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ABSTRACT 

Genetic algorithtiis are getting more popular nowadadvs because of their sirtiplicity and 
robustness. Genetic algorithm are global search techniques for  optimizations and many other 
problems. A feed-forward neural network that is widely used in control applications usually 
learns by back propagation afgorithm(BP). However, when there exist certain constraints, BP 
cannot be applied. We apply a genetic algorithtti to such a case. To ittiprove hill-climbing 
capability and speed up the convergence, we propose a tnodified genetic algorifhnr(i2fGA). The 
validity and efficiency of the proposed algorithtti, hlG.4 are shown by various sitnulation 
examples of systetti identification and nonlinear svsteiti control such as cart-pole sys tem and 
robot manipulators 

1. Introduction 

Control of  a certain system can be represented as 
finding an appropriate input for the desired output 
response. For that purpose, we generally need a model 
describing the characteristics of the system, but it is 
difficult to get such a model when the system is 
unknown or time-varying. Adaptive control and 
variable structure control have been studied to 
overcome the uncertainties of the model. However, it 
is hard to apply them to an unknown complicated 
system, since both of them have some constraints. 

Genetic algorithms(GA's) are used in various 
control system problems nowadays[2][7][12]. A 
genetic algorithm is a search method based on the 
natural selection and genetics while neural networks 
and fuzzy theory originate from human information 
processing and inference procedures[4] [SI. The 
current main search methods assume the smooth 
search space and the existence of its derivative, and 
most of them are using the gradient following 
technique. 

GA is different from conventional optimization 
methods in several ways. GA is a parallel and global 
search that searches multiple points so it is more 
likely to get the global solution. It makes no 
assumption on the search space so, i t  is simple and 
can be applied to various problems. In control area, it 
has been used in identification, adaptation and neural 
network controller. However, GA is inherently slow 
and not good at fine tuning of  the solutions. 

On the other hand, neural networks have 
advantages of learning and various input-output 
mapping capability. There are many paradigms €or 
neural networks, and feed forward networks are 
frequently used €or complex nonlinear systems 
modeling and control[ 11 [3]. Back propagation(BP) 

learning algorithm for feed forward networks has the 
problems of local minima and parameter sensitivity 
[ G I .  GA can be a suitable learning algorithm for 
neural networks, since it does not have those 
problems. But. as mentioned earlier on, GA is slow 
and poor at fine tuning. Therefore, GA-BP, a hybrid 
GA merged with BP was proposed[lO], but, was not 
desirable due to the constraint imposed by BP. 

Simulated annealing(SA) is another important 
algorithm which is powerful in optimization and high 
order problems, but it is very slow[8]. An adaptive 
GA merged with SA(ASAGA) was proposed to 
improve SA[5]. This algorithm was designed to 
preserve the merits of both SA and GA, but has more 
computational burden than ordinary simple GA. 

In this paper, we propose a modified genetic 
aIgorithm(MGA) which is designed to improve the 
speed of convergence to the solution and the hill- 
climbing capability without complicating the 
algorithm. The paper is organized as follows. In 
section 2 ,  general feature of a simple genetic 
algorithm is briefly described. In section 3 ,  a modified 
genetic algorithni(MGA) is presented. In section 4, 
various applications of MGA to control problems and 
simulation results are included. 

2. A Simple Gerietic Algorithm 

GA is a search method based on the natural 
selection and genetics. GA is computationally simple 
yet powerful and it is not limited by assumptions 
about the search space. The most important goal of 
optimization should be improvement. Although GA 
cannot guarantee that the solution will converge to the 
optimum, it tries to find the optimum, that is, it works 
for the improvement. GA's are different from normal 
search procedures in four ways[4]. 
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1. GA's work with a coding of the parameter set, not 
the parameters themselves. 

2. GA's search from a population of points, not a 
single point. 

3. GA's use objective function information, not 
derivatives or other auxiliary knowledge. 

4. GA's use probabilistic transition rules, not 
deterministic rules. 

A simple GA is really easy to use, yet powerful. GA 
searches for the solution by transforming the 
individuals in a population by genetic operators and 
determining the population for the next generation. 
Usually, each individual is encoded using binary 
number. In a simple GA, following three basic genetic 
operators are used. 

Reproduction : Reproduction probability is 
proportional to the fitness value(objective function 
value) of a string(individua1). 

Crossover : Crossover needs mating of two 
individuals. The information of two randomly selected 
individuals is partly interchanged according to the 
crossover site. Crossover is applied to tak:e valuable 
information from both parents, and it is applied with 
the crossover probability. 
Mutation : This operator insures against a bit loss 

and can be a source of new bits. Since mutation is a 
random walk through the string space, it must be used 
sparingly. 

There are three differences of GA from random 
search. First, the existence of the direction of search 
due to the selection probability. Second, the fact that 
the better strings make more offsprings aind finally, 
being likely to be improved in average fitness after 
generations. 

3. A Modified Genetic Algorithm 

GA is a useful search algorithm because of its 
simplicity and robustness. However, it has three major 
limitations. First, the performance is degraded as the 
problem size grows. Secondly, premature colnvergence 
occurs when GA cannot find the optimal sollution due 
to loss of some important character(genes) in strings. 
The reason is that GA heavily depends on crossover 
and the mutation probability is generally too small to 
move the search to other space. Lastly, GA lacks hill- 
climbing capability. The reason is also that the 
mutation probability is much smaller than the 
crossover probability. There has been much work to 
prevent premature convergence for small populations: 
using the rank of the fitness values so that the 
selectivity is not proportional to the fitness value, 
scaling the fitness value according to the gene loss, 
changing the genetic operator, constraining mating 
(incest prevention), lowering the fitness values of the 
similar strings, adjusting mutation probability or 
inserting new genes, using parallel GA when the 

population is large, merging GA with another 
method, etc., 

To prevent premature convergence and to improve 
hill-climbing capability, we suggest a modified 
algorithm. It consists of fitness modification and the 
modified mutation probability. 

Fitness value for a certain string is determined by 
the following rule. 

k x fitness,, , if fitness 2 k x fitness,, 
fitness, other case (1) fitness'= 

where fitness is the original fitness value and fitness' 
is the modified value. Jtness, is the average of 
Jtness values and k is a positive constant greater than 
1. It can be thought that this simple rule represents 
just a fitness lowering procedure. But, this rule is 
based on another philosophy. Sudden emergence of a 
super string, by which we mean a string that has large 
fitness, may cause the premature convergence. We 
need to make the search rather slower to scan wider 
range of the search space without causing the 
premature convergence. (1) provides such scheme. It 
makes the algorithm consider the strings that have 
fitness values above certain threshold as the same 
ones, so the diversity of the population is increased. 
As the population evolves, the average fitness 
becomes larger according to the schema theorem[4]. 
This makes the algorithm search toward the optimum 
gradually. 

The modified mutation probability, p ,  is given as 

p,(i +1) = 

pd, ifthfitb&ishsamforNwr gemation 

Pm(')> ifp,(Ox',' ~m-/ , .w (2) 1 P,(i>Xk,, ~~ 

where i is the generation number. pm0 , P , - , ~  and 

k,  is a positive constant less than 1.  N,,s,r is a 
constant. 
Thus, the adaptive mutation probability can be 
enlarged whenever needed. The enlarged mutation 
probability increases the diversity of the population so 
it prevents the population from premature 
convergence. This acts as a source for lost genes and 
makes the algorithm adaptive. When the mutation 
probability is equal to its lowest value p ,  ,ow , it 
operates as a normal mutation operator. We apply the 
elitist strategy to maintain the solution of good quality 
under the condition of randomized search. Though 
several new parameters were introduced into MGA, 
determining them is not difficult. Based on our 
experience, €allowing ranges are recommended: 
pm0 E [0.5,11, P , - / ~  E ~0,0.11, k E [1,101, k, E 

In this paper, we apply MGA to various control 
problems. As mentioned earlier, GA is suitable for a 
learning method of neural networks when 
conventional method cannot work. To apply MGA to 
neural networks, we should be able to code the 
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information of a neural network. Since we only deal 
with the optimization of weights here, all the 
information of a neural network can be represented as 
an array of weight values. Because binary coding 
needs too many bits for a string, though we use it in 
the section 4.1 for a system identification problem, 
neural network representation in this paper uses the 
string that consists of real values with constant bound. 
Mutation is defined as adding a small random number 
to a real number in a string. 

4. Applications to Control Problems 

4.1 System parameter identification 

The problem considered here is the same as those in 
[5][7]. It is presented for comparison purpose. The 
object system is a discrete time system: 

(3) 
The objective is identifying A(q- ' ) ,  B (q - ' )  and delay 
d using the given input u(t)  and the output y(t). We 
define the error sequence as 

(4) 
with 

( 5 )  
The fitness function to be maximized is 

A(q- ' ) y ( t )  = B(q-l)u(t  - d )  

?(t> = Y ( f )  - .%t> 

i (q- ' )$( t )  = &l)u(t - 2) 
W 

~ ( t )  = ~/z(q(t-i))* (6) 
,=O 

where w represents window size. 
The system polynomials, poles and zeros in the 
reparameterized plane are the following: 

(7) 

[pi, p , ]  =[0.75, -0.371 [z,, z 2 ]  = [-0.25, 0.251 (8) 
where b o  is 1 and the delay d was set to 1. 
We apply a simple GA, ASAGA(adaptive simulated 
annealing genetic algorithm)[5] and MGA to identify 
pl,  p , ,  zI ,  z,, bo and d. bo is assumed to be in 

[O, 21 and the poles and zeros in [-1, 11. In this 
problem, we use binary encoding. 7 bits were used for 
each parameter except for d (2 bits), so the resolution 
is slightly smaller than 0.02. A string consists of 37 
bits. We use p ,  = 0.8, pmo = 1.0, p,_,, = 0.01, k = 

2 .5 ,  k ,  = 0.9, population size = 100 and window size 
w = 30. Input for the sample data is 

u ( t )  = sin(t) - sin(t / 2.5) +random(-1 - 1) (9) 
Fig. 1 shows the identification result of the poles with 
simple GA and Fig. 2 with ASAGA. The true value of 
pz  is -0.371. However, the limitation on the 
resolution due to coding makes p ,  equal to -0.375. 
Fig. 3 shows the result with MGA. It shows the better 
hill-climbing and optimum finding capability than 
simple GA. 
Though ASAGA shows the best performance among 
the three methods, MGA shows good performance 

A(9-I) = 1.0 - 1.5q-I + 0.7q-2 
B(q- ' )  = b,(1.0 +OSq-' +O.Oq-,) 

using much smaller computation compared to 
ASAGA[j]. 

i 

............. 

100 100 300 400 500 600 
-0 4 

GC"M.1,"" 

Fig. 1: Identification of the poles using simple GA 

100 ZOO 300 400 SO0 600 
-0.4 

Fig. 2: Identification ofthe poles using ASAGA 

Gsncr.,ion 

Fig. 3: Identification ofthe poles using MGA 

4.2 Cart-pole problems 

Pole balancing problem is difficult since the system 
is nonlinear. The problem becomes harder when we 
do not have any a priori information about the cart- 
pole system. Two cases of this kind of problems are 
considered in this section. The first is the balancing of 
a pole on a cart(sing1e pole problem) and the second is 
the balancing of two poles on a cart(doub1e pole 
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problem). The double pole problem is mlDre difficult 
than the single pole problem. Fig. 4 and Fig. 5 show 
the single pole and the double pole systems 
respectively. The simulation procedure is; similar to 
that of [ll] except that we use MGA instead of the 
evolutionary programming method. 

Fig. 4: Single pole system 

Fig. 5: Double pole system 

The equations of motions for the single pole 

.. (M+m)gsin6 -cos0[u+mli2 sin61 
(10) e =  - 

i j t =  (11) 

where A4 is the mass of the cart and in is tlhe mass of 
the pole. 1 is the half of the pole length and U is the 
control force. 

The equations of motions for the double pole 
system can be derived from dynamic etquilibrium 
equations. It is well known for the double pole system 
that the poles must be of different length in order to 
be balanced. The equations are given as 

(12) 
g= U+: [q Sine, (1,6: - g d , )  -? sine, (l& - g o 9  

problem can be found in many papers. Thos8e are 

(4/3)(M+m)Z--ml(co~6)~ 
U +mZ[8’sin6 -8cos61 

M+m 

M+q(1-4ax2 6 , ) + ~ ( 1 - ~ ~ 2 0 2 )  
6, =[$(gsin6, -2cos6,)]/ l ,  

6, = [+(gsin6, +icos6,)]  / 1, 
where the following notation was used. 

I, 
1, 
m, Mass of long pole 
mz Mass of short pole 
X Cart position 
f Cartvelocity 

Half length of long pole 
Half length of short pole 

(13) 

8 ,  Angle of long pole 
6, Angle of short pole 

0, 
e , 

Angular velocity of long pole 
Angular velocity of short pole 

The control objective is to balance the system such 
that the poles do not fall beyond a predefined vertical 
angle( 15O ) and cart remains within the bounds of 
the horizontal track(+ 2.4 meters from the center) 
using the neural network output as the control force to 
the cart. Where state variables are used as the neural 
network input. The equations of motions for both the 
single pole and the double pole problems are 
simulated using a Euler integration method with a 
step size of 0.01s. A population of neural networks is 
randomly initialized with each set of weights and 
biases. The simulation parameters are M = 1.0 kg, m 
= in, = 0.1 kg, m, = 0.01 kg, 1 = 1, = 0.5 m and I, = 

0.05 m. 
Feed forward neural networks with four and six 

nodes in the input layer(corresponding to the states), 
ten nodes in the hidden layer and a single node in the 
output layer is used. The bias nodes in the input and 
hidden layers are set to 1.0. The activation function of 
the nodes is given by 

The output of the neural network was scaled so that it 
can continuously vary between -10Nand +1ON 

The coding for the weights and biases of the neural 
network is a vector of real numbers between -10.000 
and 10.000. Because the system is assumed to be 
unknown a priori, a conventional method like BP can 
not be applied. A population of 100 networks was 
used. MGA parameters are as following: p ,  = 

0.8, pmo = 0.5, = 0.03, Nres,, = 5 ,  k = 2.5 
and k, = 0.9. 

The fitness measure for a network is the simulated 
time until failure occurs. No other information was 
used. MGA was able to discover a good controller that 
was successful for more than 100,000 time steps in 
about 200 and about 650 generations for the single- 
pole and double-pole respectively. 

Fig. 6 shows the control result of the single pole 
system using the neurocontroller found by MGA. 
Initial condition for 6 is 0.1 rad and all other states 
are zeros. Fig. 7 shows the result of the double pole 
system. 0, is initially 2.5” and all other states are 
zeros. 

f ( x )  = - 1 + 2 / ( l + e - ” )  (15) 

4.3 Robot manipulator control 

The nonlinear system considered here is a one-link 
and a two-link robot manipulator. Fig. 8 shows the 
two-link manipulator system. A neural network is 
used as a nonlinear PD-type controller for the robot 
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system. The control objective here is making the 
manipulator follow the desired joint trajectory. 

0.12 
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0.06 

3 0.04. - e 0.02 

0 -  

-0.02 

-0 04 
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1 1 , , ' ' ' ' ' 1  
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i 
I 
i 
1 
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- 1 
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- J , 
' ' ' ' ' ' ' ' ' I  

0 S 10 IS  20 2s 30 35 60 45 5 0  

Fig. 6:  Results ofthe single pole system 

I S I . . . , . ' "  I 

Fig. 7: Results of the double pole system 

Fig. 8: Two-link manipulator 

(17) 
3 =[id1 +r, +4 +& +4&c; +I2% .t.Z((z +V&J+4l% 

3 =k& +1,I,C;>+l,l?] +@& +Iz% +WgA4 +m$,cl(18) 
-wgA(%142 d)+nrd,lc;+rris(llc;+&G) 

where the following notations were used. 
q, 
NI, Mass of link i 

I i  
1, Length of link i 

$, (= 1, 12) 

Joint angle of joint i 

Moment of inertia of link i 

Distance between joint i and the 
center of mass of link i 

S, = sinq, , C, = cosg, , Cu = cos(g, +q,) 
The simulation parameters are vi1 = 10 kg, in2 = 5 
kg, I ,  = I ,  = 1.0 iii. I ,  = 10112 kgm2,  I ,  = 5/12 
kgm' ,  g = 9.8 iirisec'. 

initial and final velocity. It is given as 
The desired joint trajectory is chosen to satisfy zero 

(19) 
qd ( f )  = q d l ( f )  =6f5 -15t4 +lot3 -n:l2, t ~[0 ,1 ]  

Neural network controller receives the error and the 
derivative of error between the desired angle and the 
actual angle, and the output of the neural network is 
used as the torque applied to the joint. It consists of 
input, hidden and output layers, and the hidden layer 
consists of four hidden neurons. The only information 
that MGA uses are the error and the derivative of 
error. MGA trains the neural network controller by 
maximizing the following fitness function. 

q d 2 ( f )  = 6 t 5  -15t4 +lot3 ,  t E[O,l] 

1 

$fitness = 1 / j (E error,, + erioy2 yt (20) 

MGA parameters are the same as the previous section. 
All initial errors are set to 0. Fig. 9 shows the result 
for the one-link manipulator. Fig. 10 and Fig. 11 
show the results for the two-link manipulator. As 
shown in the results, MGA found a good neural 
network controller for these highly nonlinear robot 
manipulators. 

,=o i 

4 6 i 
The equation of motion for the one-link manipulator 

is given by 
m12 ,, Nlgi 

z = -q + -cosq 
3 2 

(16) -Ilj 
-1.4 where m is the mass of the link, I is the length of the 

and q is the joint angle. The simulation parameters 
a rem=10kg ,  1=1.0m,g = 9 . 8  m/sec2 . 

manipulator is given by 

-._." 

0 0.1 0.2 0 3 0.4 0.) 0 6 0.7 0 8 09 
link, z is the torque, g is the gravitational acceleration ~ 1 . 6  " " " " '  

Time (uscl 

The equations of motions for the two-link Fig. 9: Joint angle ( 1 link robot ) 
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Time (acr) 

Fig. 10: 1st joint angle ( 2 link robot ) 

, , I ,  , , , ...,. D c n n d .  ... : I y Z  , , , , 

Time (xcr) 

Fig. 11: 2nd joint angle ( 2 link robot ) 

5. Conclusion 

We have proposed a modificd genetic algorithm 
(MGA) which was designed to prevent the premature 
convergence and to speed up the convergence to the 
solution. The results of the various examples studied 
here indicate that MGA can be used as a good trainer 
for neural networks controlling nonlineair unstable 
plants using small information and no a priori 
knowledge. MGA has adaptive characteristics and 
improved hill-climbing capability compar'ed to the 
simple GA. The control problems considered in this 
paper is hard to be solved by BP because desired 
inputloutput pairs are unknown for unknown systems. 
Further work includes simultaneous search for the 
weights and the architecture of a neurocontroller for 
those nonlinear systems. 
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