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Abstract 

Many parallel join algorithms have been proposed so 
far but most of which are developed focused on 
minimizing the disk I t 0  and CPU costs. The 
communication cost, however, is also an important factor 
that can significantly affect the join processing 
performance in multiprocessor system. In this paper we 
propose an eficient parallel join algorithm, called Cube- 
Robust, for hypercube multicomputers. The proposed 
algorithm is developed based on the observation that the 
size ratio of two relations to be joined is the dominant 
factor in the communication cost. We develop the analytic 
cost model for the proposed join algorithm. The 
performance comparisons show that the Cube-Robust join 
algorithm works better than others proposed earlier in a 
wide range of size ratios. 

1. Introduction 

The join operation is the most time consuming and 
frequently used one in relational database systems. 
Developments of efficient parallel join algorithms are 
necessary to fully utilize the processing power of 
distributed and parallel systems. 

Many algorithms have been proposed for parallel 
processing of join operation[ 1.4, 5,9-121. However, most 
of them focus only on reducing disk I/O operations. As 
VLSI technology advances, the main memory becomes 
cheaper and there exist general machines equipped with 
more than 1G byte memory. Many researches report the 
feasibility of the database management system for large 
main memory computers. In the case of multiprocessor 
systems with large main memory, the communication cost 
becomes another important factor in performance. There 
were some researches to reduce the communication cost. 
[8] tried to minimize the communication cost occurred 
during the result collection phase with the help of the 
specially designed network. In [5] the packet overhead 
was considered and the relation-compaction-and- 
replication phase was introduced. 

Parallel Join algorithms can be classified into two main 
categories, broadcast-based approach and bucket-based 

approach, according to the distribution strategies of 
relations[6]. The broadcast-based approach requires that 
the fragment of a relation travels all the system nodes. 
Once the fragment of a relation arrives at a node, the node 
performs partial join operation with its own fragment of 
the other relation. After perfroming a partial join 
operation, a node sends the received fragment of relation 
to the next node. The broadast-based approach shows 
relavtively low communication cost. However, its 
performance is significantly dependent on the cost 
incurred by false-join. A false-join is the join operation 
that does not produce any result tuples. Increased number 
of false joins causes extra CPU cost. Figure 1 shows the 
logical diagram of the broadcast-based approach. 

The bucket-based approach partitions two relations to 
be joined into disjoint buckets according to their attribute 
values. A bucket consists of tuples that have the same 
characteristics, and is assigned to a certain node. Each 
node contains distinct buckets. Usually, a bucket is formed 
based on hash values of join attributes. After buckets are 
distributed, all nodes perform join operations of two 
buckets in parallel. The bucket-based approach uses a 
"divide and conquer" strategy, because a large join 
operation is divided into smaller independent join 
operations. The bucket-based approach has a performance 
advantage due to the clustering effect each cluster 
contains tuples that are likely to be joined. Clustering 
effect reduces the number of false-joins so that the bucket- 
based approach wastes less CPU time. However, the 
bucket-based approach must pay the communication cost 
for the reduced CPU cost because both relations have to be 
distributed. Figure 2 shows the logical diagram of the 
bucket-based approach 

In this paper we propose an efficient parallel join 
algorithm, called Cube-Robust, for cube-connected 
multicomputers. Our main focus on developing Cube- 
Robust is to reduce the communication cost among 
processing elements in multiprocessor systems based on 
the size ratio of two relations. Here, the size ratio a of two 
relations is defined as follows: a= size of larger relation 

size of smaller relation 
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Figure 1 .  Broadcast-based approach 

Figure 2 .  Bucket-based approach 

Since our work is mainly concerned with efficient 
parallel join processing of the relations loaded into 
memory of some processing elements, all other works on 
the reduction of I/O costs can be equally applied to our 
scheme. 

The remainder of this paper is organized as follows. In 
section 2 we proposes a new parallel join algorithm, Cube- 
Robust, on hypercube systems. We develop an analytic 
cost model for the proposed join algorithm in section 3 
and performance comparisons are presented in section 4. 
Finally conclusions are presented in section 5 .  

2. Proposed parallel join algorithm 

2.1. Parallel join algorithms for hypercubes 

A.  The Cube-Hybrid-Hash join algorithm 
The Cube-Hybrid-Hash join algorithm(CHH)[9] is a 

straight adaptation of the single processor hybrid hash[4] 
join algorithm. CHH uses a bucket-based approach 
because CHH partitions each relation into disjoint buckets. 
As relations are partitioned into appropriate buckets, CHH 
can minimize the number of false-joins that in turn results 
in reduced CPU cost. However, the cost of distributing two 
relations may overcome the benefits of clustering effect as 
the size ratio of two relations increases. 

B.  The Cube-Nested-Loop join algorithm 
The Cube-Nested-Loop join algorithm(CNL) adopts the 

broadcast-based method[ll]. In CNL, a node reads the 
smaller relation and constructs the local hash table. After 
the construction of the local hash table, the node reads the 
larger relation S and performs local join operations if 
possible. All tuples of the larger relation are moved to the 
output buffers and are exchanged with its neighbors. For 

the received tuples, a node tries to perfom the local join. 
According to the exchange steps, the larger relation is 
broadcasted among all nodes in the system. 

CNL adopts a broadcast-based approach as the larger 
relation is broadcasted among nodes in the system. Since 
the fragments of the larger relation in each node have to 
be compared with all the tuples of the smaller relation as 
in the simple nested-loop join algorithm, it may suffer 
from the high processing cost. Although CNL is a 
broadcast-based algorithm, CNL does not take the 
advantage of the broadcast-based approach due to the 
broadcasting of the larger relation. 

C .  The Modified-Cube-Nested-Loop join algorithm 
To analyze the characteristics of the broadcast-based 

approach more precisely we modified the CNL join 
algorithm to broadcast the smaller relation. 

First a node reads the small relation and constructs the 
local hash table as in the CNL join algorithm. The tuples 
of the small relation are moved to output buffers and 
broadcasted among nodes in the system. The MCNL join 
algorithm reduces the communication cost by 
broadcasting the small relation in contrast to CNL. After 
broadcasting a node reads the larger relation and performs 
local join operations. 

2.2. Basic concepts 

The following observation is the basis on which our 
proposed algorithm is developed. The CPU processing 
cost of the broadcast-based approach is larger than the 
bucket-based approach in general. This is because all 
possible pairs of tuples in two relations have to be 
compared in the broadcast-based approach. On the other 
hand, the communication costs of these two approaches 
depend on several factors. First, suppose the sizes of two 
relations to be joined are almost the same(i.e., a = 1). In a 
small dimension hypercube, the communication cost of 
the broadcast-based approach is less than that of the 
bucket-based approach. It, however, grows very fast and 
tends to exceed that of the bucket-based approach as the 
dimension of a hypercube increases. Second, if the size of 
one relation is much larger than that of the other 
relation(i.e., ml). the communication cost of the 
broadcast-based approach can be significantly less than 
that of the bucket-based approach. Note that the 
broadcast-based approach broadcasts only one, i.e., the 
small relation while the bucket-based approach distributes 
both relations. In other words, the characteristics of 
communication costs in these two approaches have to be 
analyzed based on both the hypercube size and the size 
ratio of two relations. 
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Figure 3. Basic idea of proposed algorithm 

In an architecture based on hypercube interconnection, 
each node is connected(i.e., adjacent) to each of its 
n x l o g , N  neighbors, where N is the total number of 
nodes. Since the hypercube possesses many desirable 
characteristics such as a low diameter, the high bisection 
width and symmetry, the hypercube structure has been 
much considered for many parallel processing 
applications[7]. 

To take advantages of two distribution strategies, the 
join algorithm must be intelligent enough to select a 
proper strategy based on the size ratio of two relations and 
the number of processors. In order to control the 
distribution strategy we have introduced the hyperbucket 
concept. A hyperbucket is a pmessor cluster and is a k- 
dimension subcube of n-dimension hypercube system 
( O S  k sn). An n-dimension hypercube has 2n* 
hyperbuckets. Thus, we can consider that an n-dimension 
hypercube is an (n-k)-dimension hypercube where each 
node is a hyperbucket. In the CR join algorithm, each 
relation to be joined is partitioned into 2"" fragments, and 
then the CR join algorithm distributes each fragment to 
hyperbuckets. Here, fragments of smaller relation are 
replicated to all the nodes within the same hyperbucket. 

The communication cost in CR consists of inter- and 
intra-bucket communication costs. Inter-bucket 
communication occurs while fragments of relations R and 
S are distributed into hyperbuckets. Intra-bucket 
communication is necessary to replicate a received 
fragment of smaller relation to all the nodes within the 
same hyperbucket. The dimension of hyperbucket k is 
selected to optimize these two types of communication 
costs. CR selects the dimension of hyperbucket based on 
the size ratio U. Figure 3 shows the logical operation 
diagram of proposed processing scheme. 

2.3. The Cube-Robust Join algorithm 

The proposed CR join algorithm consists of four phases. 

Hyperbucket selection phase 
In this phase, CR selects a dimension k of hyperbucket. 

The dimension k that minimizes the communication cost 
for both telations is 

n),O). when U is H . 
I4 

The equations are shown in [ 31. 

0 Bucket construction phase 
After the dimension k of hyperbucket is selected, an n- 

cube is considemxi as an (n-k)-cube with 2"-' 
nodes(hyperbuckets). In the bucket construction phase two 
relations are partitioned into 2"-' disjoint buckets and 
each bucket is distributed to a hyperbucket H, 
(0 5 i < 2n-k). Let <in-1,i,,-2 ,..., io, be the binary 
representation of i (a subscript 0 indicates the least 
significant bit). Hyperbucket H h  contains 2' nodes whose 
binary representation of addresses is 
< hn-k-l,hn-r-z ,..., h,,,* >. where * denotes "don't care 
term". That is, nodes in a hyperbucket have the same (n- 
k)-bits in their address representation. For example, in 
Figure 4-(a) the dimension of hyperbucket is 1 and the 3- 
dimension hypercube is divided into 4 hyperbuckets. The 
hypehcket Hco,l> consists of two nodes <0,1,0>, <0,1,1> 
whose the most significant two bits are <0,1>. 

Each node allocates one output buffer for each link. The 
output buffer B, (0 5 i n - 1) is associated with the 
neighbor whose address differs in the least significant i-th 
bit position with that of the local node. The B, of a node 
contains tuples whose destined locations have the 
identical bits in the i-th to (n-1)-th positions to the address 
of its associated neighbor. That is, the B, of node j 
contains the tuples for nodes whose address is represented 
as < jn-l. J , , - ~  ,..., >. Neighbor i is defined in the 
same manner. 

Node i reads local fragments RI,  SI and applies a hash 
function to get the destination of a tuple. Once the 
destination of a tuple is decided as H h ,  this tuple is sent to 
the node i whose binary representation is 
< h,,-k-l . hn-t-2 , . . . , ho , ik-2 . ...* io >. In Figure 4-(b) 
the tuples in the node <0,1,1> whose destination is He0,,, 
are transmitted to the node <0,0,1> and tuples whose 
destination is HcI,l> are transmitted to the node <l,l,l>. 
Note that tuples in the node <*,*,1> never go to nodes 
<* ,* ,o>. 

. .  

Broadcast phase 
In the broadcast phase, tuples of the d e r  relation 

belong to k-dimension hyperbucket are replicated to all 2' 
nodes in the hyperbucket. Each hyperbucket peaforms 
tuple replication operations in parallel. To fully replicate 
tuples, k steps of communications are necessary. For 

52 



Ho” Hal a - -  

Hio Hi1 

(a) Hyperbuckets (b) Communication paths 

Figure 4.3-dimension hypercube with 4 hyperbuckets 
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size of the relation R(tup1ea) 
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size of a page(bytes) 
average page occupancy factor 

number of tuples per page for R ,  5 1 TR 1 
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size of a node address(bytes). 
maximum size of a packet(bytes) 
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time in comparing two valuesw) 
time in complting the hash value of a tuple@) 
time in moving one tuple within main memory@) 
packet overhead for control donnation (seclpochr) 

F I fudgefactor 

Table 1. Evaluation notations and values 

example, in Figure 4-(b) the tuples of relation R in node 
<0,1,1> belonged to hyperbucket H<o, ] ,  are transmitted to 
node <0.1,0> and simultaneously the tuples in node 
<0,1,0> are transmitted to node <0,1,1>. 

By replicating the portion of smaller relation in a 
hyperbucket, each node in the hyperbucket contains the 
same fragment of the relation smaller relation R so that 
hyperbucket can be regarded as a single bucket but has 2’ 
processors. 

Local join phase 
This phase performs local joins. We choose Hash Join 

as the local join method but other algorithms can also be 
used. According to the hash join method, we build a hash 
table in memory on each node for the tuples that have 
been broadcasted. Then for every tuples in the fragment of 
S that have been transmitted by the bucket construction 

phase, the node probes the local hash table to find 
matching tuples. Since all 2‘ nudes of a hyperbucket Hi 
contains the same hash table, a tuple of S whose 
destination is H ,  can be probed by any nodes in the Hi. 
The complete algorithm of CR is given m [4]. 

3. Cost Models 

The hypercube machine under investigation is assumed 
to have bi-directional communication channels and each 
channel has its own communication buffer to provide 
concurrent data transfer. 

In the proposed cost model, the size of relation S is 
always the larger than that of relation R. We assume both 
relations R and S are partitioned horizontally across the 
nodes and there are no data value skew. The number of 
comparisons required per tuple to probe the hash table is 
controlled by the fudge factor F that is larger than 1 due to 
potential collisions. 

1/0 and CPU overlap is not considered to make the cost 
model simple. The memory and output buffers are 
assumed to have enough space not to occur overflow. 
Final output costs are not included. Table 1 shows the 
notations we use to develop the cost models 

3.1. Cost Model of Cube-Robust Join Algorithm 

We analyze the cost of Cube-Robust join algorithm in 
the following. 

0 Disk YO cost on a single node: 
Since we assume enough space not to overflow, disk I/O 

cost of all algorithms to be compared with are same. 
Assuming a uniform tuple distribution, the access time is 

0 CPU cost for relation R: 
The processing cost of relation R includes the cost CIR 

to determine the destination of a tuple, the CDR cost to 
construct bucket and the cost C B ~  to replicate tuples in 
hyperbuckets. 

To determine the destination of a tuple, a node 
examines tuples of local fragments. If the destination of a 
tuple is the local node or nodes in the hyperbucket to 
which the local node belongs. the tuple is moved to the 
local hash table. Otherwise, it is moved to an output buffer 
for further transmissions. 

N - M  
N 

(hush+cmp)+- 

+ 2 x move) , otherwise 
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After locating tuples to the proper buffers, a node 
exchanges tuples in the output buffer Bi with its neighbor 
NI ( n - k - 1 S i c n ) .  At each step of exchange, the 
amount of incoming tuples is i q l / ( 2 x N )  due to the 
doubling effect [9]. The address of the arrived tuple is 
examined and moved to the output buffer or the hash 
table. Note that tuples anived by exchanging B,  only enter 
the output buffer ( O S  j < i ) .  This is because the buffer Bi 

contains the tuples whose destined addresses are different 
in the least significant i-th position with that of the local 
node. Therefore, M / 2' portion of incoming tuples are 
entered into the local hash table and at i-th step is 

Once the distribution of the tuples are completed, the 
local node replicates tuples among nodes in the 
hyperbucket and builds a hash table. Each node contains 
14 / N tuples in its local hash table and the local node 
receives tuples from (M-1) nodes. The cost for broadcast 
CBR is 

CBR = ( M - l ) x  &U x(hash+2xmove). 
N 

The total cost to process R is C p R  = C ,  + 11:: CDR~ + CBR . 
0 CPU cost for relation S: 

The processing cost of relation S includes initial 
processing time, the time to construct bucket and the time 
to probe the local hash table for local joins. 

The initial processing cost CIS is the cost necessary to 
determine the destination of tuples in the relation S and is 
derived in the similar way to that of the relation R. Instead 
of moving tuples to the local hash table, tuples of the 
relation S are probed with the local hash table. 

xmove+-xcmpxF , k fn. " 1  N 

-x(hush+cmpxF) , otherwise. 
N 

At each step i, if a tuple is destined to the local node it 
is probed against the local hash. Otherwise, it is moved to 
an output buffer: 

+(hash+cmpxF)x- 
2x N 2' 

0 Communication cost for relation R: 
The cost includes the time to transmit the buckets for 

relation R and the time to replicates buckets in the 
hyperbucket. The communication cost for bucket 
distribution is 

After buckets are distributed, the replication phase is 
performed over k-steps. The number of tuples to be sent is 
doubled at each step. This cost is represented by 

The total cost associated with the communication is: 
cco"R = cRD + ~ ~ ~ ~ c R B i  

0 Communication cwt for relation S: 

&dimension hypercube. 
The relation S only needs to be distributed over the (n- 

0 Total cost: 
The total cost is C p R  + C,, + CcommR + CcommS. 

3.2. Cost Model of Modified-Cube-Nested-Loop 
Join Algorithm 

The cost of the Modified-Cube-Nested-Loop join 
algorithm is analyzed in the following. 

0 Disk U 0  cost on a single node: 

that of the CR algorithm. 
The cost incurred by disk 40 operations is same with 

CPU cost for relation R: 
The cost includes the cost to hash every tuples of R and 

to store them in the local hash table. Each node should 
make the hash table for all tuples of relation R: 
C, = 1 1 ~ 1 1 ~  (hash + 2 xmove) . 

0 CPU cost for relation S : 
The cost includes the cost to hash every tuples of S and 

to probe the local hash table far local join operations: 
C I S =  llsll X(hmh+compXF). 

N 

0 Communication cost : 
The cost includes the transmission of tuples over n 

phases for the relation R. In the MCNL join algorithm, 
only the smaller relation is broadcasted over the nodes in 
the system. As in the CR join algorithm, the size of tuples 
transmitted is doubled during each phase of broadcast. 

n-1 

i=O 
~ C O "  = CCCI 9 
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where CCi = 2' x IRllXTR x8 + 

N xcomm 

Total cost: 
The total cost is ClR + Cl, + C,,,,. 

4. Experimental Results 

This section analyzes the performance of four parallel 
join algorithms Cube-Hybrid-Hash(~HI-I), Cube-Nested- 
Loop(CNL), Modified-Cube-Nested-Loop(MCNL) and 
Cube-Robust(CR) through the analytical cost models 
described in section 3. The cost models for CHH and CNL 
algorithms are identical with [9] and [ 111 respectively. In 
this experiment we measure the response time of four 
parallel join algorithms when the size ratio a is varied. 
We evaluate performance of four join algorithms mainly 
focused on the communication and CPU costs. The disk 
I/O cost is constant in all algorithms as we stated in 
section 3 and we do not take into account the performance 
effects of disk 40s. We investigate two cases. The first 
experiment is to compare the communication and CPU 
costs of four algorithms. The second experiment is to 
analyze the overall performance of four algorithms. All 
performance evaluations are done by increasing the size of' 
relation S while the size of relation R is fixed. The values 
of system parameters used in our analysis can be found in 
[4,9, 111. 

A. Communication Cost vs. CPU Cost 
Figure 5-(a) shows the communication overheads of 

four join algorithms. The communication cost of MCNL 
depends on the size of the relation R because it is the only 
relation broadcasted. Due to the fixed size of relation R, 
MCNL shows the constant communication cost. CNL 
shows the worst case because the larger relation S is 
broadcasted. As a increases the communication cost of 
CHH inclines and becomes higher than that of MCNL 
when a is greater than 60. This means when the 
dimension of the hypercube is 8, the broadcast-based 
approach is superior to the bucket-based approach once a 
is greater than 60. CR which reduces the hypercube 
system into hyperbuckets based on a shows the best 
performance. When a is greater than 500, performance of 
CR is Same as that of MCNL. 'Ihe dimension of 
hyperbuckets is very dependent on 01 and is enlarged as a 
increases. The enlarged dimension of hyperbuckets makes 
the performance of CR to be converged to that of MCNL. 
Figure 5-(e) shows the dimension of hyperbuckets 
determined according to the value of a. If a grows over 
500, the dimension of hyperbuckets is decided as that of 
the hypercube system and CR shows the Same 

(a) Communication cost (n=8) (b) CPU cost (n=8) 

"Y ':L 

2 4 6 8 10 12 14 16 2 4 6 8 10121416 

IIn"datre " f a t e  

(c) Communication cost (oc-60) (d) CPU cost (-60) 

4 y :y- 
1 

1 0 9 ! O ~ ~ E 0 3 " K  2 4 6 8 10 12 14 16 
0 

Si9w clnasicndate 

(e) Bucket dimension (n=8) (f) Bucket dimension (-60) 

Figure 5. Communication and CPU cost comparisons 

characteristics of MCNL. Figure 54b) shows the CPU cost 
characteristics of four join algorithms. The performance 
characteristics of CPU cost is similar to that of 
communication cost because the CPU cost is very 
dependent on the number of received tuples. CNL and 
MCNL which examines more tuples than CHH and CR 
show higher CPU cost. 

Figure 5-(c) and (d) show the performance 
characteristics of join algorithms according to the 
dimension of hypercubes. As the dimension of hypercubes 
increases the communication cost of MCNL and CNL 
increases slightly. This is caused by the increased 
traveling path length as the dimension of hypercubes 
increases. The communication cost of CHH is decreased 
as opposed to the MCNL case. The number of tuples 
transmitted at each step in the bucket-based approach is 
constant ( IlRll I ( 2  x N 1) as we mentioned in section 3. The 
increased dimension of hypercubes reduces the number of 
tuples transmitted at each step exponentially and this cost 
benefit dominates the communication cost induced by the 
increased number of step. This effect is also shown in the 
case of CR. In the moderate range of hypercube 
dimensions, the behavior of CR is same as that of MCNL, 
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because the dimension of hyperbuckets is determined as 
same as that of the hypercube system(Figure 5-(f)). When 
the dimension of hypercubes is higher than 5 ,  the 
dimension of hyperbuckets stops increasing and becomes 
constant. By controlling the dimension of hyperbuckets 
properly, CR achieves the minimized communication cost. 
This dynamic behavior makes CR to resemble the 
pedormance characteristics of CHH and to show better 
performance than other algorithms. 

The increased number of processors affects the CPU 
cost of MCNL and CNL a little. Although the increased 
number of nodes reduces the amount of tuples examined 
at each step of broadcasting, the increased number of 
nodes requires more broadcasting steps and as result, the 
CPU performances of MCNL and CNL are not enhanced. 
However, the CPU performances of CR and CHH are 
enhanced with the help of the increased number of 
processors. With the increased number of processors, a 
join operation is divided into more smaller jobs and a 
node spends less CPU cost. The reason that CR shows 
better performance than CHH is that CR spends less CPU 
cost to process the larger relation S. CR experiences less 
move operations than CHH due to the hyperbucket 
concept. 

CHH which divides relations into more buckets must 
move more tuples to output buffers. However, CR which 
divides relations into less buckets moves less tuples to 
output buffers. Instead of moving tuples to output buffers, 
CR experiences more local join operations. Although CR 
experiences more false-join than CHH. CR shows better 
performance because the cost of a move operation is 
generally more expensive than that of a cmp operation. 

B .  Overall performance analysis 
To analyze the effect of the size ratio 01 to the 

performance of join operations we have experimented 
with the 4- and 8-dimensional hypercube systems and the 
results are shown in Figure 6-(a) and (b). CR outperforms 
other join algorithms regardless of 01. The performance 
characteristics of join algorithms are very similar to 
Figure 5 since the communication cost dominates the 
overall performances. 

Figure 7 shows the contribution of the communication 
and CPU costs to overall performance of join algorithms. 
In CNL. the portion of the communication cost is nearly 
constant. As the dimension of the hypercube increases, the 
communication portion of CHH increases from 80% to 
98%(Figure 7-(b)). Because CHH is based on “divide and 

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 

J3r”ofoAx ILnaSmdax 

(c) a=60 (d) -300 

Figure 6. Overall performance comparisons 

conquer”, the increased dimension of the hypercube 
generates the larger number of buckets which require less 
CPU processing. As a result, the CPU cost portion 
decreases. 

Figure 7-(c) shows the dominant factor of MCNL, is the 
CPU cost in the moderate range of hypercube dimensions. 
In MCNL, the smaller relation R contributes to the 
communication cost and the larger relation S to the CPU 
cost because only the smaller relation R is broadcasted 
over the hypercube. In the moderate range of hypercube 
dimensions, the CPU cost needed for probing the local 
hash table dominates the communication cost for 
distributing the relation R. However as the dimension 
increases, the portion of the larger relation S kept in a 
node becomes smaller and this results in the low CPU 
cost. In contrast to the CPU cost, the communication cost 
increases slightly according to the increase of the 
hypercube dimension due to the increased traveling path 
length. Therefore the portion of the CPU cost in the 
overall performance decreases. 

Figure 74d) shows the relative portion of the 
communication and CPU costs of the CR join algorithm. 
In the lower dimension of the hypercube systems, CR’s 
performance characteristics are very similar to those of 
MCNL and become similar to those of CHH with higher 
dimensions. 
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(a) CNL algorithm (b) CHH algorithm 
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Figure 7. Relative cost comparisons (a=60) 

5. Conclusions 

In this paper we have proposed an efficient parallel join 
algorithm, called Cube-Robust, for hypercube 
multicomputers. The proposed algorithm is robust due to 
its immunity from the size ratios of two relations to be 
joined. The Cube-Robust(CR) join algorithm proposed in 
this paper combines merits of the bucket-based and 
broadcast-based approaches by introducing hyperbucket 
concept. The dimension of hyperbucket is determined 
dynamically so as to minimize the communication cost. 
Hyperbucket of k-dimension transforms an n-dimension 
hypercube system into the (n-k)-dimension hypercube 
system. When the dimension of a hypercube system is 
large, the CR join algorithm takes advantage of clustering 
effect and achieves the low communication cost by 
applying the bucket-based approach to the reduced 
hypercube system. When the dimension of the hypercube 
system is small, CR uses large hyperbuckets to maximize 
benefits from the broadcast-based approach, i.e., reduced 
communication cost. We have shown the CR join 
algorithm outperforms methods proposed earlier through 
an analytic cost model and simulation experiments under 
various running environments. Since the communication 
cost in parallel join algorithms dominates the performance 
of join algorithms when the hypercube dimension is large 
or the size ratio of relation is high, optimization of the 
communication cost is necessary to achieve high 
performance of parallel join algorithms. 
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