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Multiple Neuro-Adaptive Control of Robot
Manipulators Using Visual Cues

Choon-Young Lee and Ju-Jang Lee, Senior Member, IEEE

Abstract—A new adaptive controller based on multiple neural
networks (NNs) for an uncertain robot manipulator system is
developed in this paper. The proposed multiple neuro-adaptive
controller (MNAC) switches to a memorized control skill or
blends multiple skills by using visual information on the given
job to improve the transient response at the time of task vari-
ation like a change of manipulating object. MNAC is a type of
adaptive feedback controller where system nonlinearity terms
are approximated with multiple NNs. The proposed controller is
effective for a job where some tasks are repeated but information
on the load cannot be scheduled before the operation. During the
learning phase, MNAC memorizes a control skill for each load
with each NN. For a new task, most similar existing control skills
may be used as a starting point of adaptation, which improves
the performance of learning. Lyapunov-function-based design of
MNAC guarantees the stability of the closed-loop system to be
independent of switching or blending law. Simulation results on a
two-link manipulator for changing the mass of the given load were
illustrated to show the effectiveness of the proposed control scheme
by comparison with the conventional neuro-adaptive controller.

Index Terms—Adaptive control, intelligent control, neural net-
works (NNs), robot manipulators, switching control.

I. INTRODUCTION

THE robot is one of the choices for improving productivity
in industrial automation. Robotic manipulators have been

applied to dangerous environments and routine manufacturing
jobs. As the robotic manipulators are highly nonlinear dynamic
systems with uncertainty, it is difficult to obtain accurate dy-
namic equations for the design of control laws. Robots face
many uncertainties in their dynamic models, in particular, the
parameters describing the unknown grasped payloads as well
as the unknown frictional coefficients. To compensate for these
uncertainties, many researchers have proposed adaptive control
strategies or model-free intelligent control methods.

Adaptive robot control based on the linear parameterization
of robot dynamics selects a proper set of equivalent parameters
such that the manipulator dynamics depend linearly on these pa-
rameters, and adaptive control algorithms can then fully account
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for the nonlinear time-varying nature of robot dynamics [1],
[2]. Direct adaptive controllers use tracking errors of the joint
motions to drive the parameter adaptation [3]. Indirect adaptive
controllers use prediction errors on the filtered joint torques to
generate parameter estimates to be used in the control law [4].

The application of neural network (NN) algorithms or the
fuzzy logic concept for a robotic manipulator control have been
interesting research topics. Because of their learning capability
[5], [6], from the point of view of controller development, they
have showed good performance in the robotic system control
with complicated dynamic models. An effective combination
of fuzzy control and a modern nonlinear control method is re-
ceiving more and more attention [7]–[11]. Artificial NNs to en-
hance the performance of tracking accuracy of robotic manip-
ulators were developed with adaptation or learning algorithms
for the weights of the networks [12]–[20]. Control of mecha-
tronic servo systems by NNs was also studied by learning of the
control input pattern [15].

Each study has its own advantages and disadvantages. Al-
though all these methodologies showed good performance in
controlling uncertain dynamic systems, there are unavoidable
large transient errors at the time of task variation. For example,
if a robot manipulator has to perform task 1, task 2, task 1, task
2, repeatedly in this order, these controllers with adaptation will
adapt themselves to a newly changed task repeatedly, so the con-
trol skill having been acquired at that time will be forgotten. Al-
though task 1 is encountered for the second time, the adaptive or
learning controller recognizes the given task as a new task be-
cause the controller has already been adapted to task 2. In this
case, if the dynamic parameters and control skills are stored, the
stored information can be used to cope with the repeated task
immediately.

Concepts for adaptive control with multiple models are not
new in control theory [21], [22]. In these studies, a combina-
tion of the control determined by different models was used
and no stability results were reported. We proved the overall
closed-loop stability with a Lyapunov function candidate in this
paper. Switching in the context of adaptive control, in which
multiple models are used to determine to which controller one
should switch, has been proposed [23]–[26]. The neuro-con-
troller based on a set of fixed NNs, that is, a bank of NNs trained
offline or online, with each NN representing some part of in-
verse dynamics was also proposed [27], [28]. In these studies,
multiple NNs were used to improve the overall performance
in identification and total computational requirement by using
each NN covering each dynamic term. They can be thought of
as a single NN in the sense that all the weights of the networks
were adapted without any priority for each task and all their
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weights should be changed when system dynamics deviate from
the original one. Multiple NNs, in this paper, were adopted to
store different dynamics of the system for different tasks.

This paper is organized as follows. Problem formulation is
described in Section II. An adaptive controller based on mul-
tiple NNs is constructed in Section III. A simulation to demon-
strate the performance of the proposed method is provided in
Section IV. Finally, conclusions with further study issues are
given in Section V.

II. PROBLEM FORMULATION

A. Dynamics of an -Link Robot Manipulator

Consider the dynamic equation of a robot manipulator with
links

(1)

where are the vectors of generalized coordinates and
velocities, the positive inertia matrix,

the Coriolis and centrifugal torques, the gravita-
tional torques, the applied torque, and is
the bounded disturbance vector representing torque disturbance.

represents the friction term of the form

(2)

with the diagonal coefficient matrix of viscous fric-
tion, and a dynamic friction term. The following
properties are required for the subsequent development.

Property 1: There exist known positive constants
, and such that

[2].
Assumption 1: It is assumed that the norm of is bounded

as

(3)

where is an unknown vector, and
is a chosen regressor vector.

The norm of a vector and that of a matrix
are defined, respectively, as

, with the maximum eigenvalue.

B. Approximation of Nonlinear Function Using Multiple NNs

In the field of control engineering, an NN is often used to ap-
proximate an unknown nonlinear function with a small estima-
tion error bound. In this paper, multiple Gaussian radial basis
function (RBF) NNs are considered, as shown in Fig. 1. It is
a particular network architecture which uses RBF NNs with
blending coefficient . Each RBF NN uses
numbers of Gaussian function of the form

(4)

where is the center vector and is the width of the
basis function. The input vector is transformed into nonlinear
functions by RBF NNs and their outputs are multiplied by the

Fig. 1. Structure of multiple NNs with blending coefficient to approximate a
given nonlinear function.

blending coefficients to generate the resulting approximated
output.

Given that is a continuous function defined
on the set , and is
an th approximating function that depends continuously on the
parameter matrix and , the approximation problem is to
determine the optimal parameter such that

(5)

is minimized for the given blending coefficient matrix , and
basis functions of the network .

III. ADAPTIVE CONTROLLER BASED ON MULTIPLE NNS

Define the useful error signals as follows:

(6)

(7)

where is the tracking error, is a given twice
continuously differentiable and bounded reference trajectory,

is the augmented error and is a constant
symmetric diagonal positive definite matrix.

The dynamics for are obtained as follows:

(8)

where .
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Consider the following Lyapunov function candidate:

(9)

to develop NNs to approximate unknown nonlinear functions.
The time derivative of along the solution trajectories of the
dynamics (8) is

(10)
where

(11)

The nonlinear function may be represented by multiple
RBF NNs with the blending coefficient explained in Sec-
tion II-B

(12)

where represents the input vectors getting
into the network, such as . is the vector
of -radial basis functions chosen by the designer such that
spans the domain of the input vector. is the weight
parameter matrix of the th RBF NN. represents the blending
coefficient matrix for the th RBF NN such that is
a diagonal matrix whose diagonal elements are all equal to

and . is the approximation
error referred to as the network reconstruction error or modeling
error.

Assumption 2: There exists an unknown positive constant
vector

(13)

for a known positive function .
From the structure of the nonlinear function in (11) and

(12), it can be easily shown that Assumption 2 is reasonable. We
can find that the norm of the nonlinear function is bounded
by a positive function from Property 1. In (12), the norm of

is also bounded by a positive constant. There-
fore, from Property 1, (11) and (12), in Assumption 2 can be
defined as .

Theorem 1: Under Assumptions 1 and 2, if the following
control law and adaptation law are applied to the robot manip-
ulator (1), then the tracking errors converge to zero asymptoti-
cally.

Control Law:

(14)

where is an constant symmetric diagonal positive
definite matrix, and are the estimates of and , re-
spectively.

Adaptation Law:

(15)

(16)

(17)

where is the th column of the -th parameter matrix,
is the -th element of the vector , and the adaptation gains

, and are all positive-definite
matrices.

Proof: Define a Lyapunov function candidate for the
system (8)

(18)

where , and
, where , and are the parame-

ters with which corresponding nonlinear terms and ,
respectively, are approximated.

The time derivative of along the solution trajectories of the
error dynamics (8) is found as follows:

(19)

By applying the control law (14), we obtain

(20)

where and .
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Rearranging the above equation using , and

(21)

where is the th element of the vector . If we apply the
adaptation law of (15)–(17), we can finally obtain

(22)

This implies that and, therefore, that and
are all bounded. Accordingly, from (14), is also bounded.

Since is bounded, and are also bounded according to the
stable dynamics . and are bounded since the
desired trajectories and are all bounded. Consequently,
from (8), is also bounded.

To use Barbalat’s lemma [2], let us check the uniform conti-
nuity of . The derivative of is

(23)

This shows that is bounded and, hence, is uniformly con-
tinuous. Application of Barbalat’s lemma then indicates that
converges to zero as time goes to infinity. Therefore, is glob-
ally asymptotically stable and, hence, the tracking errors and
also converge to zero globally and asymptotically by the stable
dynamics of .

To alleviate the chattering of the control input caused by the
discontinuous control law of (14), we can introduce a modified
controller as follows:

(24)

where is a small positive constant.
To inhibit infinite growing of and , we can use the fol-

lowing adaptation law:

(25)

(26)

where and are the -modification terms. This modifica-
tion overcomes the problem of continuous increase in the pa-
rameter estimation. If the above continuous controller (24) and
adaptation law (15), (25), and (26) are applied to the system,
then it is a well-known fact that the tracking errors are globally
uniformly ultimately bounded.

From Theorem 1, blending between multiple models does
not affect the closed-loop stability, that is, we can design any
blending rule for appropriate operation. In this paper, we as-
sumed that we can recognize an object on the end-effector by
a vision system as in the concept of a system configuration
(Fig. 2). We can register some objects on a vision system be-
fore operation, and we can check which object is now operated
by the robot manipulator. If an unknown object is applied, the
vision system selects the most similar object among stored data,
and then, the controller uses the corresponding network for the

Fig. 2. Concept of system configuration.

selected object. In this manner, we can switch between mul-
tiple models using the vision system. Another possible choice
of blending rule for the unknown object is to use a visual simi-
larity measure between the current object and the stored object
[29].

IV. SIMULATION

In this section, we will apply our proposed control scheme
to control a two-link robot manipulator system to track a given
trajectory with changing mass of the load. We will compare
the performance of multiple neuro-adaptive controller (MNAC)
with that of a conventional neuro-adaptive controller (NAC) for
achieving the given task.

The dynamic equations of the two-link manipulator system
are

(27)

where

The matrix can be shown to be positive definite and, there-
fore, always invertible. In our simulation, we use the following
parameter values: kg, mass of link one;
kg, mass of link two; m, length of link one;
m, length of link two; m, distance from the joint of
link one to its center of gravity (COG); m, distance
from the joint of link two to its COG; kg m , length-
wise centroidal inertia of link one; kg m , lengthwise
centroidal inertia of link two; m/s ; ,
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Fig. 3. Tracking error for desired trajectories (NAC).

coefficient of viscous friction; , coefficient of
dynamic friction. The mass represents the mass of an object
at the end of the link.

The control objective is to control the state of the system to
track the reference trajectory , and during
the operation, the mass of an object at the end of the link changes
as follows:

kg if task
kg if task
kg if task
kg if task
kg if task

where , and
second. Task 1, task 2, and task 3 are assumed to be for the

known objects before operation and task 4 is assumed to be for
the unknown object.

Since there are three known objects, we designed three
RBF networks. We placed 121 basis functions evenly on
the region of controllability. We used adaptation gains as

, and through the simulation
where is an identity matrix. We set the external disturbance
as . We calculated using

and

was used in the controller equation.
Two groups of simulations were performed: 1) conventional

NAC which has a single RBF network and 2) the proposed
MNAC which has three RBF networks.

Fig. 3 shows the tracking errors when NAC is applied. Ini-
tially, an NN does not have dynamic knowledge of the system
and adaptive schemes change network weights when task 1 is
given for . As time goes by, the performance is im-
proved since NN approximates nonlinearity of the system for
the task 1. When task 2 is given for , system dy-
namics for this task are different from that of the learned NN
at the time since the mass of the load has changed. Therefore,
some transient errors appear at around and the NN starts
to be adapted for this new task minimizing tracking errors. At

, the task has changed into the old task 1, there are also
some transient errors around at that time as shown in Fig. 3,
since the NN forgot the control skill for task 1 while it learned
a new control skill for task 2. A conventional NAC repeats its
adaptation for the given task whether it is a new task or an old
task since it has no memory for storing the control skill. At every
change of task, there show transient errors. If there are large task
variations, the conventional NAC will give large transient errors
when tasks change.

Fig. 4 shows the tracking errors when MNAC is applied. For
, the performance is similar to that of NAC. Since

tasks 1, 2, and 3 are known, three NNs cover these tasks. The
control skill for each task is stored for each NN and an ap-
propriate control skill can be selected for the repeated task. As
shown in Fig. 4, there are small transient errors at around
when the task has changed into the old task 1 of which dynamic
information has been memorized with one of the multiple NNs.
For the unknown new task 4, the control skill for the known ob-
ject which is most similar to this new unknown object will be
selected and it becomes the starting point of adaptation to this
new task. Therefore, adaptation time can be reduced and control
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Fig. 4. Tracking error for desired trajectories (MNAC).

TABLE I
PERFORMANCE COMPARISON BETWEEN NAC AND MNAC

performance can also be slightly improved. From these simula-
tions, the proposed MNAC shows better performance over con-
ventional NAC for the repeated tasks which is needed in indus-
trial application where load changes from time to time.

We compared the control performance for the two groups of
simulations (ten trials for each controller) by averaging the in-
tegrals of the absolute magnitude of the error, IAE, which is
written as

(28)

Table I presents the comparison of control performance in
IAE between NAC and MNAC. The integral of absolute er-
rors for each interval are listed for the two controllers. Through
the whole simulation time, MNAC improved IAE over NAC
by about 9%. However, during the interval , where
task 1 is revisited, MNAC improved IAE over NAC by about
40%, which is very significant. Also, for the unknown task 4,

, IAE for MNAC is slightly improved. The results
show that the proposed MNAC will be effective in tracking per-
formance when some tasks are repeated.

Although MNAC has considerably more neurons than NAC,
the reason for performance improvement by MNAC is mainly
due to the memory of control skills using independent mul-
tiple RBF networks. To achieve similar improvements, a system
with one RBF network (NAC) should have a learning algo-
rithm of memorizing control skills without affecting the pre-
vious memory. MNAC used multiple RBF networks as a solu-
tion for memorizing a new control skill without losing previous
memory.

V. CONCLUSION

In this paper, a multiple neuro-adaptive control method was
developed for the control of a robotic manipulator in picking up
and placing various objects. Multiple NNs are used to approx-
imate the changing system dynamics for various tasks. For the
case of repeated jobs, the proposed control scheme is effective
because of its capability of memorizing a control skill for each
task with the designed NN. Transient errors at the time of change
of tasks will be attenuated significantly when a task occurs re-
peatedly as shown in the simulation. Lyapunov-function-based
design of adaptation laws guarantees the global stability of the
closed-loop system.

The online generation and pruning of multiple models will
be interesting further topics. A fuzzy-inference-based blending
rule for multiple models with visual information is currently
being studied.
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