
An Efficient Parallel Join Algorithm Based on Hypercube-Partitioning

Hwan Ik Choi, Byoung MO Im, Myoung Ho Kim, Yoon-Joon Lee

Dept. of Computer Science, Korea Advanced Institute of Science and Technology

Abstract

Many parallel join algorithms have been proposed so
far but most of which are developed focused on
minimizing the disk I t 0 and CPU costs. The
communication cost, however, is also an important factor
that can significantly affect the join processing
performance in multiprocessor system. In this paper we
propose an eficient parallel join algorithm, called Cube-
Robust, for hypercube multicomputers. The proposed
algorithm is developed based on the observation that the
size ratio of two relations to be joined is the dominant
factor in the communication cost. We develop the analytic
cost model for the proposed join algorithm. The
performance comparisons show that the Cube-Robust join
algorithm works better than others proposed earlier in a
wide range of size ratios.

1. Introduction

The join operation is the most time consuming and
frequently used one in relational database systems.
Developments of efficient parallel join algorithms are
necessary to fully utilize the processing power of
distributed and parallel systems.

Many algorithms have been proposed for parallel
processing of join operation[1.4, 5,9-121. However, most
of them focus only on reducing disk I/O operations. As
VLSI technology advances, the main memory becomes
cheaper and there exist general machines equipped with
more than 1G byte memory. Many researches report the
feasibility of the database management system for large
main memory computers. In the case of multiprocessor
systems with large main memory, the communication cost
becomes another important factor in performance. There
were some researches to reduce the communication cost.
[8] tried to minimize the communication cost occurred
during the result collection phase with the help of the
specially designed network. In [5] the packet overhead
was considered and the relation-compaction-and-
replication phase was introduced.

Parallel Join algorithms can be classified into two main
categories, broadcast-based approach and bucket-based

approach, according to the distribution strategies of
relations[6]. The broadcast-based approach requires that
the fragment of a relation travels all the system nodes.
Once the fragment of a relation arrives at a node, the node
performs partial join operation with its own fragment of
the other relation. After perfroming a partial join
operation, a node sends the received fragment of relation
to the next node. The broadast-based approach shows
relavtively low communication cost. However, its
performance is significantly dependent on the cost
incurred by false-join. A false-join is the join operation
that does not produce any result tuples. Increased number
of false joins causes extra CPU cost. Figure 1 shows the
logical diagram of the broadcast-based approach.

The bucket-based approach partitions two relations to
be joined into disjoint buckets according to their attribute
values. A bucket consists of tuples that have the same
characteristics, and is assigned to a certain node. Each
node contains distinct buckets. Usually, a bucket is formed
based on hash values of join attributes. After buckets are
distributed, all nodes perform join operations of two
buckets in parallel. The bucket-based approach uses a
"divide and conquer" strategy, because a large join
operation is divided into smaller independent join
operations. The bucket-based approach has a performance
advantage due to the clustering effect each cluster
contains tuples that are likely to be joined. Clustering
effect reduces the number of false-joins so that the bucket-
based approach wastes less CPU time. However, the
bucket-based approach must pay the communication cost
for the reduced CPU cost because both relations have to be
distributed. Figure 2 shows the logical diagram of the
bucket-based approach

In this paper we propose an efficient parallel join
algorithm, called Cube-Robust, for cube-connected
multicomputers. Our main focus on developing Cube-
Robust is to reduce the communication cost among
processing elements in multiprocessor systems based on
the size ratio of two relations. Here, the size ratio a of two
relations is defined as follows: a= size of larger relation

size of smaller relation

50
0-8186-6400-2/94 $4.00 0 1994 IEEE

RI W S Rz W S R M S

Figure 1 . Broadcast-based approach

Figure 2 . Bucket-based approach

Since our work is mainly concerned with efficient
parallel join processing of the relations loaded into
memory of some processing elements, all other works on
the reduction of I/O costs can be equally applied to our
scheme.

The remainder of this paper is organized as follows. In
section 2 we proposes a new parallel join algorithm, Cube-
Robust, on hypercube systems. We develop an analytic
cost model for the proposed join algorithm in section 3
and performance comparisons are presented in section 4.
Finally conclusions are presented in section 5 .

2. Proposed parallel join algorithm

2.1. Parallel join algorithms for hypercubes

A. The Cube-Hybrid-Hash join algorithm
The Cube-Hybrid-Hash join algorithm(CHH)[9] is a

straight adaptation of the single processor hybrid hash[4]
join algorithm. CHH uses a bucket-based approach
because CHH partitions each relation into disjoint buckets.
As relations are partitioned into appropriate buckets, CHH
can minimize the number of false-joins that in turn results
in reduced CPU cost. However, the cost of distributing two
relations may overcome the benefits of clustering effect as
the size ratio of two relations increases.

B. The Cube-Nested-Loop join algorithm
The Cube-Nested-Loop join algorithm(CNL) adopts the

broadcast-based method[ll]. In CNL, a node reads the
smaller relation and constructs the local hash table. After
the construction of the local hash table, the node reads the
larger relation S and performs local join operations if
possible. All tuples of the larger relation are moved to the
output buffers and are exchanged with its neighbors. For

the received tuples, a node tries to perfom the local join.
According to the exchange steps, the larger relation is
broadcasted among all nodes in the system.

CNL adopts a broadcast-based approach as the larger
relation is broadcasted among nodes in the system. Since
the fragments of the larger relation in each node have to
be compared with all the tuples of the smaller relation as
in the simple nested-loop join algorithm, it may suffer
from the high processing cost. Although CNL is a
broadcast-based algorithm, CNL does not take the
advantage of the broadcast-based approach due to the
broadcasting of the larger relation.

C . The Modified-Cube-Nested-Loop join algorithm
To analyze the characteristics of the broadcast-based

approach more precisely we modified the CNL join
algorithm to broadcast the smaller relation.

First a node reads the small relation and constructs the
local hash table as in the CNL join algorithm. The tuples
of the small relation are moved to output buffers and
broadcasted among nodes in the system. The MCNL join
algorithm reduces the communication cost by
broadcasting the small relation in contrast to CNL. After
broadcasting a node reads the larger relation and performs
local join operations.

2.2. Basic concepts

The following observation is the basis on which our
proposed algorithm is developed. The CPU processing
cost of the broadcast-based approach is larger than the
bucket-based approach in general. This is because all
possible pairs of tuples in two relations have to be
compared in the broadcast-based approach. On the other
hand, the communication costs of these two approaches
depend on several factors. First, suppose the sizes of two
relations to be joined are almost the same(i.e., a = 1). In a
small dimension hypercube, the communication cost of
the broadcast-based approach is less than that of the
bucket-based approach. It, however, grows very fast and
tends to exceed that of the bucket-based approach as the
dimension of a hypercube increases. Second, if the size of
one relation is much larger than that of the other
relation(i.e., ml). the communication cost of the
broadcast-based approach can be significantly less than
that of the bucket-based approach. Note that the
broadcast-based approach broadcasts only one, i.e., the
small relation while the bucket-based approach distributes
both relations. In other words, the characteristics of
communication costs in these two approaches have to be
analyzed based on both the hypercube size and the size
ratio of two relations.

51

- _ _ - _ _ _ _ _ _ _ _ - - - - -
Figure 3. Basic idea of proposed algorithm

In an architecture based on hypercube interconnection,
each node is connected(i.e., adjacent) to each of its
n x l o g , N neighbors, where N is the total number of
nodes. Since the hypercube possesses many desirable
characteristics such as a low diameter, the high bisection
width and symmetry, the hypercube structure has been
much considered for many parallel processing
applications[7].

To take advantages of two distribution strategies, the
join algorithm must be intelligent enough to select a
proper strategy based on the size ratio of two relations and
the number of processors. In order to control the
distribution strategy we have introduced the hyperbucket
concept. A hyperbucket is a pmessor cluster and is a k-
dimension subcube of n-dimension hypercube system
(O S k sn). An n-dimension hypercube has 2n*
hyperbuckets. Thus, we can consider that an n-dimension
hypercube is an (n-k)-dimension hypercube where each
node is a hyperbucket. In the CR join algorithm, each
relation to be joined is partitioned into 2"" fragments, and
then the CR join algorithm distributes each fragment to
hyperbuckets. Here, fragments of smaller relation are
replicated to all the nodes within the same hyperbucket.

The communication cost in CR consists of inter- and
intra-bucket communication costs. Inter-bucket
communication occurs while fragments of relations R and
S are distributed into hyperbuckets. Intra-bucket
communication is necessary to replicate a received
fragment of smaller relation to all the nodes within the
same hyperbucket. The dimension of hyperbucket k is
selected to optimize these two types of communication
costs. CR selects the dimension of hyperbucket based on
the size ratio U. Figure 3 shows the logical operation
diagram of proposed processing scheme.

2.3. The Cube-Robust Join algorithm

The proposed CR join algorithm consists of four phases.

Hyperbucket selection phase
In this phase, CR selects a dimension k of hyperbucket.

The dimension k that minimizes the communication cost
for both telations is

n),O). when U is H .
I4

The equations are shown in [31.

0 Bucket construction phase
After the dimension k of hyperbucket is selected, an n-

cube is considemxi as an (n-k)-cube with 2"-'
nodes(hyperbuckets). In the bucket construction phase two
relations are partitioned into 2"-' disjoint buckets and
each bucket is distributed to a hyperbucket H,
(0 5 i < 2n-k). Let <in-1,i,,-2 ,..., io, be the binary
representation of i (a subscript 0 indicates the least
significant bit). Hyperbucket H h contains 2' nodes whose
binary representation of addresses is
< hn-k-l,hn-r-z ,..., h,,,* >. where * denotes "don't care
term". That is, nodes in a hyperbucket have the same (n-
k)-bits in their address representation. For example, in
Figure 4-(a) the dimension of hyperbucket is 1 and the 3-
dimension hypercube is divided into 4 hyperbuckets. The
hypehcket Hco,l> consists of two nodes <0,1,0>, <0,1,1>
whose the most significant two bits are <0,1>.

Each node allocates one output buffer for each link. The
output buffer B, (0 5 i n - 1) is associated with the
neighbor whose address differs in the least significant i-th
bit position with that of the local node. The B, of a node
contains tuples whose destined locations have the
identical bits in the i-th to (n-1)-th positions to the address
of its associated neighbor. That is, the B, of node j
contains the tuples for nodes whose address is represented
as < jn-l. J , , - ~ ,..., >. Neighbor i is defined in the
same manner.

Node i reads local fragments RI, SI and applies a hash
function to get the destination of a tuple. Once the
destination of a tuple is decided as H h , this tuple is sent to
the node i whose binary representation is
< h,,-k-l . hn-t-2 , . . . , ho , ik-2* io >. In Figure 4-(b)
the tuples in the node <0,1,1> whose destination is He0,,,
are transmitted to the node <0,0,1> and tuples whose
destination is HcI,l> are transmitted to the node <l,l,l>.
Note that tuples in the node <*,*,1> never go to nodes
<* ,* ,o>.

. .

Broadcast phase
In the broadcast phase, tuples of the d e r relation

belong to k-dimension hyperbucket are replicated to all 2'
nodes in the hyperbucket. Each hyperbucket peaforms
tuple replication operations in parallel. To fully replicate
tuples, k steps of communications are necessary. For

52

Ho” Hal a - -

Hio Hi1

(a) Hyperbuckets (b) Communication paths

Figure 4.3-dimension hypercube with 4 hyperbuckets

URH I
TR

pocc
PR

P

IO
n

N
k
M
A
pocket
comm

CmP
hush
move
POVhd

size of the relation R(tup1ea)

size of tuple in R(bytes)

size of a page(bytes)
average page occupancy factor

number of tuples per page for R , 5 1 TR 1
time in readinghvriting a page fmmho the disk(mec)
dimension of hypercube
the number of nodes in hypercube. 2”
dimension of hyperbucket
the number of nodes in hypehcket, 2’
size of a node address(bytes).
maximum size of a packet(bytes)
communication rate@its/second)
time in comparing two valuesw)
time in complting the hash value of a tuple@)
time in moving one tuple within main memory@)
packet overhead for control donnation (seclpochr)

F I fudgefactor

Table 1. Evaluation notations and values

example, in Figure 4-(b) the tuples of relation R in node
<0,1,1> belonged to hyperbucket H<o,] , are transmitted to
node <0.1,0> and simultaneously the tuples in node
<0,1,0> are transmitted to node <0,1,1>.

By replicating the portion of smaller relation in a
hyperbucket, each node in the hyperbucket contains the
same fragment of the relation smaller relation R so that
hyperbucket can be regarded as a single bucket but has 2’
processors.

Local join phase
This phase performs local joins. We choose Hash Join

as the local join method but other algorithms can also be
used. According to the hash join method, we build a hash
table in memory on each node for the tuples that have
been broadcasted. Then for every tuples in the fragment of
S that have been transmitted by the bucket construction

phase, the node probes the local hash table to find
matching tuples. Since all 2‘ nudes of a hyperbucket Hi
contains the same hash table, a tuple of S whose
destination is H , can be probed by any nodes in the Hi.
The complete algorithm of CR is given m [4].

3. Cost Models

The hypercube machine under investigation is assumed
to have bi-directional communication channels and each
channel has its own communication buffer to provide
concurrent data transfer.

In the proposed cost model, the size of relation S is
always the larger than that of relation R. We assume both
relations R and S are partitioned horizontally across the
nodes and there are no data value skew. The number of
comparisons required per tuple to probe the hash table is
controlled by the fudge factor F that is larger than 1 due to
potential collisions.

1/0 and CPU overlap is not considered to make the cost
model simple. The memory and output buffers are
assumed to have enough space not to occur overflow.
Final output costs are not included. Table 1 shows the
notations we use to develop the cost models

3.1. Cost Model of Cube-Robust Join Algorithm

We analyze the cost of Cube-Robust join algorithm in
the following.

0 Disk YO cost on a single node:
Since we assume enough space not to overflow, disk I/O

cost of all algorithms to be compared with are same.
Assuming a uniform tuple distribution, the access time is

0 CPU cost for relation R:
The processing cost of relation R includes the cost CIR

to determine the destination of a tuple, the CDR cost to
construct bucket and the cost C B ~ to replicate tuples in
hyperbuckets.

To determine the destination of a tuple, a node
examines tuples of local fragments. If the destination of a
tuple is the local node or nodes in the hyperbucket to
which the local node belongs. the tuple is moved to the
local hash table. Otherwise, it is moved to an output buffer
for further transmissions.

N - M
N

(hush+cmp)+-

+ 2 x move) , otherwise

53

After locating tuples to the proper buffers, a node
exchanges tuples in the output buffer Bi with its neighbor
NI (n - k - 1 S i c n) . At each step of exchange, the
amount of incoming tuples is i q l / (2 x N) due to the
doubling effect [9]. The address of the arrived tuple is
examined and moved to the output buffer or the hash
table. Note that tuples anived by exchanging B, only enter
the output buffer (O S j < i) . This is because the buffer Bi

contains the tuples whose destined addresses are different
in the least significant i-th position with that of the local
node. Therefore, M / 2' portion of incoming tuples are
entered into the local hash table and at i-th step is

Once the distribution of the tuples are completed, the
local node replicates tuples among nodes in the
hyperbucket and builds a hash table. Each node contains
14 / N tuples in its local hash table and the local node
receives tuples from (M-1) nodes. The cost for broadcast
CBR is

CBR = (M - l) x &U x(hash+2xmove).
N

The total cost to process R is C p R = C , + 11:: CDR~ + CBR .
0 CPU cost for relation S:

The processing cost of relation S includes initial
processing time, the time to construct bucket and the time
to probe the local hash table for local joins.

The initial processing cost CIS is the cost necessary to
determine the destination of tuples in the relation S and is
derived in the similar way to that of the relation R. Instead
of moving tuples to the local hash table, tuples of the
relation S are probed with the local hash table.

xmove+-xcmpxF , k fn. " 1 N

-x(hush+cmpxF) , otherwise.
N

At each step i, if a tuple is destined to the local node it
is probed against the local hash. Otherwise, it is moved to
an output buffer:

+(hash+cmpxF)x-
2x N 2'

0 Communication cost for relation R:
The cost includes the time to transmit the buckets for

relation R and the time to replicates buckets in the
hyperbucket. The communication cost for bucket
distribution is

After buckets are distributed, the replication phase is
performed over k-steps. The number of tuples to be sent is
doubled at each step. This cost is represented by

The total cost associated with the communication is:
cco"R = cRD + ~ ~ ~ ~ c R B i

0 Communication cwt for relation S:

&dimension hypercube.
The relation S only needs to be distributed over the (n-

0 Total cost:
The total cost is C p R + C,, + CcommR + CcommS.

3.2. Cost Model of Modified-Cube-Nested-Loop
Join Algorithm

The cost of the Modified-Cube-Nested-Loop join
algorithm is analyzed in the following.

0 Disk U 0 cost on a single node:

that of the CR algorithm.
The cost incurred by disk 40 operations is same with

CPU cost for relation R:
The cost includes the cost to hash every tuples of R and

to store them in the local hash table. Each node should
make the hash table for all tuples of relation R:
C, = 1 1 ~ 1 1 ~ (hash + 2 xmove) .

0 CPU cost for relation S :
The cost includes the cost to hash every tuples of S and

to probe the local hash table far local join operations:
C I S = llsll X(hmh+compXF).

N

0 Communication cost :
The cost includes the transmission of tuples over n

phases for the relation R. In the MCNL join algorithm,
only the smaller relation is broadcasted over the nodes in
the system. As in the CR join algorithm, the size of tuples
transmitted is doubled during each phase of broadcast.

n-1

i=O
~ C O " = CCCI 9

54

where CCi = 2' x IRllXTR x8 +

N xcomm

Total cost:
The total cost is ClR + Cl, + C,,,,.

4. Experimental Results

This section analyzes the performance of four parallel
join algorithms Cube-Hybrid-Hash(~HI-I), Cube-Nested-
Loop(CNL), Modified-Cube-Nested-Loop(MCNL) and
Cube-Robust(CR) through the analytical cost models
described in section 3. The cost models for CHH and CNL
algorithms are identical with [9] and [111 respectively. In
this experiment we measure the response time of four
parallel join algorithms when the size ratio a is varied.
We evaluate performance of four join algorithms mainly
focused on the communication and CPU costs. The disk
I/O cost is constant in all algorithms as we stated in
section 3 and we do not take into account the performance
effects of disk 40s. We investigate two cases. The first
experiment is to compare the communication and CPU
costs of four algorithms. The second experiment is to
analyze the overall performance of four algorithms. All
performance evaluations are done by increasing the size of'
relation S while the size of relation R is fixed. The values
of system parameters used in our analysis can be found in
[4,9, 111.

A. Communication Cost vs. CPU Cost
Figure 5-(a) shows the communication overheads of

four join algorithms. The communication cost of MCNL
depends on the size of the relation R because it is the only
relation broadcasted. Due to the fixed size of relation R,
MCNL shows the constant communication cost. CNL
shows the worst case because the larger relation S is
broadcasted. As a increases the communication cost of
CHH inclines and becomes higher than that of MCNL
when a is greater than 60. This means when the
dimension of the hypercube is 8, the broadcast-based
approach is superior to the bucket-based approach once a
is greater than 60. CR which reduces the hypercube
system into hyperbuckets based on a shows the best
performance. When a is greater than 500, performance of
CR is Same as that of MCNL. 'Ihe dimension of
hyperbuckets is very dependent on 01 and is enlarged as a
increases. The enlarged dimension of hyperbuckets makes
the performance of CR to be converged to that of MCNL.
Figure 5-(e) shows the dimension of hyperbuckets
determined according to the value of a. If a grows over
500, the dimension of hyperbuckets is decided as that of
the hypercube system and CR shows the Same

(a) Communication cost (n=8) (b) CPU cost (n=8)

"Y ':L

2 4 6 8 10 12 14 16 2 4 6 8 10121416

IIn"datre " f a t e

(c) Communication cost (oc-60) (d) CPU cost (-60)

4 y :y-
1

1 0 9 ! O ~ ~ E 0 3 " K 2 4 6 8 10 12 14 16
0

Si9w clnasicndate

(e) Bucket dimension (n=8) (f) Bucket dimension (-60)

Figure 5. Communication and CPU cost comparisons

characteristics of MCNL. Figure 54b) shows the CPU cost
characteristics of four join algorithms. The performance
characteristics of CPU cost is similar to that of
communication cost because the CPU cost is very
dependent on the number of received tuples. CNL and
MCNL which examines more tuples than CHH and CR
show higher CPU cost.

Figure 5-(c) and (d) show the performance
characteristics of join algorithms according to the
dimension of hypercubes. As the dimension of hypercubes
increases the communication cost of MCNL and CNL
increases slightly. This is caused by the increased
traveling path length as the dimension of hypercubes
increases. The communication cost of CHH is decreased
as opposed to the MCNL case. The number of tuples
transmitted at each step in the bucket-based approach is
constant (IlRll I (2 x N 1) as we mentioned in section 3. The
increased dimension of hypercubes reduces the number of
tuples transmitted at each step exponentially and this cost
benefit dominates the communication cost induced by the
increased number of step. This effect is also shown in the
case of CR. In the moderate range of hypercube
dimensions, the behavior of CR is same as that of MCNL,

55

because the dimension of hyperbuckets is determined as
same as that of the hypercube system(Figure 5-(f)). When
the dimension of hypercubes is higher than 5 , the
dimension of hyperbuckets stops increasing and becomes
constant. By controlling the dimension of hyperbuckets
properly, CR achieves the minimized communication cost.
This dynamic behavior makes CR to resemble the
pedormance characteristics of CHH and to show better
performance than other algorithms.

The increased number of processors affects the CPU
cost of MCNL and CNL a little. Although the increased
number of nodes reduces the amount of tuples examined
at each step of broadcasting, the increased number of
nodes requires more broadcasting steps and as result, the
CPU performances of MCNL and CNL are not enhanced.
However, the CPU performances of CR and CHH are
enhanced with the help of the increased number of
processors. With the increased number of processors, a
join operation is divided into more smaller jobs and a
node spends less CPU cost. The reason that CR shows
better performance than CHH is that CR spends less CPU
cost to process the larger relation S. CR experiences less
move operations than CHH due to the hyperbucket
concept.

CHH which divides relations into more buckets must
move more tuples to output buffers. However, CR which
divides relations into less buckets moves less tuples to
output buffers. Instead of moving tuples to output buffers,
CR experiences more local join operations. Although CR
experiences more false-join than CHH. CR shows better
performance because the cost of a move operation is
generally more expensive than that of a cmp operation.

B . Overall performance analysis
To analyze the effect of the size ratio 01 to the

performance of join operations we have experimented
with the 4- and 8-dimensional hypercube systems and the
results are shown in Figure 6-(a) and (b). CR outperforms
other join algorithms regardless of 01. The performance
characteristics of join algorithms are very similar to
Figure 5 since the communication cost dominates the
overall performances.

Figure 7 shows the contribution of the communication
and CPU costs to overall performance of join algorithms.
In CNL. the portion of the communication cost is nearly
constant. As the dimension of the hypercube increases, the
communication portion of CHH increases from 80% to
98%(Figure 7-(b)). Because CHH is based on “divide and

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

J3r”ofoAx ILnaSmdax

(c) a=60 (d) -300

Figure 6. Overall performance comparisons

conquer”, the increased dimension of the hypercube
generates the larger number of buckets which require less
CPU processing. As a result, the CPU cost portion
decreases.

Figure 7-(c) shows the dominant factor of MCNL, is the
CPU cost in the moderate range of hypercube dimensions.
In MCNL, the smaller relation R contributes to the
communication cost and the larger relation S to the CPU
cost because only the smaller relation R is broadcasted
over the hypercube. In the moderate range of hypercube
dimensions, the CPU cost needed for probing the local
hash table dominates the communication cost for
distributing the relation R. However as the dimension
increases, the portion of the larger relation S kept in a
node becomes smaller and this results in the low CPU
cost. In contrast to the CPU cost, the communication cost
increases slightly according to the increase of the
hypercube dimension due to the increased traveling path
length. Therefore the portion of the CPU cost in the
overall performance decreases.

Figure 74d) shows the relative portion of the
communication and CPU costs of the CR join algorithm.
In the lower dimension of the hypercube systems, CR’s
performance characteristics are very similar to those of
MCNL and become similar to those of CHH with higher
dimensions.

56

2 4 6 8 10 12 14 16 2 4 6 8 10121416

(a) CNL algorithm (b) CHH algorithm

2 4 6 8 10121416 2 4 6 8 10121416

(c) MCNL algorithm (d) CR algorithm

Figure 7. Relative cost comparisons (a=60)

5. Conclusions

In this paper we have proposed an efficient parallel join
algorithm, called Cube-Robust, for hypercube
multicomputers. The proposed algorithm is robust due to
its immunity from the size ratios of two relations to be
joined. The Cube-Robust(CR) join algorithm proposed in
this paper combines merits of the bucket-based and
broadcast-based approaches by introducing hyperbucket
concept. The dimension of hyperbucket is determined
dynamically so as to minimize the communication cost.
Hyperbucket of k-dimension transforms an n-dimension
hypercube system into the (n-k)-dimension hypercube
system. When the dimension of a hypercube system is
large, the CR join algorithm takes advantage of clustering
effect and achieves the low communication cost by
applying the bucket-based approach to the reduced
hypercube system. When the dimension of the hypercube
system is small, CR uses large hyperbuckets to maximize
benefits from the broadcast-based approach, i.e., reduced
communication cost. We have shown the CR join
algorithm outperforms methods proposed earlier through
an analytic cost model and simulation experiments under
various running environments. Since the communication
cost in parallel join algorithms dominates the performance
of join algorithms when the hypercube dimension is large
or the size ratio of relation is high, optimization of the
communication cost is necessary to achieve high
performance of parallel join algorithms.

Bitton, D. et al, Parallel Algorithms for the Execution of
Relational Database Operations, ACM Trans. on Database
Systems (Sept., 1983) 324-353.
H.I., Choi, et al. An Efficient Parallel Join Algorithm Based
on Hypercube-Parititoning, CS-TR-94-85, Dept. of
Computer Science, KAIST.
S. M. Chung, JaerheenYang, Distributive Join Algorithm
for Cube-Connected Multiprocessors, Proc. Symp. on

Dewitt, D., Katz, R., et al. Implementation techniques fur
Main Memory Database Systems, Proc. ACM SIGMOD
(1984) 1-8.
Frieder, 0.. Baru, K., Database Operations in a Cube-
Connected Multicomputer System, IEEE Trans. on
Computers Vo1.38, No.6 (June, 1989) 920-927.
Frieder, 0.. Multiprocessor Algorithms for Relational-
Database Operators on Hypercube Systems, IEEE Computer
Survey & Tutorial Series (Nov., 1990) 13-28.
Harary, F. A Survey of the Theory of Hypercube Graphs,
Comput. Math. Appli. Vol. 14. No. 4 (1988) 110-121.
B. L. Menezes, K. Thadani, A. G. Dale, R. Jenevein,
Design of a HyperKYKLOS-based Multiprocessor
Architecture for High-Performance Join Operations, Proc.
5th International Workshop on Database Machines (Japan

E. R. Omiecinski, E.T. Lin, A Hash-based Join Algorithm
for a Cube-Connected Parallel Computer, Information
Processing Letters 30 (1989) 269-275.

DASFAA (1993) 253-260.

1987) 88-101.

[lo] E. R. Onkinski , E.T. Lin, Hash-based and Index-based
Join Algorithms for Cube and Ring Connected
Multicomputers, IEEE Trans. on Know. & Data Eng.
Vol.1, No.3 (Sep., 1989) 329-343.

[l l] E. R. Omiecinski, E.T. Lin, The Adaptive-Hash Join
Algorithm for a Hypercube Multicomputer, EX!€! Trans. on
Parallel and Distributed Systems, Vol. 3, No. 3 (1992) 334-
349.

[12] Schnieder, D., Dewitt, D., A Performance Evaluation of
Four Parallel Join Algorithms in a Shared-Nothing
Multiprocessor Environment, Proc. of SIGMOD Conf.
(1989) 110-121.

References

57

