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Adaptive Control for Uncertain Nonlinear Systems
Based on Multiple Neural Networks

Choon-Young Lee and Ju-Jang Lee, Senior Member, IEEE

Abstract—A new adaptive multiple neural network controller
(AMNNC) with a supervisory controller for a class of uncertain
nonlinear dynamic systems was developed in this paper. The
AMNNC is a kind of adaptive feedback linearizing controller
where nonlinearity terms are approximated with multiple neural
networks. The weighted sum of the multiple neural networks
was used to approximate system nonlinearity for the given task.
Each neural network represents the system dynamics for each
task. For a job where some tasks are repeated but information
on the load is not defined and unknown or varying, the proposed
controller is effective because of its capability to memorize control
skill for each task with each neural network. For a new task,
most similar existing control skills may be used as a starting
point of adaptation. With the help of a supervisory controller, the
resulting closed-loop system is globally stable in the sense that all
signals involved are uniformly bounded. Simulation results on a
cartpole system for the changing mass of the pole were illustrated
to show the effectiveness of the proposed control scheme for
the comparison with the conventional adaptive neural network
controller (ANNC).

Index Terms—Adaptive control, learning control, neural net-
works, supervisory control.

1. INTRODUCTION

N INTELLIGENT control system may have the ability

to operate in multiple environments by understanding the
current condition of operation and achieving the various tasks
appropriately. The ability to adapt to any unknown operating
condition is an important component to intelligent systems.
Adaptive control is a promising technique to obtain a model
of the plant and its environment from experimental data and
to design a controller. Adaptive control for a feedback lin-
earizable nonlinear system has attracted much interest among
control system designers for over several decades. If we have
exact knowledge of the system, we can transform a nonlinear
adaptive control problem into a linear control problem by using
a feedback linearization technique [1].

However, in many cases, the plant to be controlled is too com-
plex to find the exact system dynamics, and the operating condi-
tions in dynamic environments may be unexpected. Therefore,
recently, an adaptive control technique has been combined with
function approximators such as neural networks, fuzzy infer-
ence systems, and series expansion. These types of controllers
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take the capability of learning unknown nonlinear functions by
universal approximation theorem [2], [3] and massive parallel
computation. Based on the fact that universal approximators
are capable of uniformly approximating a given nonlinear func-
tion over a compact set to any degree of accuracy, a globally
stable adaptive controller has been developed with an adap-
tation algorithm [5]-[15]. Each study has its own advantages
and disadvantages. An adaptive control scheme was used with
a neural network to obtain a stable controller [6], [8], [10], [13].
An observer-based controller was derived for nonlinear systems
with state estimation without measuring all the states [9], [11].
Off-line training of the robot manipulator was used in [7]. Al-
though all these methodologies showed good performance in
controlling uncertain dynamic systems, there are unavoidable
large transient errors at the time of task variation. For example,
if the robot manipulator has to perform task 1, task 2, task 1, task
2, repeatedly in this order, an adaptive controller will adapt itself
to the newly changed task repeatedly, so the control skill having
been acquired previously will be forgotten. Although task 1 is
encountered for the second time, the adaptive controller recog-
nizes the given task as a new task because the controller has been
already adapted to task 2. In this case, if the dynamic parame-
ters and control skills are stored, the former can be utilized to
recognize the given task if it occurs at a later time, and the latter
can be used to cope with the repeated task immediately.

Concepts for adaptive control with multiple models are not
new in control theory. Multiple filter models were studied to
improve the accuracy of the state estimation and control perfor-
mance [16], [17]. In these studies, a combination of the control
determined by different models was used, and no stability re-
sults were reported. Switching in the context of adaptive con-
trol, in which multiple models are used to determine to which
controller one should switch, has been proposed [18]-[21]. The
stability of linear switching and tuning systems was analyzed.
The neuro-controller based on a set of fixed neural networks
(NNs), that is, a bank of NNs trained off-line or on-line, with
each NN representing some part of inverse dynamics, was also
proposed [22], [23]. In these studies, multiple neural networks
were used to improve the overall performance in identification
and total computational requirement. They can be thought of as
a single neural network in the sense that all the weights of the
networks were adapted without any priority for each task.

In this paper, multiple neural networks were adopted to store
different dynamics of the system for different tasks. An adaptive
feedback linearization controller with these multiple neural net-
works was proposed with a supervisory controller. Global sta-
bility is guaranteed by the supervisory controller even for the
new environment [12]. The proposed approach is different from
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Narendras work in that our controller uses blending of multiple
models, whereas only one model can be active at any given time
in [20]. Weights for blending multiple models are calculated
based on the predictive modeling error. Our algorithm uses one
controller incorporating multiple models, whereas multiple in-
verse controllers are used in Kawatos work [26].

This paper is organized as follows. The problem formulation
is described in Section II. The adaptive controller based on
multiple neural networks with a supervisory controller is
constructed in Section III. A simulation to demonstrate the
performances of the proposed method is provided in Section I'V.
Finally, conclusions with further study issues are given in
Section V.

II. PROBLEM FORMULATION

Consider the nth order nonlinear dynamic system of the form

ji'l =T9
ji'g =3
J/’n:f(l’l,xQ,...7.’1]'n)+g<£l71.,$27 7xn)u+d
y=x (1)
or, equivalently, the form
(™ =f (a:, Ty .., a:<"_1))
+g(:n, T, ...7x("_1))u+d
y==w 2)

where f and g are unknown but bounded functions, v € R and
y € R are the control input and output of the system respec-
tively, and d is an external bounded disturbance.

If we represent (2) in the state space, we obtain

x =Ax+ B(f(x) 4+ g(x)u + d)

y=CTx (3)
where
(0 1 0 0 0 0
0 0 1 0 0 0
A= :
0 0 0 O 0 1
L0 0O 0 O 0 0
[0 cl
0 0
B=|:|, Cc=|: )
0
L 0
and x = [71, T2, ..., ¥,]T € R™ is a state vector where all z;

are assumed to be available for measurement. In order for (2) to

be controllable, it is required that g(x) # 0 for x in a certain
controllability region U. C R™.

Assumption 1: Without loss of generality, we can assume
that 0 < g%(x) < g(x) < ¢Y(x) < oo for x € U, and
|f(x)] < fY(x) < oo forx € U.. Furthermore, external distur-
bance is bounded, i.e., |d| < d,,, where d,, is the upper bound
of noise d.

Let the reference signal vector y; and the tracking error
vector e be defined as

Ya= [ym Yds - yf;"_l)]T eR" ®)
e = [e, €y ..., e<"_1)}T €ER" (6)

where e = yq — y = ya — 1 € R. Then, the control objective
is to generate an appropriate control signal such that the system
output y follows a given bounded reference signal 44 under the
stability constraint that all signals involved in the system must
be bounded.

III. ADAPTIVE CONTROLLER BASED ON
MULTIPLE NEURAL NETWORKS

If the functions f(x) and g(x) are known and there is no ex-
ternal disturbance d, then we can choose the following controller
cancelling the nonlinearity of the system:

. [ (n) |, \T
w' = —— [ fx) + y§ + ATe] . ™
gGo LX) T
If we apply the feedback linearizing controller (7) into the
system (3), we obtain

é=Ae ®)
where
0 1 0 0 0 0
0 0 1 0 0 0
A= : : : . : :
0 0 0 o - 0 1
“A —A SAz Ay “An—1 —An
€

In particular, let A = [A1, Ao, ..., An]T € R™ be chosen such
that A is Hurwitz; then, lim;_, . e(t) = 0.

Since f(x) and g(x) are unknown, we replace the function
f(x) and g(x) in (7) by the estimated function f(x) and §(x).

The radial basis function (RBF) network has been shown to
have universal approximation ability to approximate any smooth
function on a compact set S, simply connected set of R™. Let
f(©): S — R™ be a smooth function and {¢(x)} be a basis set,
there exists a weight matrix W such that

F(x) = $(x)"W + ¢ (10)

with the estimation error bounded by ||e|| < ey for a given
constant €.

In light of the universal approximation capability of the RBF
network, f(x) and g(x) may be identified using weighted sums
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of k multiple RBF networks with sufficiently high number of
hidden-layer units such that

k

Fx) =3 i1 ()" Wi + e1i(x) (11)
=1
k

9(x) = ida(x)TWa; + €24(x) (12)
=1

where «; is the significance parameter of the sth RBF network
satisfying 0 < a; < 1, and Zle o; = 1, Wy; € R™, and
W3, € R™ are unknown weights respectively, which are as-
sumed to be bounded by
Wl < Wi, [Wai|| < Wap (13)
with Wip and W5p some known positive constants; 77 and
ny are the number of hidden-layer units of the two RBF net-
works, respectively; the approximation errors are bounded by
leri| < e1n and |ez;] < ean, with €15 and ean two positive
constants; and ¢1 (x) and ¢o(x) are properly chosen radial basis
functions for the hidden-layer units of the two networks, with x
as the input pattern of the input layers to the networks. The basis
functions can be chosen as the Gaussian functions defined as [6]

_ 112
¢1i(x)=exp<—”xg+1”>; i=1,2 ..., (14)
17
_ 112
¢2i(x):exp<—”xa+’”>, i=1,2 ..., ny (15)
2%

where cy; and co; are centers of the basis functions, and 0%71
and o3, are widths, which are all chosen a priori and kept fixed
throughout the experiment for simplicity.

If we select a Lyapunov function candidate as

Vi=1e"Pe (16)

and let the overall control law be defined as follows:

U =1uy + Us (17
_ 1 (n) | \T
ur=sos [ F) + 55 42 e] (18)
1
Tk
; ;2 (x)TWa;
k
X [— Z ai¢1 (X)TWU + yfl") + )\Te (19)
=1
us =I*sgn(eT PB) !
T 9" (x)
x [1FG+ £ (%) + 13()ug] + g () ug] +
(20)

where [* = 1ifV; > Voand I* = 0if V4 < V., and sgn(a) =
lifa > 0and sgn(a) = 0if a < 0, and V., > 0 is a constant
designed by the user.
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Theorem 1: Consider the nonlinear system described by (3)
satisfying Assumption 1, and subject to the controller given in
(17)—(20). Then V; < V. ast — oo, where V, is a positive
constant.

Proof: Applying (17) to the plant (3) we obtain
x = Ax+ B(f(x) + 9(x)(us + us) + d). (21)

After simple manipulations, we can obtain the error dynamic
equation

é=Ae—-B)e+B{/f(x) - f(x)

+ (9(x) — g(x))uy — g(x)us — d} (22)
=Ae+B{f(x) - f(x)
+ (9(x) — g(x))uy — g(x)us — d}
e; =CTe
e =Ae+B{f(x) + §(x)us — g(x)u, —d}  (23)

where A = A — BA. f(x) = f(x) ~ f(x). §(x) = j(x) ~
g(x),and e; = ya — 1.

Since A is Hurwitz, there exists a positive definite symmetric
matrix P, which satisfies the Lyapunov equation

ATP +PA=-Q (24)

where Q is an arbitrary positive definite matrix.

From the Lyapunov function candidate of (16), if we take the
time derivative of (16) along the trajectories of error dynamics
(23), we obtain

Vi=1é&"Pe+ le"Pe 25)
= % eT(ATP + PA)e
+e"PB{f(x) + §(x)us — g(x)us — d} (26)

= —% e’ Qe + eTPB{f(x) + g(x)ur — g(x)us — d}.

27)
If we rewrite the above equation
Vi =—1e"Qe +e"PB{f(x) + j(x)us — d}
—e"PBy(x)us (28)

<—1eTQe + [eTPBI{|f(x)| + | f(x)] + |g(x)us]|
+ lg(x)ug| + |d|} — e"PBg(x)us. (29)

Considering the case of V; > V. and substituting the supervi-
sory controller (20) into (29), we obtain

Vi< —%e"Qe. (30)
Therefore, we always have V; < V. by using the supervisory
controller. [ |

The bound of V; implies the bound of the magnitude of the
error vector e. Moreover, it also means that the state vector x is
bounded. Therefore, the closed-loop system with the controller
(17) operates well to stabilize the given system in the sense that
the error is not divulged.
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In order to derive adaptive laws for these weights of the RBF
networks, optimal weights W7, and W3, are defined as

Wi, = a S ’f ’ 31
1 rg Elznnh [ up (x) } 3D
W*,' = a X .n u gA X X 32

27 rgWg}éQﬁ |:S px | ( ) g( )|:| ( )

where Q1;, (25;, and {2 are compact sets of suitable bounds on
Wi, Wy, and x, respectively, and they are defined as

D ={Wu| |Wyl <Wig} (33)
i ={Wai| |Wy;| < Wy} (34)
Qx ={x| [x| < Wy} (35)
where Wip, Wsp, and Wy are positive constants.
Define the minimum approximation error as
w=f"(x) = f(x) + (77(x) —g(x))us —d  (36)
where
R k
Frx) =) aigi(x)"W; (37)
=1
k
§1(x) =) e (x)" W3, (38)
i=1

Assumption 2: The term w cannot be equal to zero in real
application even if there is no external disturbance because we
cannot use infinitely large hidden-layer units to make w — 0
due to the limitation of the computational power and the con-
straints on hardware equipment. As such, we can assume that

F#(0) = F(0)| < win and 57 () — g(x)| < wan, and we
may specify these bound values as small values by off-line ex-
periment. We can set these bound values as the maximum ap-
proximation errors by performing a task of approximating a
known nonlinear function similar to the given problem.

If we represent error dynamics (23) with the minimum ap-
proximation error (36), we obtain

é=Ae+B{f(x)-
=A+B{f(x)—

fx) + (§(x)—g(x))us —g(X)us —d}
£ () + (9(0) = §" (%) Juy — g(x)us + w}

(39)
=Ae — By(x)u, + Bw

k k
+B {Z i1 (x)" W, + ug Z ai¢2(X)TW2i}
i=1 i=1
(40)

where Wli = Wli — WL, and V~V2i = W2i — W;

Theorem 2: Under Assumptions 1 and 2, if the following
control law and adaptation laws are applied to the nonlinear
system (3), then the closed-loop system is globally asymptoti-
cally stable and all the involved signals are bounded within spec-
ified regions.

Control Law:

(41)

U =uf + Us,

where u is described by (19), and u is given by the following
equation:

uy = I sgn(e"PB)—— [|f(0)] + £V (x) + dn

e
+19(0)ug] + 9" (lus| +wip +waslugl]. (42

Adaptation Laws: If |Wy;| < Wig or (|Wy;| = Wip and
eTPngiF(x)Wli Z 0)

Wi = —y1a:¢1(x)B” Pe. (43)
If(|W1i| = Wip and eTPBdff(x)Wu <0
. W, WZT
Wi, = —yi0i¢1 (x)BTPe + v,0;¢T PB 1—1(@(")
Wi
(44)
If |W2i| < Wsp or (|W2L| = Wsp and
eTPB¢g(x)W2iuf 2 0)
Wzi = —fyga,igbg(x)BTPeuf. (45)
If(|W2,| = Wsp and eTPqug(X)WQiUf < 0)
W2i = —vgaing(x)BTPeuf
Wy, WL
+ypa;eTPB —2 22¢22(X)“f (46)
|Wo|

where 1 and - are adaptation gains, respectively.
Proof: Let us define an overall Lyapunov function candi-
date as

V_leTPe+—ZW W11+TZW W,

2
47)
The time derivative of (47) is
V=1&"Pe+le’Pe
k k
1 2T . 1 2 T
- SOWL Wi+ — Y Wy, Wy (48)
iz i=1
Using the fact that Wli = Wh- and VNVZL = Wzt with the error

dynamics (40), we obtain

V= —1e"Qe — e"PBy(x)u; + " PBw

k
+e"PB Z i (%)W,
i=1

k ~

+e"PBus Y ciga(x)T W
=1
Lk
+_ZW Wh—l_v_zw W2L
2

=1 =1

(49)
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=-1 eTQe — eT"PBy(x)u, + e’ PBw

+Z(

I +e"PBa;ol (x )) Wi

+Z< WI + eTPBu; ¢ (x)u f> Wi (50)

If we substitute adaptation laws (43)—(46) into (50), we obtain
V <—3e’Qe — e"PBy(x)us + e PBw 5D
< 1eTQe TPBy(xu. + [TPB|lul. ()

In the case of V' > V,, the supervisory controller (42) is acti-
vated, and we have

V <-1e"Qe - e"PBy(x)u, + [e"PB||w]|
<-1leTQe - e"PBy(x)u,

+[e"PBI{|f*| + /] + g% us| + lgllus| + |dI}  (53)
< _% eTQe — eTPBg(x)uS + |eTPB|

< {|F] + 191+ 1w + gl s

+ wip| + |z lu| + |d) } (54)
<-1e"Qe. (55)
Therefore, we always have V< V. by using the

supervisory controller. If V< V., the supervisory
controller is deactivated. Since g(x) > 0, we have
g(x)eTPBu, > 0 from (42). Hence, from Rayleighs inequality
of (1/2)Amin(Q) lel” < (1/2)e7Qe < (1/2)Amax(Q)[ef’
we obtain

V< —% e"Qe + e"PBw

< —% Amin(Q) |e|2 +eTPBw (56)
—3 Anin(Q) le” + 3 [e]* — § le|” + e"PBw
— 3 [PBw[* + 3 [PBo|’ (57)
== (3 Xain(Q) = 1) le|* + § [PBw|?
2 (|6|2 —2e"PBw + |PBw|2) (58)
<= (3 Amin(Q) — 1) le|? +3 L PB)? |w|” (59)

where Apin (Q) is the minimum eigenvalue of Q. By integrating
both sides of (59) with specifying Q such that A,;n(Q) > 1 and
some manipulation, we obtain

t ) 92
./0 |e(T)| ar = )‘min(Q) -1

PB|? t
+%/0 lw(7)|? dr. (60)

Therefore, if w(t) € Lo, we have € € Ly, where Ly means
squared integrable [25].

Now, to prove |Wy;| < Wip, let Vay,, = (1/2)WLW,,.
If (43) is true, we have either |Wy;| < Wip or

(V(0) = V(#))
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Vw, = -1 WL (x)BTPe < 0 for |[Wy;| = Wp,
i.e., we always have |[Wy;| < Wip. If (44) is true, we have
|W1L| = WlB, and le = —'ylaZWI §b1( )BTPe-l-
Y10, TPB(WLW ;W ¢, (x)/ [W1;|°) = 0. Therefore, we
prove that [Wy;| < Wipg, t > 0.

With the similar technique, we can show that |Wy;| < Wap,
t > 0.

To prove the boundedness of the system state, we use the
definition of the error vector, e = y; — X, and we have
|x| < |ya| + |e|- Using Rayleighs inequality and Theorem
1, we have (1/2)Amin(P)le|° < (1/2)eTPe < V. and
le| < /2V./Amin(P). Therefore, the magnitude of the system

state vector is bounded as |x| < |y4| + v/2V./Amin(P) = W,

The boundedness of control signals can be shown easily since
all the terms in the control inputs are bounded from the previous
discussion.

Since f(x) and §(x) are weighted averages of the elements
of Wy, and Wy, respectively, we have

k.
< Z ai [¢1(
=1

k

Z i1 (x

=1

)TWU X)TWU |

f)| =

k
Z x)|Wip = W; (61)
and similarly
k k
9G] = D cida(x)" Way| < Z ;i |¢2(x)T W
i=1 ;
< Z o |$a(x)| Wap = (62)
and
19(x)| > €4 > 0. (63)
From (19), we obtain
1 ‘ (n)
uf| < flx ‘ ‘y + Al e
jusl < = | Alfel]
2 2V,
< i )|+ o+
|g( )| [ d )\min(P)
< — _-°¢
< Wi+l (64)

Therefore, uy is bounded.
For the supervisory controller (42), we obtain the following
relationship:

Fe0)| + 1760 + 1360 fug] + 97 ()l

1
|Us| SgL—(X)[

+dp +wiB +wonB |Uf|}

1
~ 9t (x)

Y(x)+wsp

€g

}. (65)

W+
{Wf+fU(x)+dm+w13+ 29

2V,

+A] P @)

W, +‘y(n)

Therefore, u, is bounded.
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From (64) and (65), we can prove boundedness of the overall
control signal of v = uy¢ + u,, (41) such that

|uf < lugl + Jus|- (66)

To use Barbalat’s lemma, let us check the uniform continuity

of V. The derivative of V for V' < V,, can be represented as

V < —e’'Qeé + ¢"PBuw. (67)
This shows that V is bounded. Hence, Vis uniformly contin-
uous. Application of Barbalat’s lemma indicates that V con-
verges to zero as time goes to infinity. Therefore, e is globally
asymptotically stable. Thus the proof is complete. [ |

From Theorem 2, switching between multiple models does
not affect the closed-loop stability, i.e., under any permissible
switching or blending rule, the proposed control algorithm
results in an overall system stability that all signals remain
bounded.

One choice of the scheme for blending multiple models from
the predicted errors [26] may be used. Let the predicted output of
the ¢th neural network model ¢; be calculated by the following
model:

)A(7 =Ax+B (le (X)TWM + (/)Q(X)TWQ,;U)

i =CT%; (68)
where v = us + u,. If we define é; = y — 9, as the difference
between the predicted output and the actual output, then we may
use the following blending coefficient, oy, i.e., significance pa-
rameter

o—leil? /o

k o) 2 2 ’
3 el /o
i=1

a; =

(69)

The soft-max transforms the errors using the exponential func-
tion and then normalizes these values so that «; has the property
that they lie between 0 and 1, and Y%, a; = 1.

In this paper, we used a hybrid algorithm as shown in the
following procedure. One is to switch between multiple models
in learning each model for memorizing control skill, and the

other is to blend existing multiple models for a new task.

e Step 0: Initialize all the RBF network
weights randomly.

e Step 1: [Switching] With user interaction,
train each RBF network to learn spe-
cific tasks.

e Step 2: [Blending] For the new task,
blending of multiple models based on
the predicted error using (69).

IV. SIMULATION

In this section, we will apply our proposed control scheme
to control a cartpole system for the pole to track a given trajec-
tory. We will compare an adaptive multiple neural network con-
troller with an adaptive neural network controller for the cart-
pole system with changing mass of the pole.

The dynamic equations of the cartpole system [27] are

y® = fy. 9) + 9y, u+d (70)

where y is the angle of the pole. Let 1 = y and x5 = y; then,
the nonlinear terms are

mlzg cosxy sinxy

Gsinxy, —
= . me (71)
l (é _ mecos? ml)
3 me+m
et (72)

g_l 4 _ mecos?x,
3 m.+m

where G = 9.8 m/s? is the acceleration due to gravity; m.. is the
mass of the cart; [ is the half length of the pole; m is the mass
of the pole; and w is the control input. Here, we assumed that
m. = 1.0kg, [ = 0.5 m and that m can be changed between 0.1
and 1.0 kg. In addition, we assumed that the external disturbance
is 0.05sin ¢.

The control objective is to control the state x; of the system
to track the reference trajectory yq = (7 /30)sin ¢, and during
the operation, the mass of the pole changes as follows:

0.1kg, if0<t<t;, Taskl
1.0kg, ift; <t <ty, Task2
T Y 01ke, ifts<t<ts Taskl
0.5kg, iftz3 <t <ty, Task3

where t; = 80.0, o = 150.0, t3 = 220.0, and t4 = 300.0 s.
Tasks 1 and 2 are assumed to be known tasks before operation,
and Task 3 is assumed to be an unknown task for which a model
is not specified.

From Assumption 1, we assumed that the bounds fU, ¢U,
and g” are known a priori. By checking the system dynamics
for |z1| < /30, |z2| < /30, and m € [0.1, 1.0], we can ob-
tain the approximate exact bounds as fV = 5.8, ¢V = 1.464,
and gL = 1.174. Therefore, in our simulation, we assumed em-
pirically that fU = 10.0, gV = 2.0, and ¢* = 0.3. In ad-

dition, we used A = [4, 4] and selected Q = Hg ;g] of

A

which the minimum eigenvalue is greater than 1. Since A =
A-B)T = [_2 _i] , we obtain P = [I;g é:g?%] by solving
the Lyapunov equation. Since there are two known tasks, we
designed two RBF network pairs. Each network pair consists of
two RBF networks, where one approximates f and the other ap-
proximates g. We placed 121 basis functions evenly on the input
region with oj; = 0.2, 5 = 1,2, =1, 2, ..., 121. We used
adaptation gains as y; = v, = 10.0 through the simulation.
We set the bound of external disturbance as d,, = 0.05, and
the approximation errors between the optimal networks and the
concerned nonlinear functions are set as small numbers wip =
wep = 0.001.

Two groups of experiments were performed: 1) adaptive
neural network controller (ANNC), which has a single RBF
network pair, and 2) the proposed adaptive multiple neural
network controller (AMNNC), which has two RBF network

pairs.
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TABLE 1
PERFORMANCE COMPARISON BETWEEN ANNC AND AMNNC
ANNC AMNNC
Interval Max. |e| | IAE | Max. |e| | IAE
t € [0, 330] 0.3114 2.7341 0.3125 2.5540
t € [150, 220] 0.0189 | 0.3286 | 0.0091 | 0.1775
t € [220, 300] 0.0151 0.3692 0.0142 0.2481
TABLE 11

PERCENTAGE IMPROVEMENT IN IAE PERFORMANCE OF AMNNC OVER ANNC

TAE -IAE
toterval | (——ANNG—SAMNNC )  100%
ANNC
t € [0,330] 6.587 %
t € [150, 220 45.983 %
t € [220, 300] 32.801 %

We compared the control performance for the two groups of
experiments (ten trials for each controller) by averaging the in-
tegrals of the absolute magnitude of the error (IAE), which is
written as

T
TAE — / le(t)] dt. (73)

Ty

Table I presents the comparison of error measurements
between ANNC and AMNNC. Table II gives the percentage
improvements of the IAE provided by AMNNC over ANNC,
which proves that AMNNC is much more effective in tracking
performance when some tasks are repeated.

Figs. 1-3 show the tracking errors when ANNC is applied.
Initially, the neural network does not have dynamic knowledge
of the system and the adaptive scheme changes network weights
when Task 1 is given for 0 < ¢ < 80.0. As time passes, the
performance is improved since the neural network approximates
nonlinearity of the system for Task 1. When Task 2 is given for
80.0 < t < 150.0, the system dynamics for this task is different
from that of the learned neural network at the time. Therefore,
some transient errors appeared around ¢ = 80.0, and the neural
network is adapted for this new task minimizing tracking errors.
Att = 150.0, the task is changed into the old Task 1. There are
also some transient errors around at that time as shown in Fig. 2
since the neural network forgot control skill for Task 1 while
it learned the new control skill for Task 2. The conventional
adaptive neural network controller repeats its adaptation for the
given task whether it is a new task or an old one. As shown
in Fig. 3, for the new Task 3—around ¢ = 150.0—tracking
errors are slowly minimized since the neural network has to be
adapted from the previous dynamic knowledge. If there are large
task variations, the conventional ANNC will give large transient
errors when the task is changed.

Figs. 4-6 show the tracking errors when AMNNC is applied.
For 0 < ¢ < 150.0, the performance is similar to that of ANNC.
Since Tasks 1 and 2 are known, significance parameters are set
by the user (see Fig. 7). Control skill for each task is stored
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Fig. 3. Tracking error for Task 3 (ANNC).

for each neural network pair, and appropriate control skill can
be selected for the repeated task. As shown in Fig. 5, there
are small transient errors around ¢ = 150.0 when the task is
changed into the old Task 1, for which dynamic information
is memorized with one neural network pair. For the unknown
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new Task 3, the proposed blending of existing neural networks
using predicted errors is shown in Figs. 6 and 8. From these
experiments, the proposed AMNNC shows better performance
over the conventional ANNC for the repeated tasks, which is
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Fig. 7. Significance parameter (AMNNC).
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Fig. 8. Significance parameter for Task 3 (new task) (AMNNC).

needed in industrial applications where the load changes from
time to time.

V. CONCLUSION

In this paper, an adaptive multiple neural network control
method was developed for the control of a certain unknown non-
linear dynamic system with a supervisory controller. Multiple
neural networks are used to approximate the changing system
dynamics for various tasks. For the case of repeated jobs, the
proposed control scheme is effective because of its capability
to memorize control skill for each task with the neural net-
work. Transient errors at the time of changing tasks will be
attenuated significantly when the new task occurs repeatedly
as shown in the experiment. The Lyapunov function-based de-
sign of adaptation laws guarantees the global stability of the
closed-loop system. The implementation with the feedforward
neural network instead of the RBF network is possible by fol-
lowing Lewis’ work [28]

In this paper, we have fixed the number of models and we
assumed that we can train each model for each task by user
interaction. The on-line generation and pruning of models will
be interesting further studies.
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