
A Modified Genetic Algorithm for Neurocontrollers

11-Kwon Jeong, Changkyu Choi, Jin-Ho Shin and Ju-Jang Lee
Department of Electrical Engineering

Korea Advanced Institute of Science and Technology
373-1 Kusong-dong Yusong-gu Taejon 305-70 1 Korea

Fax: 82-42-869-3410 E-mail: jjlee@ee.kaist.ac.kr

ABSTRACT

Genetic algorithtiis are getting more popular nowadadvs because of their sirtiplicity and
robustness. Genetic algorithm are global search techniques for optimizations and many other
problems. A feed-forward neural network that is widely used in control applications usually
learns by back propagation afgorithm(BP). However, when there exist certain constraints, BP
cannot be applied. We apply a genetic algorithtti to such a case. To ittiprove hill-climbing
capability and speed up the convergence, we propose a tnodified genetic algorifhnr(i2fGA). The
validity and efficiency of the proposed algorithtti, hlG.4 are shown by various sitnulation
examples of systetti identification and nonlinear svsteiti control such as cart-pole sys tem and
robot manipulators

1. Introduction

Control of a certain system can be represented as
finding an appropriate input for the desired output
response. For that purpose, we generally need a model
describing the characteristics of the system, but it is
difficult to get such a model when the system is
unknown or time-varying. Adaptive control and
variable structure control have been studied to
overcome the uncertainties of the model. However, it
is hard to apply them to an unknown complicated
system, since both of them have some constraints.

Genetic algorithms(GA's) are used in various
control system problems nowadays[2][7][12]. A
genetic algorithm is a search method based on the
natural selection and genetics while neural networks
and fuzzy theory originate from human information
processing and inference procedures[4] [SI. The
current main search methods assume the smooth
search space and the existence of its derivative, and
most of them are using the gradient following
technique.

GA is different from conventional optimization
methods in several ways. GA is a parallel and global
search that searches multiple points so it is more
likely to get the global solution. It makes no
assumption on the search space so, i t is simple and
can be applied to various problems. In control area, it
has been used in identification, adaptation and neural
network controller. However, GA is inherently slow
and not good at fine tuning of the solutions.

On the other hand, neural networks have
advantages of learning and various input-output
mapping capability. There are many paradigms €or
neural networks, and feed forward networks are
frequently used €or complex nonlinear systems
modeling and control[11 [3]. Back propagation(BP)

learning algorithm for feed forward networks has the
problems of local minima and parameter sensitivity
[G I . GA can be a suitable learning algorithm for
neural networks, since it does not have those
problems. But. as mentioned earlier on, GA is slow
and poor at fine tuning. Therefore, GA-BP, a hybrid
GA merged with BP was proposed[lO], but, was not
desirable due to the constraint imposed by BP.

Simulated annealing(SA) is another important
algorithm which is powerful in optimization and high
order problems, but it is very slow[8]. An adaptive
GA merged with SA(ASAGA) was proposed to
improve SA[5]. This algorithm was designed to
preserve the merits of both SA and GA, but has more
computational burden than ordinary simple GA.

In this paper, we propose a modified genetic
aIgorithm(MGA) which is designed to improve the
speed of convergence to the solution and the hill-
climbing capability without complicating the
algorithm. The paper is organized as follows. In
section 2 , general feature of a simple genetic
algorithm is briefly described. In section 3 , a modified
genetic algorithni(MGA) is presented. In section 4,
various applications of MGA to control problems and
simulation results are included.

2. A Simple Gerietic Algorithm

GA is a search method based on the natural
selection and genetics. GA is computationally simple
yet powerful and it is not limited by assumptions
about the search space. The most important goal of
optimization should be improvement. Although GA
cannot guarantee that the solution will converge to the
optimum, it tries to find the optimum, that is, it works
for the improvement. GA's are different from normal
search procedures in four ways[4].

0-7803-2759-4/95/$4.00 0 1995 IEEE 306

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on December 23, 2008 at 01:46 from IEEE Xplore. Restrictions apply.

1. GA's work with a coding of the parameter set, not
the parameters themselves.

2. GA's search from a population of points, not a
single point.

3. GA's use objective function information, not
derivatives or other auxiliary knowledge.

4. GA's use probabilistic transition rules, not
deterministic rules.

A simple GA is really easy to use, yet powerful. GA
searches for the solution by transforming the
individuals in a population by genetic operators and
determining the population for the next generation.
Usually, each individual is encoded using binary
number. In a simple GA, following three basic genetic
operators are used.

Reproduction : Reproduction probability is
proportional to the fitness value(objective function
value) of a string(individua1).

Crossover : Crossover needs mating of two
individuals. The information of two randomly selected
individuals is partly interchanged according to the
crossover site. Crossover is applied to tak:e valuable
information from both parents, and it is applied with
the crossover probability.
Mutation : This operator insures against a bit loss

and can be a source of new bits. Since mutation is a
random walk through the string space, it must be used
sparingly.

There are three differences of GA from random
search. First, the existence of the direction of search
due to the selection probability. Second, the fact that
the better strings make more offsprings aind finally,
being likely to be improved in average fitness after
generations.

3. A Modified Genetic Algorithm

GA is a useful search algorithm because of its
simplicity and robustness. However, it has three major
limitations. First, the performance is degraded as the
problem size grows. Secondly, premature colnvergence
occurs when GA cannot find the optimal sollution due
to loss of some important character(genes) in strings.
The reason is that GA heavily depends on crossover
and the mutation probability is generally too small to
move the search to other space. Lastly, GA lacks hill-
climbing capability. The reason is also that the
mutation probability is much smaller than the
crossover probability. There has been much work to
prevent premature convergence for small populations:
using the rank of the fitness values so that the
selectivity is not proportional to the fitness value,
scaling the fitness value according to the gene loss,
changing the genetic operator, constraining mating
(incest prevention), lowering the fitness values of the
similar strings, adjusting mutation probability or
inserting new genes, using parallel GA when the

population is large, merging GA with another
method, etc.,

To prevent premature convergence and to improve
hill-climbing capability, we suggest a modified
algorithm. It consists of fitness modification and the
modified mutation probability.

Fitness value for a certain string is determined by
the following rule.

k x fitness,, , if fitness 2 k x fitness,,
fitness, other case (1) fitness'=

where fitness is the original fitness value and fitness'
is the modified value. Jtness, is the average of
Jtness values and k is a positive constant greater than
1. It can be thought that this simple rule represents
just a fitness lowering procedure. But, this rule is
based on another philosophy. Sudden emergence of a
super string, by which we mean a string that has large
fitness, may cause the premature convergence. We
need to make the search rather slower to scan wider
range of the search space without causing the
premature convergence. (1) provides such scheme. It
makes the algorithm consider the strings that have
fitness values above certain threshold as the same
ones, so the diversity of the population is increased.
As the population evolves, the average fitness
becomes larger according to the schema theorem[4].
This makes the algorithm search toward the optimum
gradually.

The modified mutation probability, p , is given as

p,(i +1) =

pd, ifthfitb&ishsamforNwr gemation

Pm(')> ifp,(Ox',' ~m-/ , .w (2) 1 P,(i>Xk,, ~~

where i is the generation number. pm0 , P , - , ~ and

k, is a positive constant less than 1. N,,s,r is a
constant.
Thus, the adaptive mutation probability can be
enlarged whenever needed. The enlarged mutation
probability increases the diversity of the population so
it prevents the population from premature
convergence. This acts as a source for lost genes and
makes the algorithm adaptive. When the mutation
probability is equal to its lowest value p , ,ow , it
operates as a normal mutation operator. We apply the
elitist strategy to maintain the solution of good quality
under the condition of randomized search. Though
several new parameters were introduced into MGA,
determining them is not difficult. Based on our
experience, €allowing ranges are recommended:
pm0 E [0.5,11, P , - / ~ E ~0,0.11, k E [1,101, k, E

In this paper, we apply MGA to various control
problems. As mentioned earlier, GA is suitable for a
learning method of neural networks when
conventional method cannot work. To apply MGA to
neural networks, we should be able to code the

307

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on December 23, 2008 at 01:46 from IEEE Xplore. Restrictions apply.

information of a neural network. Since we only deal
with the optimization of weights here, all the
information of a neural network can be represented as
an array of weight values. Because binary coding
needs too many bits for a string, though we use it in
the section 4.1 for a system identification problem,
neural network representation in this paper uses the
string that consists of real values with constant bound.
Mutation is defined as adding a small random number
to a real number in a string.

4. Applications to Control Problems

4.1 System parameter identification

The problem considered here is the same as those in
[5][7]. It is presented for comparison purpose. The
object system is a discrete time system:

(3)
The objective is identifying A(q- ') , B (q - ') and delay
d using the given input u(t) and the output y(t). We
define the error sequence as

(4)
with

(5)
The fitness function to be maximized is

A(q- ') y (t) = B(q-l)u(t - d)

?(t> = Y (f) - .%t>

i (q- ')$(t) = &l)u(t - 2)
W

~ (t) = ~/z(q(t-i))* (6)
,=O

where w represents window size.
The system polynomials, poles and zeros in the
reparameterized plane are the following:

(7)

[pi, p ,] =[0.75, -0.371 [z,, z 2] = [-0.25, 0.251 (8)
where b o is 1 and the delay d was set to 1.
We apply a simple GA, ASAGA(adaptive simulated
annealing genetic algorithm)[5] and MGA to identify
pl, p , , zI , z,, bo and d. bo is assumed to be in

[O, 21 and the poles and zeros in [-1, 11. In this
problem, we use binary encoding. 7 bits were used for
each parameter except for d (2 bits), so the resolution
is slightly smaller than 0.02. A string consists of 37
bits. We use p , = 0.8, pmo = 1.0, p,_,, = 0.01, k =

2 .5 , k , = 0.9, population size = 100 and window size
w = 30. Input for the sample data is

u (t) = sin(t) - sin(t / 2.5) +random(-1 - 1) (9)
Fig. 1 shows the identification result of the poles with
simple GA and Fig. 2 with ASAGA. The true value of
pz is -0.371. However, the limitation on the
resolution due to coding makes p , equal to -0.375.
Fig. 3 shows the result with MGA. It shows the better
hill-climbing and optimum finding capability than
simple GA.
Though ASAGA shows the best performance among
the three methods, MGA shows good performance

A(9-I) = 1.0 - 1.5q-I + 0.7q-2
B(q- ') = b,(1.0 +OSq-' +O.Oq-,)

using much smaller computation compared to
ASAGA[j].

i

.............

100 100 300 400 500 600
-0 4

GC"M.1,""

Fig. 1: Identification of the poles using simple GA

100 ZOO 300 400 SO0 600
-0.4

Fig. 2: Identification ofthe poles using ASAGA

Gsncr.,ion

Fig. 3: Identification ofthe poles using MGA

4.2 Cart-pole problems

Pole balancing problem is difficult since the system
is nonlinear. The problem becomes harder when we
do not have any a priori information about the cart-
pole system. Two cases of this kind of problems are
considered in this section. The first is the balancing of
a pole on a cart(sing1e pole problem) and the second is
the balancing of two poles on a cart(doub1e pole

308

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on December 23, 2008 at 01:46 from IEEE Xplore. Restrictions apply.

problem). The double pole problem is mlDre difficult
than the single pole problem. Fig. 4 and Fig. 5 show
the single pole and the double pole systems
respectively. The simulation procedure is; similar to
that of [ll] except that we use MGA instead of the
evolutionary programming method.

Fig. 4: Single pole system

Fig. 5: Double pole system

The equations of motions for the single pole

.. (M+m)gsin6 -cos0[u+mli2 sin61
(10) e = -

i j t = (11)

where A4 is the mass of the cart and in is tlhe mass of
the pole. 1 is the half of the pole length and U is the
control force.

The equations of motions for the double pole
system can be derived from dynamic etquilibrium
equations. It is well known for the double pole system
that the poles must be of different length in order to
be balanced. The equations are given as

(12)
g= U+: [q Sine, (1,6: - g d ,) -? sine, (l& - g o 9

problem can be found in many papers. Thos8e are

(4/3)(M+m)Z--ml(co~6)~
U +mZ[8’sin6 -8cos61

M+m

M+q(1-4ax2 6 ,) + ~ (1 - ~ ~ 2 0 2)
6, =[$(gsin6, -2cos6,)]/ l ,

6, = [+(gsin6, +icos6,)] / 1,
where the following notation was used.

I,
1,
m, Mass of long pole
mz Mass of short pole
X Cart position
f Cartvelocity

Half length of long pole
Half length of short pole

(13)

8 , Angle of long pole
6, Angle of short pole

0,
e ,

Angular velocity of long pole
Angular velocity of short pole

The control objective is to balance the system such
that the poles do not fall beyond a predefined vertical
angle(15O) and cart remains within the bounds of
the horizontal track(+ 2.4 meters from the center)
using the neural network output as the control force to
the cart. Where state variables are used as the neural
network input. The equations of motions for both the
single pole and the double pole problems are
simulated using a Euler integration method with a
step size of 0.01s. A population of neural networks is
randomly initialized with each set of weights and
biases. The simulation parameters are M = 1.0 kg, m
= in, = 0.1 kg, m, = 0.01 kg, 1 = 1, = 0.5 m and I, =

0.05 m.
Feed forward neural networks with four and six

nodes in the input layer(corresponding to the states),
ten nodes in the hidden layer and a single node in the
output layer is used. The bias nodes in the input and
hidden layers are set to 1.0. The activation function of
the nodes is given by

The output of the neural network was scaled so that it
can continuously vary between -10Nand +1ON

The coding for the weights and biases of the neural
network is a vector of real numbers between -10.000
and 10.000. Because the system is assumed to be
unknown a priori, a conventional method like BP can
not be applied. A population of 100 networks was
used. MGA parameters are as following: p , =

0.8, pmo = 0.5, = 0.03, Nres,, = 5 , k = 2.5
and k, = 0.9.

The fitness measure for a network is the simulated
time until failure occurs. No other information was
used. MGA was able to discover a good controller that
was successful for more than 100,000 time steps in
about 200 and about 650 generations for the single-
pole and double-pole respectively.

Fig. 6 shows the control result of the single pole
system using the neurocontroller found by MGA.
Initial condition for 6 is 0.1 rad and all other states
are zeros. Fig. 7 shows the result of the double pole
system. 0, is initially 2.5” and all other states are
zeros.

f (x) = - 1 + 2 / (l + e - ”) (15)

4.3 Robot manipulator control

The nonlinear system considered here is a one-link
and a two-link robot manipulator. Fig. 8 shows the
two-link manipulator system. A neural network is
used as a nonlinear PD-type controller for the robot

309

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on December 23, 2008 at 01:46 from IEEE Xplore. Restrictions apply.

system. The control objective here is making the
manipulator follow the desired joint trajectory.

0.12

0.1

0.08

0.06

3 0.04. - e 0.02

0 -

-0.02

-0 04

-0.06

1 1 , , ' ' ' ' ' 1

1 -

-

-

i
I
i
1
I

- 1
J

- J ,
' ' ' ' ' ' ' ' ' I

0 S 10 IS 20 2s 30 35 60 45 5 0

Fig. 6: Results ofthe single pole system

I S I . . . , . ' " I

Fig. 7: Results of the double pole system

Fig. 8: Two-link manipulator

(17)
3 =[id1 +r, +4 +& +4&c; +I2% .t.Z((z +V&J+4l%

3 =k& +1,I,C;>+l,l?] +@& +Iz% +WgA4 +m$,cl(18)
-wgA(%142 d)+nrd,lc;+rris(llc;+&G)

where the following notations were used.
q,
NI, Mass of link i

I i
1, Length of link i

$, (= 1, 12)

Joint angle of joint i

Moment of inertia of link i

Distance between joint i and the
center of mass of link i

S, = sinq, , C, = cosg, , Cu = cos(g, +q,)
The simulation parameters are vi1 = 10 kg, in2 = 5
kg, I , = I , = 1.0 iii. I , = 10112 kgm2, I , = 5/12
kgm' , g = 9.8 iirisec'.

initial and final velocity. It is given as
The desired joint trajectory is chosen to satisfy zero

(19)
qd (f) = q d l (f) =6f5 -15t4 +lot3 -n:l2, t ~[0 ,1]

Neural network controller receives the error and the
derivative of error between the desired angle and the
actual angle, and the output of the neural network is
used as the torque applied to the joint. It consists of
input, hidden and output layers, and the hidden layer
consists of four hidden neurons. The only information
that MGA uses are the error and the derivative of
error. MGA trains the neural network controller by
maximizing the following fitness function.

q d 2 (f) = 6 t 5 -15t4 +lot3 , t E[O,l]

1

$fitness = 1 / j (E error,, + erioy2 yt (20)

MGA parameters are the same as the previous section.
All initial errors are set to 0. Fig. 9 shows the result
for the one-link manipulator. Fig. 10 and Fig. 11
show the results for the two-link manipulator. As
shown in the results, MGA found a good neural
network controller for these highly nonlinear robot
manipulators.

,=o i

4 6 i
The equation of motion for the one-link manipulator

is given by
m12 ,, Nlgi

z = -q + -cosq
3 2

(16) -Ilj
-1.4 where m is the mass of the link, I is the length of the

and q is the joint angle. The simulation parameters
a rem=10kg , 1=1.0m,g = 9 . 8 m/sec2 .

manipulator is given by

-._."

0 0.1 0.2 0 3 0.4 0.) 0 6 0.7 0 8 09
link, z is the torque, g is the gravitational acceleration ~ 1 . 6 " " " " '

Time (uscl

The equations of motions for the two-link Fig. 9: Joint angle (1 link robot)

310

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on December 23, 2008 at 01:46 from IEEE Xplore. Restrictions apply.

Time (acr)

Fig. 10: 1st joint angle (2 link robot)

, , I , , , , ...,. D c n n d : I y Z , , , ,

Time (xcr)

Fig. 11: 2nd joint angle (2 link robot)

5. Conclusion

We have proposed a modificd genetic algorithm
(MGA) which was designed to prevent the premature
convergence and to speed up the convergence to the
solution. The results of the various examples studied
here indicate that MGA can be used as a good trainer
for neural networks controlling nonlineair unstable
plants using small information and no a priori
knowledge. MGA has adaptive characteristics and
improved hill-climbing capability compar'ed to the
simple GA. The control problems considered in this
paper is hard to be solved by BP because desired
inputloutput pairs are unknown for unknown systems.
Further work includes simultaneous search for the
weights and the architecture of a neurocontroller for
those nonlinear systems.

References

[2] C. L. Karr and E. J. Gentry, "Fuzzy control of pH
using genetic algorithms," IEEE Trans. Fuzzy
Syst., vol. 1, no. 1, pp. 46-53, Feb., 1993.

131 C. W. Anderson, "Learning to control an inverted
pendulum using neural networks," IEEE Control
Syst. Mag., pp. 31-37, Apr., 1989.

[4] D. E. Goldberg, Genetic Algorithm in Search,
Optimization, and Machine Learning. Reading,
MA: Addison-Wesley, 1989.

[5] I. K. Jeong and J. J. Lee, "Genetic algorithms and
neural networks for identification and control,"
Proceedings of the First Asian Control
Conference, pp. 697-700, 1994.

[6] J. Hertz, A. Krogh and R. G . Palmer, Introduction
to the Theory of Neural Coitiputation. Reading,
MA: Addison-Wesley, 199 1.

[7] K. Kristinsson and G. A. Dumont, "System
identification and control using genetic
algorithms," IEEE Trans. Svst., Man, Cybern.,
vol. 22, no. 5 , pp. 1033-1046, Sep., 1992.

[SI L. Davis, Genetic Algorithm and Sirriulated
Annealing. Rcading, MA: Pitman Publishing,
1987

[9] L. Davis, Handbook of Genetic Algorithnrs.
Reading, MA: Van Nostrand Reinhold, 1991.

[IO] M. McInerney and A. P. Dhawan. W s e of
genetic algorithms with backpropagation in
training of feed-forward ncural nwtworks,"
IEEE International Conference on Neural
Networks, pp. 203-208, 1993.

[I l l N. Saravanan and D. B. Fogel, "Evolving
neurocontrollers using evolutionary
programming," IEEE International Conference
on Evolufionary Coinputing, pp. 759-763, 1994.

[I21 Y. Ichikawa and T. Sawa, "Neural network
application for direct feedback controllers,"
IEEE Trans. Neural Networks, vol. 3, no. 2,
pp. 224-231, Mar., 1992.

111 A. G. Barto, R. S. Sutton and C. W. Anderson,
"Neuronlike adaptive elements that can solve
difficult learning control problems," IEEE Trans.
Syst., Man, Cybern., vol. SMC-13, no. 5, pp. 834-
846, Sep., 1983.

311

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on December 23, 2008 at 01:46 from IEEE Xplore. Restrictions apply.

