or
documentation programs are mainly executed in that pe-
riod. With the crisp ISA hierarchy, we cannot identify the
majority of usage since 120 4+ 680 = 800 records are for
editor programs, and 120 + 680 + 25 = 825 records are
for documentation programs. On the other hand, if we ex-
ploit the fuzzy ISA hierarchy, we can conclude that editor
programs have been mostly executed, since 120 and 680
records of emacs and vi, respectively, are known mainly for
editing source codes not for writing documents.

The limitations of pure statistical analyses and classi-
cal inductive machine learning methods, as applied to ac-
tual knowledge discovery in databases, are well described
in [1]. Recently, there has been database-oriented research
on summary discovery techniques[2], [5], [6]. Yager pro-

poses notions of linguistic summaries with fuzzy terms such
as “Most employees are young with truth value 0.6”. He
presents guidelines to evaluate validity measures of a lin-
guistic summary based on fuzzy set theory[2]. However,
no specific procedure is given to construct such linguis-
tic summaries themselves. Conjunctive summaries, where
multiple attributes are included, are also not considered.
DBLEARN adopts an attribute-oriented induction method
to extract database summaries[5]. In its attribute-oriented
induction, each attribute value of a tuple is substituted
with a more general concept. After one pass of the substi-
tution, equivalent classes of generalized tuples are identified
and each class is regarded as a candidate summary. This
bottom-up procedure is repeated until satisfactory sum-
maries are obtained. However, it does not utilize fuzzy
domain knowledge.

This paper is organized as follows: Section 2 defines a
generalized tuple as a representation form of a database
summary including fuzzy concepts. Fuzzy ISA hierarchies
used as domain knowledge are introduced in Section 3.
An interactive top-down summary discovery process is pro-
posed in Section 4. Section 5 investigates how much infor-
mation content a discovered summary delivers, based on
Shannon’s information theory. Finally, Section 6 recapitu-
lates and discusses future work.

II. REPRESENTATION OF DATABASE SUMMARIES

Herein, we define a generalized tuple as a representa-
tional form of a database summary, and elaborate how to
evaluate the validity of a generalized tuple with respect to
a given database. We assume that all attributes appear in
a single table, i.e., the universal relation assumption, with-
out loss of generality, to avoid unnecessary complexity of
the presentation. However, this work can be applied to any
other data models where a database record can be regarded
as a series of attribute values.

A. Generalized tuples

There are many domain concepts having fuzzy bound-
aries in practice. For example, it is difficult to draw a crisp
boundary of documentation programs in a set of programs
since some programs such as vi and emacs can be thought
as source code editors for some programmers but as word
processors for some manual writers. It is more natural and
useful to express such domain concepts in terms of fuzzy
sets rather than crisp sets[4]. Thus, we use a vector of fuzzy
sets to effectively represent a database summary.

A fuzzy set f on a domain D is defined by its membership
function py(x), which assigns a (positive) fraction number
between 0 and 1 as the membership degree to each domain
value[3]. Since ps(z) represents the degree to which an
element z belongs to a fuzzy set f, a conventional set is
regarded as a special case of a fuzzy set whose membership
degrees are either one or zero. Given two fuzzy sets, f1 and
f2, on a domain D, f; 1s called a subset of f; and denoted
as f1 C fo, iff V& € D, pus, () < py,(x). In this paper, a
special fuzzy set f such that Vo € D, u¢(x) = 1, is denoted
as w.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS

Definition 1 (Generalized tuple) A generalized tuple is
defined as an m-ary tuple < fy,..., f,, > on an attribute
scheme (Aq,..., Ap,), where f;’s are fuzzy sets and A;’s
are attributes. Given two different generalized tuples, g1
=< fit,- s fim > and g2 =< fa1,..., fam >, on the
same attribute scheme, g1 is called a specialization of g-,
iff Vj, f1; C foy.

A generalized tuple < fi,...,f,, > on an attribute
scheme (A1,..., A,), is interpreted as an assertion that
“each tuple has fi,..., fm for attributes Ay,..., Ay, re-
spectively”. Note that an ordinary database tuple is also
regarded as a generalized tuple whose fuzzy sets are sin-
gleton sets. A singleton set is a set having a unique el-
ement. An example of a generalized tuple with respect
to an attribute scheme (PROGRAM, USER) is <editor,
programmer>. It implies an assertion that “The program
is an editor and its user i1s a programmer.” , in other words,
“A programmer has executed an editor program.”.

B. Validity of generalized tuples

From the viewpoint of inductive learning, a given
database(or a part of it) and a set of possible generalized tu-
ples are regarded as an instance space and a pattern space,
respectively[8]. Our summarization process searches a pat-
tern space to choose valid generalized tuples with respect to
a given instance space, i.e., a given database. Recall that
the goal of database summarization is to generate repre-
sentative descriptions embracing as many database tuples
as possible. Thus, the validity of a generalized tuple is de-
termined by the number of database tuples with which it
is compatible, i.e. statistical significance. In the following,
this notion is formulated as the support degree.

Definition 2 (Support degree) The support degree of a
generalized tuple g =< f1,..., fm > with respect to a given
collection! of database tuples C' whose attribute scheme is
(A1, ..., Ap), is defined as follows:

SD(g | ©)

= [EtiEC ®[Hf1 (ti'Al)a ey M (tZAm)]]/|C|;
where @ is a t-norm operator[4], uy,(ti.A;) denotes the
membership degree of an attribute A; of a tuple #; with
respect to a fuzzy set f;, and |C| denotes the cardinality
of the collection C'. We call generalized tuples with higher
support degrees than a user-given threshold value, qualified
generalized tuples.

We will denote SD(g | C) as SD(g) for simplicity as long
as the data collection C'is obvious in the context. Note that
t-norm operators are used to obtain conjunctive notions of
membership degrees in the fuzzy set theory[4]. Examples
include MIN and probabilistic product operators.? Since
py,(t;.Aj) denotes the membership degree of an attribute
A; of a tuple #; with respect to a fuzzy set f;, a t-norm

TWe do not use the term, a set of database tuples or a database
relation because a collection of database tuples is allowed to have
duplicates. (See Section V.B for the detailed reason.)

2Since the usage of t-norm operators in the fuzzy set theory is
analogous with that of the product operator in the probability theory,
the symbol ®, that is analogous with X, is commonly used to denote
a specific instance of a t-norm operator.

LEE AND KIM: DATABASE SUMMARIZATION USING FUZZY ISA HIERARCHIES 3

TABLE T
THE SUPPORT STRENGTH OF EXAMPLE DATA TUPLES

Tuple T A1 [A2 | up (A1) pp,(A2) ¢ supports < fi, f2 >
as strong as
tq a a 1.0 0.3 ®(1.0,0.3) = 0.3
to b ¢ 0.1 1.0 ®(0.1,1.0) = 0.1
ts b o 0.1 0.3 ®(0.1,0.3) = 0.1

value over membership degrees of all attributes of a tu-
ple t;, i.e., ®[pp (i A1), ..., ps,, (ti.Ap)], represents how
strongly the tuple t; supports the assertion of a general-
ized tuple < f1,..., fmu >. As a result, the support degree
of a generalized tuple is the normalized sum of such support
strength of individual database tuples. In other words, the
support degree implies the fraction of supporting database
tuples to the total data collection.

The defined support degree has the following properties:

+ Boundary conditions:

Given a generalized tuple ¢,
- 0<SD(g) <1
— TIf all fuzzy sets in g are w, SD(g) = 1.

¢ Monotonicity:

Given two generalized tuples, g1 and g2 on the same
attribute scheme, SD(g1) < SD(g2) if g1 is a special-
ization of gs.

While boundary conditions are self-evident by definition,
the monotonicity property needs some explanation. The
following theorem shows the monotonicity property.

Theorem 1 (Monotonicity of the support degree) Given
two generalized tuples, g1 = < fi1,..., fim >, and g2 =
< fo1,..., fam >, on an attribute scheme (A1,..., An),

Proof: The premise of the theorem implies that

Vi€ {l,...,mh[¥e € DOM(A}), g, (2) < iy ()],
where DOM (A;) denotes the domain of an attribute A;.

When a collection of database tuples is C|

1> ®iettmylpn, (k- ADN/IC]

t,e€C

1> @ieqt,myligs, (t.A4:)1/IC)
t,€C

since :uf1j (tZA]) S /ifzj (ti.A]'),
= SD(g2)

Thus, SD(g1) < SD(g2). u

Let us look at an example of support degree computa-

SD(g1)

IN

tion. Suppose a generalized tuple g on an attribute scheme
(A1, Ag) is < fi1, fa >, where fuzzy sets fi; and fy are
{1.0/a,0.1/b} and {0.3/a, 1.0/5}, respectively. If a data
collection C'is given as Table I, SD(g) is computed as fol-
lows: The first tuple ¢1 supports g as strong as 0.3, since its
first and second attribute values, a and «, belong to fuzzy
sets, f1 and fy, to the degrees, 1.0 and 0.3, respectively.
Note that we use the MIN operator for the t-norm opera-
tion just for illustration throughout this paper. Similarly,
both the second and third tuples support ¢ as strong as

0.1. As a result, we can say that the generalized tuple g 1s
supported by 0.3 + 0.1 + 0.1 = 0.5 tuples out of a total of
three tuples, i.e., 17 % of the data collection.

IT11. Fuzzy DoMAIN KNOWLEDGE

An ISA hierarchy is an acyclic digraph (N, A), where N
and A are a set of concept nodes and a set of ISA arrows,
respectively. If there is an ISA arrow from a concept node
ny to an other concept node ny, we say that nqy ISA nsy, in
other words, n; is a specialized concept of ny. While con-
ventional ISA hierarchies have only crisp ISA arrows, fuzzy
ISA hierarchies include fuzzy ISA arrows. The meaning of
a fuzzy ISA arrow from ni to ns can be interpreted as
ny is a partially specialized concept of ny. Without loss
of generality, we suppose that the root node of any fuzzy
ISA hierarchy is the special fuzzy set w, and each terminal
node is a singleton set whose unique element i1s an atomic
domain value, i.e., values appearing in actual database tu-
ples. (Examples of a conventional crisp ISA hierarchy and
a fuzzy ISA hierarchy can be found in Introduction of this
paper.)

Since fuzzy ISA hierarchies are too flexible of a structure
to be used directly in database summarization, we provide
a method to resolve a given fuzzy ISA hierarchy into a
collection of fuzzy sets defined on the same domain, and a
fuzzy set hierarchy that focuses on the complete inclusion
relationships.

Definition 3 (Fuzzy set hierarchy) A fuzzy set hierarchy
is a partially ordered set, (', C) where T is a set of fuzzy
sets defined on the domain D. The binary relation C is
the (complete) set inclusion relationship between two fuzzy
sets. A fuzzy set f; is called a direct subset of another fuzzy
set f; if f; C f; and there is no other f such as f; C fr C
fi-
' Recall that a fuzzy set f; is said to be (completely) in-
cluded by a fuzzy set f; on the same domain, if for each
domain element z, py, () < py, ().

A. Transforming a fuzzy ISA hierarchy to a fuzzy set hier-
archy

In fuzzy set theory[9], the elements of a fuzzy set can
themselves be fuzzy sets, rather than atomic domain val-
ues. Ordinary fuzzy sets whose elements are atomic values
are called level-1 fuzzy sets. Fuzzy sets whose elements are
level-(k — 1) fuzzy sets are called level-k fuzzy sets. Table
IT depicts some level-k fuzzy sets. If two fuzzy sets have
different levels, we cannot directly determine the inclusion
relationship between them, since the domains are different.
However, the level of a fuzzy set can be either upgraded or
downgraded by some fuzzy set-theoretic treatments. Thus,
if we want to determine the inclusion relationship between
two fuzzy sets with different levels, we have to adjust their
levels to the same through upgrading or downgrading lev-
els.

Upgrading the level of a fuzzy set is trivial, since a level-k
fuzzy set can be simply rewritten as a level-(k+1) singleton
set whose unique element is the original level-k fuzzy set.
For example, a level-2 fuzzy set editor in Table II can be

TABLE II
LEVEL-K FUZZY SETS

set label | membership function [Tevel |

engi {1.0/editor, 1.0/docu, 0.8/spread} | 3
busi {1.0/docu, 1.0/spread} 3
editor {1.0/emacs, 1.0/vi} 2
docu {0.1/emacs, 0.3/vi, 1.0/word} 2
spread {0.1/word, 1.0/wright} 2
emacs {1.0/emacs} 1
vi {1.0/vi} 1
word {1.0/word} 1
wright {1.0/wright} 1
w
engineering business
editor documentation spreadsheet
0.19 0.1,
-~ ‘::0.3 .~
emacs vi word wright
Fig. 2. A fuzzy ISA hierarchy on computer programs

thought as a level-3 fuzzy set such as {1.0/editor}. Down-
grading the level of a fuzzy set is done by a support fuzzifica-
tion technique based on the extension principle[4]. Rather
than spending a large space to explain support fuzzification
precisely, we will explain it by example. Interested readers
are recommended to refer to Zadeh’s original paper[10].

The transformation procedure of a fuzzy ISA hierarchy
to a fuzzy set hierarchy, is composed of three steps as fol-
low:

1. Downgrade several levels of fuzzy sets in a fuzzy ISA

hierarchy to level-1 fuzzy sets.

2. By probing pairwise inclusion relationships, elicit a
partial order relation on those level-1 fuzzy sets ob-
tained in the previous step.

3. Draw arrows between fuzzy sets and their direct sub-
sets based on the partial order relation.

Let us demonstrate the transformation procedure step
by step with an example. Figure 2 shows an example fuzzy
ISA hierarchy on computer programs that could be used
in computer usage analysis. Note that a fuzzy set f in a
fuzzy ISA hierarchy is a level-k fuzzy set, if the maximal
path length from f to terminal nodes 1s £ — 1. The several
levels of fuzzy sets in the fuzzy ISA hierarchy of Figure 2
are in Table TI.

In the first step, all level-k(k > 1) fuzzy sets are down-
graded to level-1 fuzzy sets through support fuzzification.
For example, a level-3 fuzzy set engineering in Table II is
transformed to a level-2 fuzzy set as follows:

{1.0/editor, 1.0/documentation,
0.8/spreadsheet }

engineering =

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS

= {1.0/{1.0/emacs, 1.0/vi},
1.0/{0.1/emacs, 0.3/vi, 1.0/word},
0.8/{0.1/word, 1.0/wright}}

= {®(1.0,1.0)/emacs, ®(1.0,1.0)/vi,
®(1.0,0.1)/emacs, ®(1.0,0.3)/vi,
®(1.0,1.0)/word, ©(0.8,0.1)/word,
®(0.8,1.0)/wright}

= {1.0/emacs, 1.0/vi,0.1/emacs, 0.3 /vi,
1.0/word, 0.1/word, 0.8 /wright}

= {®(1.0,0.1)/emacs, ®(1.0,0.3)/vi,
®(1.0,0.1)/word, 0.8 /wright}

= {1.0/emacs, 1.0/vi, 1.0/word, 0.8 /wright}

where ® and @ are a t-norm and a t-conorm operators,
respectively. In contrast with t-norm operators, t-conorm
operators are used to obtain disjunctive combinations of
membership degrees. Herein, we use MIN and MAX for
t-norm and t-conorm operations just for illustration. But,
there are also several alternatives for t-conorm operators.

To envisage the implication of support fuzzification,
let us consider the reason why the membership degree
of the element word is determined as 1.0. Since doc-
umentation is a member of engineering, and word is a
member of documentation, word is also regarded as a
member of engineering. By this transitivity, the mem-
bership degree of word to engineering is determined as
®(/“engineering(documentation)ﬂ/“documentation(word)) =
®(1.0,1.0) = 1.0. Meanwhile, the alternative transitivity
that spreadsheet is a member of engineering, and word is a
member of spreadsheet, also implies that word is regarded
as a member of engineering. If we follow the latter transitiv-
ity, the membership degree of word to engineering is deter-

mined as ®(“engineering (spreadsheet), Hspreadsheet (word))
= ®(0.8,0.1) = 0.1. Note that as far as either of such two
transitivity relationships exists, 1.e., the disjunctive combi-
nation of two facts, the membership of word to engineering
holds. Thus, the membership degree of word to engineering
is concluded as @(1.0,0.1) = 1.0.

Note that the elements emacs, vi, word and wright ap-
pearing in the final line of the above formula, are not atomic
domain values. They are level-1 fuzzy sets as depicted in
Table 11. That is, they can be rewritten as {1.0/emacs},
{1.0/vi}, {1.0/word} and {1.0/wright}. If we downgrade
again the obtained level-2 fuzzy set engineering to level-1,
we have the same looking fuzzy set such as {1.0/emacs,
1.0/vi, 1.0/word, 0.8/wright}. But now, the elements are
atomic domain values. The reason why we treat the ter-
minal nodes in a fuzzy ISA hierarchy as level-1 singleton
sets rather than just atomic domain values, is in order to
achieve a unified representation of domain concepts and
domain values. As a result of this first step, we have a
collection of level-1 fuzzy sets as in Table III.

In the second step, we compare the obtained level-1 fuzzy
sets 1n a pairwise manner to probe the inclusion relation-
ships. Finally, we draw arrows between fuzzy sets and their

LEE AND KIM: DATABASE SUMMARIZATION USING FUZZY ISA HIERARCHIES 5

TABLE TIT
LEVEL-1 FUZZY SETS OBTAINED THROUGH SUPPORT FUZZIFICATION
FROM LEVEL-k(k > 1) FUZZY SETS: THE LEFTMOST COLUMN
ENUMERATES ATOMIC DOMAIN VALUES AND OTHER COLUMNS
REPRESENT MEMBERSHIP DEGREES OF ATOMIC DOMAIN VALUES FOR
THE FUZZY SETS LISTED IN THE FIRST ROW.

| value || editor | docu | spread | engi | busi | w |
emacs 1.0 0.1 0.0 1.0 | 0.1 | 1.0
vi 1.0 0.3 0.0 10 | 03 | 1.0
word 0.0 1.0 0.1 1.0 10 |10
wright 0.0 0.0 1.0 0.8 10 | 1.0
/Qi\
engineering business
editor documentation spreadsheet
emacs Vi word wright

Fig. 3. The fuzzy set hierarchy derived from a fuzzy ISA hierarchy

direct subsets based on the obtained partial order relation.
Figure 3 depicts the fuzzy set hierarchy obtained.

IV. A SuMMARY DIiSCOVERY PROCESS

Now we present a process to discover qualified gener-
alized tuples based on given fuzzy domain knowledge, i.e,
fuzzy set hierarchies. In short, our summary discovery pro-
cess looks for qualified generalized tuples in a top-down
manner. It initially hypothesizes the most generalized tu-
ple, 1.e., a generalized tuple whose fuzzy sets are all w’s.
The process specializes the most generalized tuple, i.e.,
< w,...,w >, based on the given fuzzy set hierarchies to
search for more specific generalized tuples while remain-
ing qualified. The specialization is done minimally in the
sense that only one fuzzy set is specialized into its direct
subset. By evaluating support degrees of those specializa-
tions with respect to a given collection of database tuples,
qualified generalized tuples are identified. At this point,
human users can interact with the discovery process. They
might choose only some qualified generalized tuples for the
further consideration if they are not interested in the others
or want to trade in the search completeness for reducing the
search cost. The process minimally specializes again only
user-chosen qualified generalized tuples. Those specializa-
tions become hypotheses for the next phase. After some
repetitive steps of such specialization, the process yields a
specialization hierarchy of qualified generalized tuples i.e.,
significant database summaries. Figure 4 diagrams the pro-
cess, and Figure 5 depicts the steps in detail.

cf. GT: generalized tuple

hypotheses

initially,
{<w, .., 0>}

s @@

GT's

a collection
of database
tuples

evaluation of SD

A
| (user’s decision) |

seeds for
the next @D @T>

hypotheses

y
| specialization

fuzzy
set
hierarchies

Fig. 4. A brief diagram of the summary discovery process

Note that the monotonicity property of the support de-
gree in Theorem 1 guarantees that any specializations of
unqualified generalized tuples cannot be qualified, and as a
result, the process never misses qualified generalized tuples,
even though it does not specialize unqualified generalized
tuples.

In Figure 5, the support degree of each generalized tu-
ple is computed from Line 5 to Line 7. This is the most
time-consuming part of the process except the user inter-
action(Line 12), since the process must scan disks to read
each database tuple. In Line 9, qualified generalized tuples
with respect to 7, are identified and they are put into result.
After users choose only interesting generalized tuples in
Line 12, they are minimally specialized in the sub-function
specialize(). The process comes back to Line 4 with those
specializations to repeat the steps.

Let us consider the efficiency of the process in terms of
the number of disk accesses. Because it is hard to estimate
how much time it takes to interact with human users, let us
assume that users choose all qualified generalized tuples in
Line 12 for the efficiency analysis. It is common to analyze
the efficiency of most disk-based database applications in
terms of disk access costs[11]. It is because the cost of disk
accesses 1s much more expensive than that of in-memory
operations. The disk access cost actually determines the ef-
ficiency of a process if the number of in-memory operations
does not increase exponentially along with the input size,
and no external network-based communication is involved.

The number of generalized tuples whose support de-
grees are evaluated in one specialization phase, i.e., the
size of curr in Line 6, has nothing to do with the number

D

Input:
(¢) a collection of database tuples C', (7¢) fuzzy set hi-
erarchies for attributes, (i77) a support degree threshold

value 7
Output:

a specialization hierarchy of qualified generalized tuples
(1) SPGT()
(2)
(3) result = ¢; curr = { < w,...,w> };
(4) while(curr # ¢) {
(5) foreach ¢ in C'
(6) foreach g in curr
(7) accumulate SD(g) ;
(8) foreach g in curr
(9) if SD(g) > 7 then result = result U g;
(10) else curr = curr - g;
(11) foreach g in curr {
(12) if the USER marks g then specialize(curr, g);
(13) curr = curr - g;
(14) }
(15) }
(16) }
(17) specialize(set, g = < a1,...,am >)
(18)
(19) fori=1tom
(20) foreach direct subset sa; of a;

(in the fuzzy set hierarchy
for the jth attribute)

(21) set = set U < a1,...,505,...0m >;
(22) }

Fig. 5. A Specialization Process of Generalized Tuples(SPGT)

of database tuples. Rather, it is determined by the aver-
age fan-out of given fuzzy set hierarchies. Empirically, we
expect that the system memory buffer space can hold all
those generalized tuples in one specialization phase.

Then, the total number of disk accesses is the number
of specialization phases multiplied by the number of disk
accesses to read database tuples in C'. Let us denote the
maximal path length of a fuzzy set hierarchy on the jth at-
tribute as ;. Since the specialization of generalized tuples
are done attribute by attribute(See line 16 to 21), the num-
ber of specialization phases cannot be greater than Zj ;).
As a result, the number of disk accesses is no greater than
Zj(lj) x p, where p denotes the number of disk pages con-
taining the collection C' of database tuples. Note that like
the size of curr, Zj (1;) is also determined by given fuzzy set
hierarchies not by the number of database tuples. Thus, we
claim that the average cost of our summary discovery pro-
cess increases linearly along with the number of database
tuples in a collection if we ignore human user’s interaction.

A. An example of summary discovery

Suppose that we have a collection of computer usage
records whose attributes are PROGRAM and USER as
shown in Table 1V. Given fuzzy ISA hierarchies on at-
tributes, PROGRAM and USER, are supposed to be re-
solved to fuzzy sets in Table V and fuzzy set hierarchies in
Figure 6. Fuzzy sets in Table V are represented in the form
of semantic relations[12]. Semantic relations represent sev-
eral fuzzy sets on the same domain in the relational form.
If the domain is a continuous interval, a semantic rela-

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS

TABLE 1V
AN EXAMPLE COLLECTION OF COMPUTER USAGE RECORDS

[PROGRAM | USER || PROGRAM [USER |
emacs John emacs Tom
vi Tom gee John
emacs Tom wright Steve
vi John emacs Jane
word Kimberly emacs Mary
emacs John tetris John
word Mary emacs Jane
emacs John ultima Mary
word Kimberly emacs John
word Kimberly emacs John
emacs John ultima Mary
word Mary emacs Jane
emacs John tetris John
word Kimberly emacs Mary
vi John emacs Jane
emacs Tom wright Steve
vi Tom gee John
emacs John emacs Tom

TABLE V

SEMANTIC RELATIONS REPRESENTING FUZZY SETS IN THE FUZZY SET
HIERARCHIES

For PROGRAM_01

busi

value |[compiler editor | docu | spread | engi game w
gce 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0
cc 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0
77 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0
emacs 0.0 1.0 0.1 0.0 1.0 0.1 0.0 1.0
vi 0.0 1.0 0.3 0.0 1.0 0.3 0.0 1.0
word 0.0 0.0 1.0 0.1 1.0 1.0 0.0 1.0
wright 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0
tetris 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
ultima 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
For USER_01
[[value [[prog | writer [seller [account | develop | market | w
John 1.0 0.0 0.0 0.0 1.0 0.0 1.0
Tom 1.0 0.0 0.0 0.0 1.0 0.0 1.0
Mary 0.2 0.8 0.0 0.0 1.0 0.8 1.0
Kimberly 0.0 1.0 0.1 0.0 1.0 1.0 1.0
Steve 0.0 0.0 1.0 0.0 0.0 1.0 1.0
Jane 0.0 0.0 0.4 1.0 0.0 1.0 1.0
Bob 0.0 0.0 0.0 1.0 0.0 1.0 1.0

tion partitions the domain into disjoint sub-intervals and
assigns a representative membership degree to each sub-
interval. Semantic relations are treated in the same way as
ordinary database tables, and as a result, we do not have to
deviate from the framework of conventional data models.
Even though we adopt and recommend semantic relations
as a proper representation of fuzzy sets for the benefit of
homogeneity, our discovery process is not tied to a specific
fuzzy set representation in principle.

Figures 7 to 10 shows the behavior of the summary dis-
covery process SPGT along with the specialization phases.
The threshold value of support degrees is given as 0.4. Each
figure corresponds to a single while loop in Figure 5. In the
first specialization, among six generalized tuples derivable
from the root generalized tuple, only three depicted in Fig-
ure 7 are qualified. If users are interested in the computer
usage of developers, they would mark the middle one, i.e.,
< —, developer >, for further consideration. By specializing
the marked one and evaluating support degrees of derived

LEE AND KIM: DATABASE SUMMARIZATION USING FUZZY ISA HIERARCHIES

PROGRAM_01
W
engineering business game

N

compiler editor docu spread

AN NN

gecc cc f77 emacs vi word wright tetris ultima

cf. docu : documentation, spread: spreadsheet

USER_01
w
developer marketer
programmer writer seller accountant

RASA

John Tom Mary Kimberly Steve Jane Bob

Fig. 6. Fuzzy set hierarchies for PROGRAM and USER. As different
users have different ISA relationships between domain concepts
in mind, there can be several fuzzy set hierarchies for an attribute
domain. Thus, we postfix ‘.01’ to each fuzzy set hierarchy name
to denote that it is chosen among several available ones.

<=2 1=04
1.000
<engineering, -> <-, developer> <-,marketer>
0.833 0.833 0.411

Fig. 7. The 1’st specialization of the root generalized tuple

hypotheses, the process yields qualified generalized tuples
as shown in Figure 8. Figures 9 and 10 show subsequent
specializations.

From the final hierarchy of generalized tuples in Figure 7,
we can conclude that developers used engineering programs
mostly. In particular, programmers have been heavily exe-
cuted editor programs.

V. INFORMATIVENESS OF (GENERALIZED TUPLES

This section derives a measure for informativeness of gen-
eralized tuples based on Shannon’s information theory[7].
Though the proposed summary discovery process comes
up with several qualified generalized tuples, the quantity
of information we can obtain from each generalized tu-
ple may be different. In the previous example, <editor,

<-, ->
1.000 =04
<engineering, -> <-, developer> <-,marketer>
0.833 0.833 v/ 0.411
<engineering, developer> <-, programmer>
0.720 0.589

Fig. 8 The 2'nd specialization of generalized tuples

<-, ->

1.000 1=04
<engineering, -> <-, developer> <-,marketer>
0.833 0.833 v/ 0.411
<engineering, developer> <-, programmer>
0720 / 0.589
<editor, developer> <engineering, programmer>
0.500 0.522

Fig. 9. The 3’rd specialization of generalized tuples

<-, ->
1.000 1=04
<engineering, -> <-, developer> <-,marketer>
0.833 0.833 0.411
<engineering, developer> <-, programmer>

0720 / 0.589 vV

A/

<editor, developer> <engineering, programmer>
0.500 0.522

\/

<editor, programmer>
0.456

Fig. 10. The final hierarchy of generalized tuples

programmer> seems more informative than <engineering,
programmer>. The reason is that since a fuzzy set editor
is more specific than a fuzzy set engineering, we have less
uncertainty to figure out the original collection of database
tuples from <editor, programmer> than from <engineering,
programmer>.

Along with the specificity of generalized tuples, support
degrees also affect the information values. For example,
<editor, programmer> with the support degree 0.9 could be
regarded more informative than the same generalized tuple
with the support degree 0.3. Tt is because the former seems
to give information about 90% of the original collection of
database tuples, while the latter seems to give information
about only 30% of them?

A. The notion of Shannon’s entropy

In Shannon’s information theory, the amount of infor-
mation carried by a message is measured as the amount
of uncertainty reduced by the existence or the occurence
of that message[7]. When there are n possible alternatives
in the system on hand, Shannon’s entropy measures the
amount of uncertainty of the system as log, n. If a mes-
sage arrives, the number of alternatives might be reduced
to m(m < n) owing to the information carried by the mes-
sage. Then the amount of uncertainty is reduced to log, m.
In this situation, we say that the message reduces uncer-
tainty, in other words, 1t delivers information as much as
logy n — logs m = logy n/m. This notion of Shannon’s en-
tropy is adopted to analyze how much information content
a generalized tuple delivers.

Let us denote the set of all possible data collections on
a given attribute scheme, as Q(-), and a set of data col-
lections on the same attribute scheme that make it possi-
ble for a qualified generalized tuple g to be discovered, as
Q(g)(2g) € Q()). Then, the amount of the information

that the generalized tuple g delivers, is log, %, where
|A| denotes the cardinality of a set A.

B. An informativeness measure for generalized tuples

Prior to deriving formulae for |Q(-)], |2(g)|, and in turn
log, %, let us observe some characteristics of database
summarization.

Firstly, a data collection C' for summarization can have
duplicates. Tt holds even for relational database systems
whose underlying data model represents a data collection
as a relation. To justify this argument, let us consider an
example. Suppose that a computer log relation has an at-
tribute scheme such as <PROGRAM, USER, TTY, DURA-
TION, START_TIME> as in the /var/adm/pacct file in the
UNIX system and users want to obtain summaries on which
users have executed which computer programs. They have
to project the relation onto those two attributes PROGRAM
and USER before summarization. If duplicate records are

eliminated after projection, unfit results may be obtained

3Strictly speaking, this argument alone may mislead. Both the
specificity and the support degree should be considered simultane-
ously to obtain the more exact information value as detailed in the
following sections.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS

since several number of executions of a program by the
same user look like just one execution in the duplicate-
eliminated table. Most of current relational database lan-
guages such as SQL permit duplicates in data tables[13].

Secondly, we assume that attribute dependencies such as
functional dependencies and multivalued dependencies, are
not known in advance. Finally, we suppose that the cardi-
nality or the range of each attribute domain is known. Note
that the support set[4] of the fuzzy set w on an attribute
domain is equivalent to the attribute domain itself.

Now, we explain how to obtain |Q(-)| and |©2(g)| in our
context. Suppose that a given data collection C has an at-
tribute scheme (A4, ..., Ap,). Let ¥[j] denote the domain
of the jth attribute. Then, the set of all possible tuples
that can be composed from the domains, denoted as ¥,

becomes ¥[1] x ... x ¥[m], under the ignorance assump-
tion of attribute dependencies. Consequently,
Q)= (1.1)

since duplicates in the data collection C' are allowed.
With respect to a generalized tuple ¢, the given data col-
lection C' can be thought to being divided into two parts,
denoted as C; and Cg. Cj is a set of database tuples sup-
porting g, and Cy is its complement. Recall that the sup-
port degree implies the fraction of supporting database tu-

ples to the total data collection, i.e., % Thus,

|Cq| = [C1SD(g) , |Cql = [C1(1=5D(g)). .- (1.2)
Also, ¥ can be thought as being divided into two parts,
denoted as ¥, and ¥z, with respect to g. W, is a set of tu-
ples consistent with a generalized tuple g, and U5 = ¥ -, .
If we define the coverage degree, C'V, of a generalized tuple
v
||\pg||
with g, ¥, and Wz can be written as,
¥yl = [¥|CV(g) , [¥g| = [¥|(1-CV(g)). . (L.3)
The coverage degree will be precisely defined in the next
subsection. At the moment, let us assume that it is given
from somewhere. It is obvious that the coverage degree

to measure the fraction of ¥ that is consistent

g as

of a generalized tuple is, by definition, greater than zero.
Complete coverage degree, 1.e., one, of a generalized tuple
implies that the generalized tuple is < w,...,w >. By
definition, Q(< w,...,w >) is the same as Q(-).

As depicted in Figure 11, database tuples in Cy and Cy
are thought to be selected from ¥, and Wy, respectively.
Thus, we can formulate |Q(g)| by (1.2) and (1.3) as follows:

1(g)| = W, 11|95

= [[|CV ()] “ISPE[w|(1 — CV(g)))II =SPED) (1.4)

when 0 < CV(g) < 1.
If CV(g) =1 then |Q(g)| = Q(").
As a result, the information content of a generalized tu-
ple g is formulated as follows:

INFO(g) = log, {aill
|w]l°!

= log, [F[CV (g]ICISPOT[(1-CV (g))]ICTT-5D))”
by (1.1) and (1.4)

_ 1
= log, CV ()ICTRD@(1—CV (gNICI—=D(a)

LEE AND KIM: DATABASE SUMMARIZATION USING FUZZY ISA HIERARCHIES

the set of all a given data the set of all a given data
possible tuples collection possible tuples collection
W w
K \\ - - G
SA G
/ S
W
. g
[UR
9 X
/
YL
g7

(a) Low CV and High SD (b) High CV and Low SD

Fig. 11. Tuple selections when a qualified generalized tuple g is
known. (a) denotes a case where the coverage degree of g is very
low but the support degree is high and, (b) denotes the opposite
case.

INFO |

Fig. 12. Informativeness for various SD-CV combinations

when 0 < CV(g) < 1.
If CV(g) =1 then INFO(g) =log,1 =0.

Let us observe the behavior of IN F'O. Figure 12 depicts
the values of IN FO with respect to S and C'V. There
are two areas where informativeness becomes high. One
area includes cases where C'V is low and SD is high(See
the right peak in Figure 12). It shows that a specific gen-
eralized tuple with a high support degree delivers much
information. It is because the fact of low C'V and high SD
implies that most records(i.e., |C|SD(g)) in the original
data collection C' come from a small number of alterna-
tives covered by the generalized tuple (i.e., |[¥|C'V (g)): See
Figure 11-(a).

The other includes cases where C'V is high and SD is
low(See the left peak in Figure 12). It shows that though
the support degree is low, a generalized tuple can deliver
much information if it is very non-specific. As Figure 11-(b)
shows, it is also informative since the fact of high C'V and
low SD implies that most records(i.e., |C|(1—=SD(g)) in the
data collection C' come from a small number of alternatives

f1 b1

01 10 05 01 1.0 00

a b C a b C
04a (01 (04 |04 o1a (01 |01 |00

fo bo
1.08 |01 0.5 1.08 |01 0.0
w w
(@ (b)

Fig. 13. Coverage of generalized tuples. (a) is for g1 =< f11, f12 >,
where f11 = {0.1/4,1.0/b,0.5/c}, and fi2 = {0.4/c,1.0/8}. (b)
is for go =< f21, foz >, where fa; = {0.1/a,1.0/b,0.0/c}, and
f2o = {0.1/a,1.0/8}. In each diagram, the whole six-block area
represents U, and the shaded area represents ¥4, (or Uy,). The
density of shade implies how completely the generalized tuple
covers the corresponding area.

not covered by the generalized tuple(i.e., |¥|(1 — CV(g))).

C. The coverage degrees of generalized tuples

So far, we have assumed that the coverage degree of a
generalized tuple is given from somewhere. Now let us
consider how to actually obtain the coverage degree of a
generalized tuple g.

Definition 4: The coverage degree of a generalized tuple

g =< f1,..., fm > on an attribute scheme (Aq,..., Ap) is
defined as follows:
o1 €0y e QAL (Tt (T)
CV(g) = &= |fv\i|><___><|q;m|)

Note that by substituting) operations by [operations,
the formula can be adapted to the case where continuous
domains of attributes are involved. Let us see an example
of the coverage degree computation: Suppose that we are
considering two generalized tuples on an attribute scheme
having two attributes, and attribute domains are {a, b, c}
and {«, 8} for the first and second attributes. Those two
generalized tuples are given as:

g1 =< fi1, fi2 >, where

f11 = {O.I/a, 10/b, 05/6}, f12 = {0.4/0(, 10/ﬂ},

92 =< fa1, faz >, Where

fa1 ={0.1/a,1.0/6,0.0/c}, faz = {0.1/, 1.0/5}.
Then the coverage degrees of those generalized tuples are
computed as follows:

|91 | x[Ws| = [{a, b, c}| x [{e, f}[= 3x2 = 6,(2.1)

Ezle'{ll,zgeqlg ®(/'Lf11 (le), Hfia (IQ))

= @(p1 (), (@) + O (a), 172 (0))

+ O (0), i (@) + Oy (0), 1102 (6))

+ ®(:uf11 (C), ,ufu(a)) + ®(:uf11 (C), Hfiz (ﬁ))

=®(0.1,0.4) + ®(0.1,1.0) + ®(1.0,0.4)

+ ®(1.0,1.0)+ ®(0.5,0.4) + ®(0.5,1.0)

=014014+044104+04405

Similarly,

EZ1E\F1,-’L‘2€‘I/2 ®(/'Lf21 (‘rl)) Hfao (IQ)) =13.. (23)

By (2.1) and (2.2), CV(g1) =2.5/6 = 0.42, and

by (2.1) and (2.3), CV(g2) = 1.3/6 =10.22.
As a result, we can say that g1 and g9 cover the ¥ as much
as 42% and 22%, respectively. Figure 13 depicts how those
generalized tuples cover ¥ graphically.

10

VI. CoNCLUDING REMARKS
A. Summary

In this paper, we have proposed an interactive top-down
summary discovery process which utilizes fuzzy ISA hierar-
chies as the domain knowledge. We have defined a general-
1zed tuple as a representational form of a database summary
including fuzzy concepts. By virtue of fuzzy ISA hierar-
chies where fuzzy ISA relationships in the actual domain
are naturally expressed, the discovery process yields more
accurate database summaries. Rather than using fuzzy ISA
hierarchies directly, we provide a method to resolve a given
fuzzy ISA hierarchy into a collection of fuzzy sets defined
on the same domain, and a fuzzy set hierarchy. Fuzzy set
hierarchies make it possible to prune unnecessary hypoth-
esis derivations without missing any potentially qualified
generalized tuples. We have also presented an informa-
tiveness measure for distinguishing generalized tuples that
deliver much information to users, based on Shannon’s in-
formation theory.

In the classification of inductive learning paradigms, this
work belongs to the model-driven generate-and-test ap-
proach. Fuzzy set hierarchies given as the domain knowl-
edge guide the learning process. The process generates hy-
pothetical summaries and tests their validity over the given
instance space. Thus, the process shares the well-known
advantages of the model-driven approach against the data-
driven one. One of them is noise robustness, 1.e, a few
exceptional training instances do not affect the major re-
sults of the process. Since the process is done in a top-down
manner unlike the bottom-up method proposed in [5], users
can easily control the selection of search paths as well as
the search depth. In actual database applications, where a
great number of possible search paths exist, such kind of
path control is quite necessary.

B. Future Research

There remain some open issues to be addressed. First of
all, systematic procedures to elicit domain knowledge such
as fuzzy ISA hierarchies, should be conceived for practi-
cal applications, even though term thesauruses for infor-
mation retrieval systems could be adapted in some cases.
In addition, since discovered summaries themselves can be
considered as useful information to be stored and managed,
methods to maintain consistency between the raw database
and the derived summary data set should be addressed to
cope with changes of the original raw database.

REFERENCES

[1] W. Frawley, G. Piatetsky-Shapiro and C. Matheus, “Knowledge
Discovery in Databases: An Overview”, Knowledge Discovery in
Databases, AAAI Press, 1991, pp.1-27

[2] R. Yager, “ On Linguistic Summaries of Data”, Knowledge Dis-
covery in Databases, AAAT Press, 1991, pp. 347-363

[38] L. Zadeh, “ Fuzzy Sets ”, Information and Control, Vol. 8, pp.
338-353, 1965

[4] H. Zimmermann, Fuzzy Set Theory and Its Applications,
Kluwer-Nijhoff Pub., 1985

[5] J. Han, Y. Cai and N. Cercone, “ Knowledge Discovery in
Databases: An Attribute-Oriented Approach”, in Proc. the 18th
VLDB Conference, 1992, pp. 547-559

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS

[6] D.H. Lee and M.H. Kim, “Discovering Database Summaries
through Refinements of Fuzzy Hypotheses”, in Proc. 10th Int’l
Conf. on Data Engineering, 1994, pp. 223-230

[7] C.Shannon, “The Mathematical Theory of Communication”,
The Bell System Tech. J., Vol. 27, pp. 379-423, 623-656, 1948

[8] P.Cohen and E.Feigenbaum, The Handbook of Artificial Intelli-
gence, Vol.3, William Kaufmann Pub., 1982, pp. 411-415

[9] G.J. Klir and T.A. Folger, Fuzzy Sets, Uncertainty, and Infor-

mation, Prentice-Hall Int’l, Inc., 1988, pp. 260-265

L. Zadeh “A Fuzzy Set Theoretic Interpretation of Linguistic

Hedges”, Journal of Cybernetics, Vol. 2, No. 2, pp. 4-34, 1972

J. Ullman, Principles of Databases and Knowledge-Base Sys-

tems, Computer Science Press, 1988

D.H. Lee and M.H. Kim, “Accommodating Subjective Vague-

ness through a Fuzzy Extension to the Relational Data Model”,

Information Systems, Vol. 18, No. 6, pp. 363-374, 1993

ISO 9075 : Information Processing Systems — Database Lan-

guage SQL, 1992

(10]
(11]

(12]

(13]

Do Heon LEE received the B.S., M.S., and
Ph.D. degrees in computer science from Korea
Advanced Institute of Science and Technology
(KAIST), Taejon, Korea, in 1990, 1992, and
1995, respectively. Since 1991, he has worked
on combining Al and DB technology. His cur-
rent primary research interests are in the areas
of data mining and fuzzy database.

Myoung Ho KIM received the B.S. and M.S.
degrees in computer engineering from Seoul
National University, Seoul, Korea, in 1982 and
1984, respectively, and the Ph.D. degree in
computer science from Michigan State Univer-
sity, East Lansing, MI, in 1989.

In 1989 he joined the faculty of the Department
of Computer Science at KAIST, Taejon, Korea,
where he currently is an associate professor.
His research interests include distributed and
parallel database, data mining, multidatabase,
information retrieval and real-time database.

Dr.Kim is a member of the Association for Computing Machinery
and ITEEE Computer Society.

