
 1

A Hybrid Framework of Worst-Case Execution Time
Analysis for Real-Time Embedded System Software

Jong-In Lee
Satellite Electronics Department, Korea Aerospace Research Institute

45 Eoeun-Dong, Yuseong-Gu, Daejeon 305-333, South Korea
+82-42-860-2819, jilee@kari.re.kr

Su-Hyun Park, Ho-Jung Bang, Tai-Hyo Kim, Sung-Deok Cha
Department of Computer Science, Korea Advanced Institute of Science and Technology

373-1, Kusong-Dong, Yuseong-Gu, Daejeon, 305-701, South Korea
+82-42-869-3535

{suhyun, hjbang, taihyo, cha}@dependable.kaist.ac.kr

Abstract—Timing analysis 1 , 2 is an essential process for
development of real-time embedded system and knowledge
about the worst-case execution time (WCET) of real-time
programs is critical to validation of temporal correctness of
implemented system. Recently, automated static timing
analysis methods are introduced to facilitate timing analysis
process for real-time software, and to provide safe and tight
WCET. But static WCET analysis methods have drawback
as they do not provide accurate WCET for hardware-
dependent software or application software where input data
rate from external environment needs to be considered.
Also, the WCET obtained from static WCET analysis needs
to be verified at target system before system deployment. In
this paper, we propose a framework of WCET analysis for
real-time embedded software which complements static
WCET approach and provides tight and safe WCET by
combining static timing analysis approach with dynamic
measurement. The application of proposed framework to
the WCET analysis of command processing and data
acquisition part of KOMPSAT-2 satellite flight software is
presented to show effectiveness of the proposed approach.

TABLE OF CONTENTS

1. INTRODUCTION..1
2. TIMING ANALYSIS OF FLIGHT SOFTWARE...........2
3. OVERVIEW OF STATIC WCET ANALYSIS3
4. HYBRID WCET ANALYSIS FRAMEWORK4
5. CASE STUDY ..7
6. CONCLUSION ...9
ACKNOWLEDGMENTS ...9
REFERENCES ...9
BIOGRAPHY ...10

1. INTRODUCTION

Flight software is real-time embedded software which
resides in spacecraft on-board computer and controls in-
orbit operation of satellite. As tasks of flight software are

1 0-7803-8870-4/05/$20.00© 2005 IEEE
2 IEEEAC paper #1285, Version 2, Updated December 1, 2004

usually designed to be scheduled in synchronous and
deterministic way to prevent occurrence of unexpected
faults in orbit from asynchronous scheduling, timing
analysis of flight software is important. Underestimation of
timing can cause overrun error endangering mission
success, while overestimation can cause waste of valuable
resource or degraded system performance from restricted
function of codes due to limited processing resource
available for space environment. Traditionally additional
processor throughput margin is reserved in timing analysis
to compensate for inaccuracy in timing estimation and to
prepare for possible code modification to alleviate hardware
failure or to fix a software bug found after launch. This
conservative approach imposes timing analysis as an
essential process on the development of flight software.
Estimation of required CPU throughput is performed from
the beginning of satellite development project to select
proper CPU for required mission, and throughput usage
margin requirement is usually specified in software
requirements specification. Periodic timing estimation is
performed during flight software development phases and
throughput usage is checked with requirement at major
program milestone until satellite launch.

There are two approaches of timing estimation used for
development of satellite flight software, measurement and
estimation by analysis. Measurement is to run a program
with proper input data at target environment and measure
execution time using measurement tools, such as
oscilloscope, logic analyzer, or in-circuit emulator. It
requires codes to execute, target system or simulator
environment. But measurement is infeasible for programs
with complex program execution paths, because it is
difficult to execute all execution paths of industry-sized
program with all possible input data. The WCET obtained
by measurement is actually a lower bound to WCET.
Estimation is a method to predict execution time of software
by analyzing program code and characteristics of target
processor without running them. Recently research on
static analysis is actively in progress to automatically find
tight and safe bound of WCET by analyzing program codes
and modeling processor hardware characteristics. But

 2

currently available automatic WCET analysis methods have
restrictions on program size and programming language
constructs supported (e.g. no indirect procedure calls, no
dynamic data structures, no recursive functions, etc.) or
require additional user annotations to be provided. It also
has drawback that it cannot accurately estimate WCET of
hardware-dependent codes because timing behavior of real-
time embedded system depends on the hardware
characteristics of specific target system, such as DMA,
interrupts, or shared memory, nor can it take into account of
feasible processing load scenario of the system (e.g.,
maximum amount of external input from environment).
These constraints/limitations of static WCET analysis
necessitate finally validating correctness of static WCET
analysis result by measurement in the target system.

This paper presents a framework to perform worst-case
execution time analysis for real-time embedded systems on
the premise that dynamic timing analysis is required at final
stage of timing analysis. Section 2 introduces traditional
timing analysis methods used for the development of real-
time embedded software and presents their problems taking
satellite flight software as an example. Section 3 provides
overview of static WCET analysis methods for real-time
embedded systems. In Section 4 we propose a framework of
hybrid WCET analysis for real-time embedded system
software. Application of the proposed framework and
experimental results are presented in Section 5. Finally
Section 6 gives a conclusion and outlines future plan.

2. TIMING ANALYSIS OF FLIGHT SOFTWARE

Many spacecraft today contains on-board computers which
automatically maintain spacecraft’s attitude, periodically
check safety of the spacecraft hardware, support the science
instruments, and perform a variety of other tasks. Flight
Software which runs on spacecraft on-board computer is
real-time embedded software. It’s mission-critical software
whose correct system functionality depends both on logical
correctness and temporal correctness.

Flight software timing analysis is crucial for the following
purposes:

Firstly, some satellite control functions are required to be
executed within a predefined time duration, which requires
prior knowledge about their execution times. Generally,
satellite flight software tasks are scheduled in predictable
ways, i.e., they should be executed in a periodic or
synchronous ways to reduce faults caused from
asynchronous, unpredictable scheduling. Their scheduling is
usually based on a predefined duration of time called ‘minor
cycle’ or ‘major cycle’, and tasks allocated for spacecraft
subsystems need to be synchronized. Also in a distributed
multiprocessor system, inter-processor communication and

execution of tasks in each processor need to be
synchronized.

Secondly, there are timing constraints for a task to process
inputs from external environment and to respond them.

Thirdly, software timer function or delay routines is
required for certain application where hardware timer is not
supported.

Fourthly, satellite flight software is required to have
sufficient timing and sizing margin to prepare for
unpredictable asynchronous events in space environment
and to meet unexpected software modification during in-
orbit operation. This imposes periodic check and trace of
throughput and memory usage during flight software
development because those margin requirements at launch
time are usually specified in software requirements
specification document [15].

Figure 1 shows these requirements of flight software timing
analysis.

Flight Software
Timing Analysis

Synchronous &
Periodic task
scheduling

Throughput
margin

requirement

Software
time event
generation

Timing constraints
in control logic

Figure 1 - FSW Timing Analysis Requirements

Traditional Flight Software Timing Analysis Approaches

Timing analysis for satellite flight software is performed in
an incremental, iterative way as shown in Figure 2.
Required processor throughput is roughly estimated during
system requirements analysis and conceptual design phase.
This estimation is performed in system-level, and analysis
result is used for selection of CPU type or for trade study of
hardware/software design. During design phase, software
timing is predicted or estimated using pseudo code or
heritage code. Execution time is estimated roughly by
counting number of floating-point operations or lines of
pseudo code. A processor simulator is used to measure
execution time of code during coding and unit testing phase.
Usually WCET of program is estimated in bottom-up
manner starting measurement of leaf node modules in call
tree. To find the WCET of code, the longest execution time
path is searched explicitly by running the executable paths
of code using simulator. The selection of execution paths or
test cases largely depends on programmer’s heuristic
decision if there are too many paths to execute. To measure
time-critical function, oscilloscope or logic analyzer is used

 3

in this phase. During software integration and test phase,
WCET of task is measured by running code in target system
using in-circuit emulator, oscilloscope, or logic analyzer.
The input data used for WCET measurement is chosen by
programmer assuming feasible processing load scenario.
The WCET of integrated software is obtained by
considering functional or data dependency between
modules. Usually domain-specific knowledge is utilized in
selecting execution path or test cases during this process.
The timing profile data obtained at this phase can be used
for code optimization of critical section. During verification
test phase, WCET of overall flight software executing in the
on-board computer is measured under the maximum
feasible processing load to verify throughput usage
requirement.

Analysis of on- board
data handling,

minor/ major cycle
requirements

Requirements
Analysis Design Coding &

Unit testing
Integration &

Test Verification Test

Software Timing Analysis

Timing estimation
with PDL/ Pseudo code

or heritage code

WCET measurement
using processor

simulator

WCET measurement/
estimation at

target processor

WCET of overall FSW
measured/estimated
at target processor

- estimate required
CPU throughput

- select processor
& hw/ sw interface
design

- analysis of execution
time of time- critical
functions

- track processor
throughput usage

- measure/estimate
WCET of software
units

- track processor
throughput usage

- estimate WCET of
integrated software
components

- gather profiling data
for code optimization

- track processor
throughput usage

- estimate WCET of
overall software in
each processor

- track & verify that
processor throughput
usage meet margin
requirement

Figure 2 - FSW Timing Analysis Flow

Problems in Traditional Flight Software WCET Analysis

A WCET estimation method generally used for timing
analysis of flight software was to search for all the
executable paths of program by the programmer, and then
he/she finds test cases for each path to run the program
using target processor simulator or in-circuit emulator. The
number of instruction cycles executed for each executable
path is obtained and the largest is chosen as WCET of the
program. The WCET of modules corresponding to the
higher nodes of call tree is obtained similarly in bottom-up
manner by finding test cases first then executing them. This
manual approach requires much effort and time of
programmers and error-prone because a flight software
module usually contains many executable paths and
generating test cases for them to measure the execution
times of the paths is very hard.

3. OVERVIEW OF STATIC WCET ANALYSIS

Static Worst-Case Execution Time (WCET) analysis is to
provide a priori knowledge about the worst-case execution
time of a program without running it, while dynamic timing
analysis is based on measurement of execution time [1, 2,
3]. The WCET provided by static WCET analysis methods

should be safe and tight estimation of WCET as shown in
Figure 3.

actual
BCET

actual
WCET

safe
BCET
estimates

safe
WCET
estimatesPossible execution times

tighter tighter
0

time

Figure 3 - Approximate WCET

Static WCET analysis proceeds through phases of program
flow analysis, low-level analysis and calculation as shown
in Figure 4. The program flow analysis phase analyzes the
code of the program, and determines the possible program
flows. It provides information about which functions get
called, how many times loops iterate, if there are
dependencies between if-statements, etc., by automatically
analyzing program’s dynamic behavior or by user
annotations. The low-level analysis phase analyzes the
object code and target hardware to determine the timing
behavior for instructions running on the target hardware,
giving the execution time for each atomic unit of flow (i.e.,
basic block). The calculation phase combines the results of
the flow and low-level analyses to calculate a WCET
estimate for the program. There are three categories of
calculation methods: tree-based, path-based, and Implicit
Path Enumeration Technique (IPET)-based calculation.

Program

Flow Analysis

Low-level
Analysis

Calculation

WCET
estimate

Figure 4 - Static WCET Analysis Phases

Program Flow Analysis

The purpose of program flow analysis it to get information
about which functions are called, how many times loops
iterate, if there are dependencies between if-statements, etc
[4]. The flow information such as maximum loop iteration,
branch constraints, and infeasible paths can be extracted
from program code by automatic flow analysis methods or
with manual annotations. It has three sub-phases: flow
extraction, flow representation, flow information conversion
for calculation. Flow extraction actually determines flow of
code, flow representation represents the information
obtained in the analysis phase, and flow information
conversion for calculation is to process the information to
be useful for the particular calculation method. The
automatic flow analysis is still limited to well-structured

 4

programs which do not use pointers, dynamic data
structures, or recursion. In this case, automatic flow analysis
needs to be complemented with manual annotations
providing additional flow information such as bound of
loop iteration and description of flow dependencies. Further
research on automatic flow analysis to get tighter WCET is
in progress by detecting loop bounds or infeasible paths
automatically instead of manual annotations which may be
error prone [5, 6, 7].

Low-Level Analysis

The low-level analysis is to determine the execution time of
basic blocks given the architectural feature of the target
hardware. It determines the timing effect of machine-
dependent factors that need to be modeled such as cache,
branch predictor and pipeline. But as modern processors
utilize various performance-optimizing features to enhance
performance, modeling of processors’ timing behavior
becomes more complex and hard to predict. Research on
modeling complex processor’s timing behavior as well as
validation of the hardware model is in progress [8].

Calculation

Calculation phase is to calculate the WCET estimate for the
program, given the program flow and low-level analysis
results. There are three categories of calculation methods:
tree-based, path-based and IPET (Implicit Path Enumeration
Technique).

(1) Tree-based Calculation.

In tree-based calculation, the WCET estimate is generated
by a bottom-up traversal of a program syntax tree [9]. The
program syntax tree is a representation of program whose
non-leaf nodes corresponds to structure of the program
(e.g., sequences, loops, conditionals) and whose leaf-nodes
represent basic blocks. This method is simple and
computationally cheap, while it has drawback that the
computation is local within a single program statement and
cannot consider dependencies between statements.

(2) Path-based Calculation.

Path-based calculation is to find longest execution time path
using graph search algorithm after converting source codes
into control flow graph [10]. This method explicitly
represents possible execution paths but has problems with
handling flow information of loop-nesting levels.

(3) IPET Calculation

IPET (Implicit Path Enumeration Technique) calculates
WCET by solving the objective function which satisfies
structural or functional constraints extracted from program
CFG or provided by user [11, 12].

The result of IPET calculation is a worst-case count for the
basic block instead of explicit execution paths. IPET
constraints systems can be solved using constraint-solver or
ILP (Integer Linear Programming) technique. IPET-based
approach can handle more complex flow information
compared to other calculation methods. Comparison with
path-based calculation is performed in [13].

Issues and Research Area in Static WCET analysis

Modeling the timing behavior of modern microprocessors
becomes more complex as they utilize performance-
optimizing features such as pipeline, caching and branch
prediction. Recently research on precisely modeling these
advanced features is actively in progress. However it
becomes more difficult to obtain the detailed timing
characteristics of processor internals because processor
manufacturers are reluctant to release them for competition
with other manufacturers, and this make it difficult to
validate target processor’s timing model. Also fully
automated static WCET analysis tools which support most
of modern embedded processors and can be applied to real-
world programs without reprogramming or user annotation
are not developed yet. Research on integrating WCET tool
with existing compilers is actively in progress, too.
Research on the use of evolutionary algorithms in
assessment of execution time, research on parametric timing
analysis, research on probabilistic approach for WCET
analysis, and research on WCET analysis for component-
based software are in progress.

4. HYBRID WCET ANALYSIS FRAMEWORK

Static WCET analysis is a technique to find out WCET by
analyzing software codes without executing it. But this
static WCET analysis has drawback compared to dynamic
WCET analysis technique which measures WCET by
running the software at target system environment.

Limitation in analyzing WCET of hardware-dependent

software

For example, data acquisition module shown in Figure 5
which polls hardware ready status after writing request
waits for data ready up to predefined timeout duration. In
most of nominal cases, hardware data is available much
earlier than the timeout which is set conservatively with
sufficient margin. But with static WCET analysis method
which calculates WCET theoretically, the path which takes

 N
WCET = MAX (∑ ti xi)

i

where xi is the execution count of basic block Bi,
ti is the execution time of basic block Bi

 5

timeout is always chosen causing overestimation compared
to real-world.

Start

Write command to HW output port

Read status from HW input port

Data ready ?

Read data

End

Yes

NoNo

Wait for a delay time

Timeout ?

Return error status

Yes

Figure 5 - Timeout Loop for Hardware Polling

Another example is target system specific features, such as
access to shared memory, DMA, or interrupt. These features
cannot be considered in static WCET analysis technique,
even though non-preemptive scheduling is assumed. Timing
effect due to contention in accessing shared memory
between CPU and I/O controller cannot be covered in low-
level analysis, which considers only internals of CPU such
as pipeline, cache, or branch prediction.

Lack of consideration for constraints on input data from

environment

Typically real-time embedded systems acquire input from
environment, process them, and control system hardware to
perform their mission. The program execution time in the
system is dependent on input data (amount of input data,
type of input data) from environment. To estimate the
WCET of real-time embedded system, we need to consider
the constraints on input data from environment. Without
considering the constraints on input data, the WCET
obtained from the static analysis technique will be
unacceptably overestimated.

Requirement to validate correctness of static WCET result

Static WCET analysis techniques estimate WCET by
analyzing program codes. But the WCET result from static
analysis need to be validated before its application to design
of real-time embedded system since the estimation process
often involves human interaction such as user annotation
which may be prone to error.

Therefore the timing analysis for real-time embedded
system requires validation at target system by actually
executing software and measuring execution time before
system deployment. But time and effort to find out WCET

by measurement is inhibitive to perform because it is
difficult to execute all execution paths of industry-sized
program with all possible input data.

This paper introduces efficient WCET analysis method
which provides tighter WCET by utilizing constraints on
input data from environment. It also presents hybrid WCET
analysis technique which combines static and dynamic
WCET analysis techniques to validate correctness of timing
behavior of real-time embedded system.

(1) Find longest execution time path using path-based
static WCET analysis technique.

(2) Generate input data which traverses the longest
execution path.

(3) Extract constraints on input data by analyzing system
specification, equipment specification, and interface
control documents, etc.

(4) Measure WCET by running software at target
environment with input data obtained as above.

(5) Compare the result of static and dynamic WCET
analysis.

Program
analyzer

Longest
executable

path selector

Input data
generator

Low level
analysis

Control Flow
Graph (CFG)

Program
execution at

target system

Timed
CFG

Estimated
WCET

Measured
WCET

Target
system

Static WCET analysis

WCET measurement

Constraints on
input data

Figure 6 - Proposed WCET Analysis Method

Search of the Longest Execution Path using Static WCET

Analysis Technique

Path-based WCET analysis technique is preferred to IPET
because the longest execution path is provided in addition to
estimated WCET. After flow analysis and low-level
analysis of software, timed CFG is generated. The longest
execution path in the timed CFG is searched using graph
search algorithm. As the number of execution paths of a
program grows exponentially with the number of control
flow branches and loops, it is difficult to check executability
of all execution paths. In searching the longest execution

 6

path feasible, [14] suggested a method to find k longest
execution paths using heuristics, then to check their
feasibility starting from longest execution path first. The
first feasible execution path among the k longest execution
paths is chosen as WCET path. If all the k execution paths
are infeasible, then k-th path is chosen as WCET path.

Generation of Input Data Traversing WCET Path

Path-oriented automated test data generation can be used to
find input data which traverses WCET path. The input data
generation problem is converted to problem of finding
solution of linear systems of equality/inequality of input
data. Input data should include global variables in addition
to input arguments of function/procedure.

Analysis of Constraints on Input Data

The WCET of real-time embedded system often depends on
input data from environment. Figure 7 shows a typical
structure of the input data processing task in a real-time
embedded system.

Input hardware

Input
register

PIC

IVT

Input data /
status word

•

Input
data
ISR

Input from
environment

Input data
buffer

……
Input data

processing task

Input data
Processing Task

activation

get data from
input buffer

Process
data type 1

data
type

Process
data type 2

Process
data type 3

Process
data type N…

input buffer
empty ? suspend

Yes

No

Process
invalid data

Type 1 Type 2 Type 3 Type N Type Error

Figure 7 - Input Data Processing Task

Input data from environment is acquired and stored in the
input data buffer by interrupt or polling scheme for
processing by input data processing task. Usually input data
buffer size is set with sufficient margin to prevent buffer
overflow. When activated, the input data processing task
processes input data in the buffer according to type of input
data. The execution time of input data processing task
depends on amount and type of input data in the buffer. If
there are predefined patterns on input data or maximum
input data rate is defined, then disregarding these
constraints in WCET estimation will result in

overestimation. Therefore constraints on input data such as
amount of input data, type of input data, predefined pattern
of input data, need to be considered in WCET estimation.
As these constraints are not included in program codes,
domain knowledge is required to extract them from
documents, such as system specification, equipment
specification, or interface control document, etc. Constraints
on input data can be categorized into following criteria:

- Maximum input data rate from environment/user
- Predefined input data pattern
- Exception handling

These constraints can be specified in flow facts language as
proposed in [12].

(1) Representation of Maximum Input Data Rate

Maximum input data rate can be represented as loop bound.
Input data processing task of real-time embedded software
usually processes input data in the input buffer until it is
empty. The input buffer size is set large enough to hold
maximum input data from environment with sufficient
margin, but actual amount of input data from environment is
usually much smaller than capacity of input data buffer.
Without considering constraints on input data, static WCET
analysis technique overestimates WCET of input data
processing task. Constraint of the maximum input data rate
can be given as specifying loop bound of input processing
task in static WCET analysis tool.

For example,

scope : [] : x header (scope) ≤ bound

(2) Representation of Predefined Input Data Pattern.

In a real-time embedded system, input data from
environment can have predefined data pattern.
Communication protocol processing software is an example,
where input data is always in a predefined format as shown
in Figure 8.

Frame
Header

Packet
Header

Data 1 Data 2 Data 3 Data N…Frame
Header

Packet
Header

Data 1 Data 2 Data 3 Data N…

Figure 8 – Example of Input Data of Predefined Pattern

The execution time of input data may be different according
to input data type. Most of static WCET techniques choose
the path which processes the input data type with the
longest execution time regardless of predefined input data
pattern, resulting in overestimated WCET.

For example, if we assume in Figure 7 that:

 7

Then actual WCET is w1 + w2 + n * max (wj), 3 ≤ j ≤ N,
 instead of Max_Loop * max (wi), 1 ≤ i ≤ N.

These constraints can be specified in flow facts language as
follows:

If we further assume that input Type-3 and Type-4 cannot
appear at the same time:

scope : [] : x TYPE-3 + x TYPE-4 ≤ 1

(3) Representation of Constraint on Exception Handling

Error checking and logging is important to detect, isolate,
and recover from fault in real-time embedded system. If
error or exception occurs, error information such as error
code, time of occurrence, and error description, is logged in
the error table in addition to required exception handling. In
static WCET analysis, the path to invoke error handling is
chosen as WCET path if execution time to handle error is
larger than that of normal operation. However occurrence of
faults all the time is very unlikely and exception handling
usually involves aborting input data stream in the buffer
until new valid input data sequence appears. If static WCET
analyzer considers subsequent input data as error without
discarding them, the WCET will be overestimated. Figure 9
shows an example of overestimated WCET in exception
handling at data acquisition task which gathers hardware
sensor data.

− It invokes read_hardware_data routine to read sensor
data from hardware

− In read_hardware_data routine, sensor data is
acquired from A/D converter hardware

 Output request command (channel number, gain,
offset)

 Wait for data ready (until timeout)

 Read data

 If data read timeout occurs, log timeout error in the
error table

 Usually timeout is set conservatively with
sufficient margin (10 times of nominal case)

The estimated WCET by static WCET analyzer will be
overestimation, because the probability that all data
acquisitions result in timeout is nearly impossible in
practice considering the margin of timeout.

Data
Acquisition

Task

status OK?

log the error

return

read_hardware_data

write command to H/W output port

wait for a delay time

read status from H/W input port

read data

data ready?

return error status

timeout?

No

Yes

No

Yes

end

return data read

status = read_hardware_data

all
data acquired?

normal path

WCET path

NoNo

Yes Yes

Figure 9 - Example of Exception Handling

WCET Measurement at Target System

After the WCET has been estimated along with the longest
execution path and the input data which traverse it,
verification of the result at target system before system
deployment is important. As input data for WCET path is
available, the execution time can be measured easily at
target system using in-circuit emulator, digital oscilloscope,
or logic analyzer. The measurement should be non-
intrusive, so as not to affect execution time of program
running. This measurement at target system will uncover
system-dependent hardware timing effect, such as decrease
of CPU throughput due to contention in accessing shared
memory with I/O controller, DMA, or interrupt.

5. CASE STUDY

We performed a case study according to proposed WCET
framework by applying it to estimate WCET of KOMPSAT
satellite flight software components: CCI and DAQ.
Command and communication Interface (CCI) receives and

− Max loop count of input data processing task:
Max_Loop

− WCET of codes “process data type i” : wi, 1 ≤ i ≤ N

− input data has predefined data pattern: Type-1 data
 Type-2 data Type-m1 data Type m2 data
 Type-mn data, where mi ∈ [3..N] and 1 ≤ n ≤

Max_Loop – 2

scope : <1..1> : x TYPE-1 = 1

scope : <2..2> : x TYPE-2 = 1

scope : [3..Max_Loop] : x TYPE-1 + x TYPE-2 = 0

 8

processes telecommands from ground. Telecommands from
ground are in CLTU (Command Link Transmission Unit)
format of CCSDS (Consultative Committee for Space Data
Systems) recommendation. It consists of 17 software units
and total source line of codes is 979. Data Acquisition
(DAQ) acquires telemetry data to be used by application
software from serial, analog, or parallel ports, and formats
them according to predefined telemetry format for downlink
to groundstation. It consists of 5 units and total source line
of codes is 583. Both CCI and DAQ are programmed in C-
language.

The WCET acquired by traditional measurement was
compared to the estimated WCET obtained using a static
WCET analysis tool called TimeBounder which has been
developed at KAIST. TimeBounder takes C source code
and user defined flow constraints as its input, and returns
WCET with the number of executions of each basic block.
Figure 10 shows a screenshot of the tool. Current prototype
version supports only Intel 80386 target processor.

Then the tighter WCET obtained by applying constraints on

input data provided by domain engineer was compared to
them. The representative result of the experiment is shown
in Table 1.

Table 1. Summary of Case Study

118%46,2106120%2,395,01039,135DAQ_RDHW.Cdaq_read_hardware_data

125%406,515 1127%3,649,220 323,928CCI_C016.Ccci_ccsds_frm_processing

117%373,474 558%1,787,030 320,052CCI_C003.Ccci_command_processing

Ratio-2Method-2Ratio-1Method-1

Timebounder 1.0 Estimation (cycles)
Measurement

(cycles)File NameModule name

118%46,2106120%2,395,01039,135DAQ_RDHW.Cdaq_read_hardware_data

125%406,515 1127%3,649,220 323,928CCI_C016.Ccci_ccsds_frm_processing

117%373,474 558%1,787,030 320,052CCI_C003.Ccci_command_processing

Ratio-2Method-2Ratio-1Method-1

Timebounder 1.0 Estimation (cycles)
Measurement

(cycles)File NameModule name

Column Method 1 represents result of static WCET without
applying the proposed method and column Method 2 is a
result obtained after applying constraints on input data.
Measurement was performed at target system using in-
circuit emulator with input data obtained from static
analysis. As the tool does not provide explicit WCET path,
we have to identify the WCET path and input data for
measurements manually with help of GUI information

Figure 10 - TimeBounder 1.0

 9

provided by the tool. In the experiment, we could get almost
an order-of-magnitude tighter WCET estimation.

6. CONCLUSION

WCET analysis is critical to design and validate real-time
system software. Traditional timing analysis techniques
depend on measurement which requires much time and
effort to find proper test cases, to execute and measure their
execution time. The WCET obtained by measurement is
usually not safe either due to large input data space
infeasible to try. The static WCET analysis techniques are
introduced to resolve the problems of traditional dynamic
timing analysis techniques, and to facilitate timing analysis
process for real-time software. But static WCET analysis
methods also have drawbacks. They overestimate WCET of
real-time embedded system where there are constraints on
input data or hardware dependency which may not be
analyzable from the code itself. Furthermore, the estimated
WCET from static analysis needs to be ultimately verified at
target system before system deployment.

We propose an efficient WCET analysis method which
provides tighter WCET by utilizing constraints on input
data from environment. The proposed hybrid WCET
analysis framework provides tight estimation of WCET
using static WCET analysis at early phase of system
development, and facilitates verification and validation of
timing constraints of real-time embedded system at target
system during implementation and verification phase of
system development. We could show effectiveness of the
approach through a case study of satellite flight software.

As future work, we plan to investigate further constraints on
input data for real-time embedded system and categorize
them for tighter estimation of WCET. We also plan to study
on automatic generation of input data which corresponds to
obtained WCET path for measurement at target system.

ACKNOWLEDGMENTS

This work was partly supported by the KOMPSAT-2
project Contract (Spacecraft Bus Design and Development)
of the Korean Ministry of Science and Technology. It was
also supported by the Korea Science and Engineering
Foundation (KOSEF) through the Advanced Information
Technology Research Center (AITrc), and the Information
Technology Research Center (ITRC).

REFERENCES

[1] A. C. Shaw, “Reasoning About Time in Higher-Level
Language Software,” IEEE Transactions on Software
Engineering, Vol. 15, Issue 7, Pages 875-889, July 1989.

[2] Chang Yun Park, Alan C. Shaw, "Experiments with a
Program Timing Tool Based on Source-Level Timing
Schema,” IEEE Computer, Vol. 24, Issue 5, Pages 48-57,
May 1991.

[3] P. Puschner, Ch. Koza, "Calculating the maximum
execution time of real-time programs,” Real-Time
Systems, Vol. 1, Issue 2, Pages 159-176, September 1989.

[4] Andreas Ermedahl, A Modular Tool Architecture for
Worst-Case Execution Time Analysis, Dissertation for the
Degree of Doctor of Philosophy in Computer Systems,
Uppsala University, June 3, 2003.

[5] C. Healy, M. Sjödin, V. Rustagi, D. Whalley, "Bounding
loop iterations for timing analysis,” IEEE Real-Time
Applications Symposium (RTAS'98), June 1998.

[6] Christopher Healy, Mikael Sjödin, Viresh Rustagi, David
Whalley, Robert Van Engelen, "Supporting Timing
Analysis by Automatic Bounding of Loop Iterations,”
Real-Time Systems, Vol. 18, Issue 2-3, Pages 129-156,
May 2000.

[7] Christopher A. Healy, David B. Whalley, "Automatic
Detection and Exploitation of Branch Constraints for
Timing Analysis,” IEEE Transactions on Software
Engineering, Vol. 28 , Issue 8, Pages 763-781, August
2002.

[8] Greger Ottosson, Mikael Sjödin, "Worst Case Execution
Time Analysis for Modern Hardware Architectures,”
Proc. ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Real-Time Systems (LCT-
RTS'97), June 1997.

[9] Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang, Byung-
Do Rhee, Sang Lyul Min, Chang Yun Park, Heonshik
Shin, Kunsoo Park, Soo-Mook Moon, Chong Sang Kim,
 "An Accurate Worst Case Timing Analysis for RISC
Processors,” IEEE Transactions On Software
Engineering, Vol. 21, No. 7, July 1995

[10] Peter Puschner, Anton Schedl, "Computing Maximum
Task Execution Times -- A Graph-Based Approach,”
Journal of Real-Time Systems, Vol. 13, No. 1, Pages 67-
91, July 1997.

 10

[11] Yau-Tsun Steven Li, Sharad Malik, "Performance
analysis of embedded software using implicit path
enumeration,” Proceedings of the 32nd ACM/IEEE
conference on Design automation conference, Pages 456-
461, 1995.

[12] Jakob Engblom, Andreas Ermedahl, “Modeling
Complex Flow for Worst-Case Execution Time
Analysis,” Proc.21th IEEE Real-Time Systems
Symposium (RTSS '00), November 2000.

[13] Jakob Engblom, Andreas Ermedahl, Friedhelm Stappert,
"Comparing Different Worst-Case Execution Time
Analysis Methods,” The 21st IEEE Real-Time Systems
Symposium (RTSSWIP00), November 27, 2000.

 [14] Friedhelm Stappert, Peter Altenbernd, "Complete
Worst-Case Execution Time Analysis of Straight-line
Hard Real-Time Programs,” Journal of System
Architecture, 46, No. 4, Pages 339-355, 2000.

[15] Jong-Wook Choi, Soo-Yeon Kang, Jong-In Lee,
KOMPSAT-2 Flight Software Sizing and Timing Report,
KOMPSAT Program Office, Korea Aerospace Research
Institute, June 20, 2003.

BIOGRAPHY

Jong-In Lee is a head of Satellite Electronics Department
at Korea Aerospace Research Institute.
He has participated in KOMPSAT-
1&2 projects. He received MS degree
in computer science from Korea
Advanced Institute of Science and
Technology (KAIST). He is a part-time
PhD student in electrical engineering
and computer science department at
KAIST.

Su-Hyun Park received BS degree in computer science
from Kyungpook National University in
1999. She is a MS student at KAIST.
Research interests are Software
Engineering and Model Checking.

Ho-Jung Bang received BS degree in economics from
Seoul National University in 1996. He
received MS degree in computer
science from KAIST in 2003. He is a
PhD student at KAIST. Research
interests are Software Engineering and
Formal Method.

 Tae-Hyo Kim received BS and MS degree in computer
science from KAIST in 1998 and 2000,
respectively. He is a PhD student at
KAIST. Research interests are Formal
Method and Model Checking.

Sung-Deok Cha is an associate professor of computer
science division of electrical
engineering and computer science
department at KAIST. He received PhD
degree in information and computer
science at University of California,
Irvine in 1991. Research interests are
Software Safety, Computer Security,
and Formal Method.

