
Detecting Common Mode Failures in N-Version Software Using Weakest
Precondition Analysis *

Gwang Sik Yoon, Sung Deok Cha, and Yong Rae Kwon
Department of Computer Science

Korea Advanced Institute of Science and Technology
373-1, Kusong-dong, Yusong-gu, Taejon 305-701, Korea

{ gsyoon,cha,yrkwon} 0 salmosa.kaist.ac.kr

Chan Hyoung Yo0
ATM M&A Software Section

Electronics and Telecommunications Research Institute
161 Kajong-dong, Yusong-gu, Taejon 305-350, Korea

chyoo 0nice.etri.re.h

Abstract

An underlying assumption for N-version programming
technique is that independently developed versions would
fail in a statistically independent mannel: Howevel; empir-
ical studies have demonstrated that common mode failures
can occur even for independently developed versions, and
that common mode failures degrade system reliability.

In this papel; we demonstrate that the weakest precondi-
tion analysis is effective in determining input spaces leading
to common mode failures. We applied the weakestprecondi-
tion to the Launch Interceptor Programs which were used in
several other experiments related to the N-versionprogram-
ming technique. We detected 13 out of 18 fault pairs which
have been known to cause common mode failure. These
faults were due to logicaljaws in program design. Although
the weakest precondition analysis may be labor-intensive
since they are applied manually, our results convincingly
demonstrate that it is effective for identifying input spaces
causing common mode failures and further improving the
reliability of N-version software.

1. Introduction

The N-version programming(NVP) is a software fault
tolerance technique being widely applied to safety-critical
industrial systems such as the Airbus flight control system,
railway interlocking system and train control system [3] .

*This research is supported in part by ETRI(E1ectronics and Telecom-
munications Research Institute) project with the name of Reliability Im-
provement of Switching Software

An N-version system(NVS) is composed of more than one
functionally equivalent programs. It is based on the as-
sumption that independent programming efforts will greatly
reduce the probability of producing identical software faults
in two or more versions and that each version would fail in
a statistically independent manner [13.

Common mode failures(CMF) occur when more than
one version fail simultaneously on the same input producing
identical incorrect output. Reliability of an NVS is reduced
substantially when CMF exists [7]. Several approaches have
been suggested to develop versions that would fail indepen-
dently [10, 2, 111. However their effectiveness in prevent-
ing CMF during the development phase has not been ver-
ified, and according to independent experiments, common
mode failures are known to exist regardless of approaches
taken [8, 121.

In this paper, we propose to use the weakest precondition
analysis to detect inputs causing CMFs. The weakest pre-
condition analysis is a well known technique used to prove
the correctness of programs [6, 91. It is a formal backward
analysis method and the effectiveness of analysis results
does not depend upon the domain knowledge of the analyst.
The overall process of our approach can be divided into a
number of phases. First, a postcondition representing pro-
gram failures is specified in terms of output variables. Then
each version is analyzed backward, and the weakest precon-
ditions are derived. The derived weakest preconditions are
validated with respect to the specification and conditions
for CMF are identified. Finally, the identified conditions
causing CMF can be used in testing and debugging. Fea-
sibility of the proposed method was verified by conducting
an experiment with realistic example programs. In our ex-

0-8186-8271-X/97 $10.00 0 1997 IEEE
272

I Reliability I
1

0.9999
0.9998
0.9997
0.9996
0.9995
0.9994
0.9993
0.9992
0.9991

I 1 2 3 4 5 6 7 8
Number of Versions I

Figure 1. Expected Reliability V.S. Actual Re-
liability of N-Version Systems

periments, 13 out of 18 fault pairs known to cause CMF in
example programs were detected.

In Section 2, the effects of CMF for an NVS reliability
and existing NVS development methods are examined. In
Section 3, we present a detailed description of our proposed
method. An experimental application of proposed method
to existing programs is described in Section 4. Conclusions
are given in Section 5.

2. Research Backgrounds

A general model for the probability PN that a majority
of the components fail in a system of N versions (N =
1 , 3 , 5 , . . .) is

where m = (N + 1)/2 and e(z) is the probability that a
program, randomly chosen out of a population of versions,
will fail on a particular input z [7 ,8] . If the versions were to
fail independently, that is, O(z) does not vary with different
inputs, Eq. (1) yields an estimator of PN given by

where l j is an estimate of the failure probability of a sin-
gle version. Difference between Eq. (1) and Eq. (2), re-
liability degradation due to CMF, can be seen from the
experimental data of [121. The average failure rate of 27
versions used for the experiment was 0.0007 [12]. Substi-
tuting $ with 0.0007 and 1 with a number, the probability
that 1 versions fail simultaneously when the independent
failure assumption holds(+xpected) can be derived. Fig. 1

shows the expected reliability(l - F ~ ~ ~ ~ ~ ~ ~ d) and the ob-
served reliability(l-FObserved) of N-version systems. It
is clear from Fig. 1 that the actual N-version systems have
higher failure rates than when the independent failure as-
sumption holds. Furthermore, the effects of CMF are greater
when the NVS is composed of relatively small number of
versions(Fig. 1). Considering that it is extremely rare in
an industrial application of NVP to develop more than 3
versions due to high development cost, there must be some
means to reduce the effects of CMF to further improve the
reliability of N-version systems.

Several approaches to the development of NVS have been
proposed to maximize the diversity among versions to re-
duce the possibility of CMF. The diversity encompasses dif-
ferent algorithms, programming languages, environments,
implementation techniques and tools [2]. Kelly proposed
to use more than one specification derived from the same
set of user requirements [IO], and Avizienis proposed to use
different programming languages for each version [2]. Lyu
proposed an NVP development method called "N-version
Software Design Paradigm" which defines strict rules for
independent development of component versions [181.

However, whether proposed NVP development methods
were successful in effectively avoiding CMF is in question;
independently performed experiments showed that CMF do
occur despite all these efforts [12, 8, 131.

3. Detecting Common Mode Failures

A version of an NVS can fail at the same time as other
versions in two different ways. It can fail with the same
outputs as other versions or with different outputs. The
versions failing with different outputs are less harmful than
versions failing with the same outputs because the different
results produced by failing versions can be detected and
some actions can be taken to decrease the effect of incorrect
outputs. In this paper, we concentrate on CMF caused by
versions failing with the same incorrect output.

Testing has been the primary mean to detect CMF in
previous studies related to NVP. For example, a gold pro-
gram, which had been subject to extensive analysis, was
used as an oracle to test CMF in the experiment of [12].
The output of each version was compared to that of the gold
program and the mismatch was judged to be a failure of a
tested version. But in later studies using the same program
as [12], additional failures were identified [15]. This in-
completeness is inherent in testing because it is impractical
to test a program for all possible inputs. Testing is one of
forward approaches in which subsets of inputs are chosen
and then output spaces that can be generated by these inputs
are verified against some kind of oracles.

Forward approaches like testing may not be effective
for the CMF detection. Fig. 2 represents a general model

273

Output Space Input Space Output Space Input Space

(a)forward analysis (b)backward analysis

Figure 2. Detection of Common Mode Failures

of the forward analysis to detect CMF. In Fig. 2 (a), three
versions(v1, v2, w3) are analyzed for a possibility of CMF.
If each version is analyzed for a subset of input space 12,
and the shaded areas are the cases where incorrect output
values occur, then v 1 and v 2 have CMF. On the other hand,
v 1 and w 3 do not have CMF as far as I 2 is concerned. In the
forward analysis, determining which subsets of input spaces
to analyze is the most important and difficult step. Subsets of
the input space to be examined are determined mainly by the
analyst’s experience and domain knowledge. Operational
profiles from a real environment in which the system will
operate can be used also, Inappropriate choices of the input
subsets may result in incomplete analysis. Suppose that in
Fig, 2 (a), input space subsets I 1 and I 2 may cause CMF
but I 1 is not selected for analysis. Then analysis results
may be incomplete, that is, v2 and v3 may have CMF for
input space subset I 1 but only CMF between v 1 and w2 are
detected.

Detection of CMF can be done backward, where failure
conditions are determined first and analyzed backward to see
if there exist some input space subsets that result in program
states satisfying failure conditions. In Fig. 2 (b), as the result
of backward analysis for the given failure condition, v l and
w2 have common failure modes, whereas v3 has not with
other versions for the given failure condition.

As in the case of forward analysis, determining which
subsets of output space to analyze is a crucial step for
an effective analysis, and it is not possible to analyze the
given programs against every possible failure. However for
safety-critical systems, where NVS is frequently employed,
results of hazard analysis can be used as the primary tar-
get of backward analysis. Backward analysis can increase
confidence in the system safety by showing that there is no
CMF leading to a mishap [171.

Software fault tree analysis is a well known backward
analysis method [14]. In software fault tree analysis, a
program state is analyzed using Boolean logic. The root
of a fault tree is the event to be analyzed. Children of
the root are the causes of the root event. Two events are

conjoined(Boo1ean AND) if both are required to cause the
parent event. They are disjoined(Boo1ean OR) if any one
of the event can cause their parent event. Those events
perceived to be capable of causing the top-most fault are
themselves broken down into their component causes, and
this process is repeated until the basic events are reached or
it is decided that the events are unanalyzable [14].

The weakest precondition concepts are similar to the soft-
ware fault tree analysis in that from output spaces, input
spaces that can result in given output spaces are analyzed.
In fact, software fault tree analysis is a graphical represen-
tation of the weakest precondition concepts [16] and the
weakest precondition analysis is more formal than the soft-
ware fault tree analysis. In software fault tree analysis, the
analyst can arbitrarily declare an event as infeasible and stop
further analysis.

The weakest precondition of a program for a given pred-
icate(postcondition) is a predicate representing program
states which guarantees the program termination and will
result in program states that satisfy the postcondition after
the program terminates [6]. For example, if the statement is
“ i fx 2 y then z:=x else z:=y“, and the postcondition is “z=y“
then wp(S , R) = y 2 x. With wp(S, R) = y 2 x we can
be sure that the execution of the ifstatement will terminate
resulting in a program state satisfying “z=y” whenever the
execution begins from a program state satisfying y 2 2. In
this paper, we will use the weakest precondition analysis to
detect CMF.

A version fails when an input results in a specific output
that does not comply to the specification. Let PI be a predi-
cate representing the input space, PO a predicate represent-
ing the output space, PEI and PEO predicates representing
subsets of input and output spaces related to the failure, re-
spectively. Then failures can be modeled as PEI A PEO.
However a predicate of the form PEI A PEO cannot be used
for analysis of programs in general; it requires the complete
information about subsets of input space that can result in
failures. It is not possible to decide P E 1 completely in gen-
eral. In this paper, we will specify a postcondition in the

274

then compared to each other in step 3. The conjunction of
all P E I , ~ or some of them represents input conditions that
result in CMF of conjoined versions. In step 4, the identified
CMF conditions, AV, PEI,?, are utilized for further testing
and debugging.

Fig. 3 graphically shows these 5 steps for version l(Vl),
version ~ (VZ) , and the postcondition PEO. As step 2 is
completed, the weakest preconditions W P , and W P , are
derived. Then PEI,, and PE1,2 are identified not to comply
to the specification. PEI,, A PEI,~ is the input space that
incorrectly results in PEO simultaneously.

CO"On

'EI.1 Made PEI, 2

output space

Figure 3. Postcondition, Preconditions and
Common Mode Failure

step 1.

step 2.

Compose PEO from system hazard analy-
sis information
For each version V; do
step 2.1 Compute the weakest precondition
WP%
step 2.2 Compare WP; to the specification
and identify PEI,;
Check if Avi P E I , ~ is not null
If Avi PEI,; is not null
give this subset of input space the highest
priority in testing and debugging

step 3.
step 4.

Figure 4. Steps of Applying the Weakest Pre-
condition Analysis

Fig. 4 shows the steps of the proposed method. In step
1, a postcondition PEO is specified. This step can be done
according to several guidelines. The postcondition can be
specified based on the analyst's insights or experiences. It
can be specified utilizing the results from system hazard
analysis also. As previously mentioned, the postcondition
consists of conditions about output variables. In step 2,
each version is analyzed for CMF with the postcondition
specified in step 1. Step 2 can be divided into two minor
steps. First, the version under consideration(T/,) is deployed
for the weakest precondition analysis with the given post-
condition. As we compose the postcondition out of output
variables, each derived weakest precondition(W Pi) should
be compared to the specification to see if there exist some
parts of the weakest precondition that do not comply to the
specification. The identified mismatched parts(PE1,i) are

4. A Case Study:Launch Interceptor Program

The Launch Interceptor Program(L1P) is a simple but
realistic anti-missile software that was used in several ex-
periments related to NVP technique [12,151. LIPis required
to check launch interceptor conditions(L1C) for given data
representing radar reflections. Twenty seven versions were
developed by independent programmers. The existence of
CMF in 27 versions was verified in [121 and 45 faults were
identified in [SI. Most of the failures were caused by a sin-
gle fault, but some of them by more than 2 faults. Then,
each fault pair was statistically tested if they cause CMF.
Ninety three fault pairs out of 945 fault pairs were iden-
tified to cause CMF and 67 fault pairs were suspected to
cause CMF but the number of test samples was not large
enough to be statistically valid. Identified faults could be
classified as logical faults and faults related to the preci-
sion of arithmetic operations [5] . The arithmetic operations
performed in a finite precision give rise to consistent com-
parison problems [4]. The weakest precondition analysis,
a logical analysis method, is inadequate to analyze these
finite precision-related faults. We excluded these faults in
this analysis by assuming that all numerical operations are
carried out with a mathematical precision.

Among 27 versions and 15 LIC's, LIC 3 of versions 3,
8, 20, 25 were analyzed in this paper. These versions were
chosen because they have a relatively small number of faults
related to the finiteness of numerical operations. LIC 3 reads
as follows [12](Fig. 5).

"3) There exists at least one set of three consec-
utive data points which form an angle such that:
angle < (T - E) or angle > (T + E) . The sec-
ond of the three consecutive points is always the
vertex of the angle. If either the first point or the
last point(or both) coincides with the vertex, the
angle is undefined and the LIC is not satisfied by
those three points. (0 5 E < T) "

Faults of analyzed versions identified in [5] are listed in
table 1.

275

I FAULT I LIC# I INPUTCONDITION I FAULT DESCRIPTION

I 3.1 I LIC 3 I Three collinear points (subtended I Path that handles collinear points always gives T as subtended angle - I I angle zero) I misses case in which angle is zero.
3.4 I LIC 3.10 I Three almost collinear points I Inaccurate algorithm to determine collinearity; points treated as collinear

I when just nearly collinear.
I LIC 3,10 1 Three collinear points (subtended I Similar to fault 3.1. 8.1 I angle zero)

8.2 I LIC 3,10 I Three collinear points (subtended I Similar to fault 8.1 but on special path to handle horizontal and vertical I angle zero) I lines
20.1 I LIC 3.10 I Three collinear points (subtended 1 Similar to fault 3.1.

I angle zero)
20.2 I LIC 3,lO 1 Three collinear or almost collinear I In applying formula tan = sqrt(1-sqr(cos))/cos, roundoff error causes

I points (subtended angle zero) I negative argument to sqrt
25.1 I LIC 3,10 I Three collinear points (subtended I Missing case in computing angle formed by three points when point 1

I angle zero) I lies between points 2 and 3 and is closer to point 2 than to point3.
25.2 I LIC 3,lO I Three collinear points (subtended I Similar to fault 25.1 different path

Table 1. Faults of Analyzed Versions

4 -

,
Y

Figure 5. Requirements of LIC3

To apply the weakest precondition analysis to LIP ver-
sions, we modified original programs in two ways. Origi-
nal programs use realcompare (x, y) to allow tolerance
when comparing two real numbers with finite precision.
Since we assumed a mathematical precision for numerical
operations, comparison operations allowing tolerance is not
needed. For example,

. . .
lic3cond :=

(realcompare(alpha,pi-repsilon)=lt)
or
(realcompare(alpha,pi+repsilon)=gt);

was changed into

. . .
lic3cond := (alpha<pi-repsilon) or

(alpha>pi+repsilon)
. . .

Second, we eliminated loops over input arrays. LIP ver-
sions are required to check each LIC over all possible input

subsequences. LIP versions do this by checking each LIC
for an input set and repeat the checking process after chang-
ing the input set by modifying indices to input array. For
example,

repeat
j := i + 1;
k := j + 1;
. . .
if equalpoints (i, k)

then . . . ;
. . .

i := i + 1;
until (i >= maxloop) or lic3cond ;

checks whether inputarray[i] is the same point as
inputarray[k] varying indices of inputarray to maxloop.
We changed this code into

. . .
if equalpoints (xl,yl,x3,y3)

then . . . ;
. . .

eliminating the loop, and modifying variables appropriately.
The listings of the modified program against which we ap-
plied our method can be found in the Appendix.

In this paper, we used LIC3=False as the postcondition.
As it is not a complete specification of failures but a con-
dition about the output variables, the weakest preconditions
attained through the analysis should be examined against
the LIC3 specification.

Let (x i , y i) denotes coordinates of ith point and A , B
and C denote the distances between two points as shown
in Fig. 6. Then, version 3 fails with output False when
(~ l # x3 V y l # y3) A (A + C = B V B + C = A) .
We applied the weakest precondition analysis to version 8

276

also and identified subsets of the input space that incorrectly
result in L I C 3 = False for version 8.

0 When (x l # x3Ayl = y2Ay2 = y3A(-(sl < 22 <
x3)Vi(s3 < 22 < xl)))V(yl # y3Azl = x2Ax2 =
23 A (~ (y l < y2 < y3) V l (y 3 < y2 < y l))) . When
three points form a horizontal or vertical line and the
second point does not lie in the middle of other points,
the angle formed by three point is 0. The output should
be True.

0 When (2 1 # 23 V y l # y3) A (21 # s 2 A 22 #
23) A yl--y2 = y3--y2 Two lines have the same slopes
resulting in the angle of size 0, thus the output should
be True. It is an incorrect output.

From these results it can be found that version 3 incor-
rectly sets its output as False when three points are on a
line and the distance between (zl, y l) and (23, y3) is not
the longest of all distances and version 8 incorrectly sets its
output as False when three points are on a line and (22, y2)
is not in the middle of three points. These cases represent
the same condition and versions 3 and 8 have CMF.

We analyzed other two versions also and identified con-
ditions that result in CMF for each version pair. Version
20 had the same CMF as versions 3 and 8. It produced
the incorrect False output when the angle formed by three
points was zero. Version 25 produced the incorrect False
output when the angle formed by three points were zero and
A is equal to or longer than B. This condition is a subset of
CMF condition between other three versions.

We located the faults causing specified failures using
identified incorrect input conditions as explained in the step
4 in Fig. 4. We performed the program reading with an
input satisfying identified incorrect input conditions. Other
testing and debugging methods could be also used, but for
this example, program reading was sufficient. Fault 3.1 is
related to lines 20 and 21 of version 3. The condition part
of the i f statement should be refined for this version to be
correct. Fault 8.1 is related to line 38 of version 8. The angle
defined should be zero rather than n. Fault 8.2 is similar to
fault 8.1 but related to line 24. Line 24 handles special cases
of three points forming a horizontal or vertical line. These

x l - a 2 a3-a2'

0

1 1 1
w - w

x2 x3 xl
x2 xl x3

x2 xl x3
x3 xl x2

(x3 I Y3)

Y2 Y2 YlY3

0 Y3 YlY3 Yl

4t Yl Y3 Y2 Y2

Figure 7. Three points form a horizontal or a
vertical line

results are summarized in table 1. We identified faults 3.1,
8.1, 8.2,20.1,25.1 and 25.2 of table 1.

Table 2 compares our analysis results with the previously
identified fault pairs causing CMF. There are 24 fault pairs
that are capable of causing CMF in 4 versions. Among
them, 6 fault pairs were identified not to cause CMF in the
previous analysis and also in our analysis. We identified 13
of the rest of the fault pairs to cause CMF, and 5 fault pairs
not found by our analysis contains faults related to finite
precision numerical operations.

5. Conclusions

Several approaches for NVS development have been pro-
posed to prevent CMF and thus enhancing the overall reli-
ability, but they failed to prevent CMF completely. After
all, it is unlikely that a single method can prevent CMF
completely.

In this paper, we proposed to detect CMFs related to the
more important properties than to try to remove all possible
CMFs in the system using the weakest precondition analysis.
Beginning with a predicate described in terms of output

3.1
3.4
8.1
8.2
20.1
20.2
25.1

v .
v .
v .
m .
v .

v v -
m m -
v v v m -

.
I 3.1 3.4 8.1 8.2 20.1 20.2 25.1 25.2

(v: causing CMF and found by analysis, m:causing CMF but not found,
-: not applicable, .: not causing CMF and related to the precision of
numerical operations

Table 2. Summary of Analysis Results
Figure 6. Angle formed by three points

277

variables, we identified input regions that could result in
outputs satisfying the given predicate through the weakest
precondition analysis. Each identified input region was then
compared to the specification and subsets of input spaces that
cause CMF were identified. Our experimental application of
the proposed method to a existing realistic example program,
the Launch Interceptor Program, showed its effectiveness in
detecting CMFs related to logical flaws in the program.

As the development cost is a prohibiting factor for a
wider application of NVP, the cost of applying the pro-
posed method might be problematic; the cost of applying
our method is inevitable to some extent. The diversity re-
quired for each version of the NVP implies that the actual
processes of the proposed analysis method do not have much
in common, resulting in a high cost. However, this cost can
be reduced. The proposed method is a backward approach,
and it can be applied according to the importance of the fail-
ure modes. When the cost is important, it can be applied to
a limited number of properties of the system. For example,
hazard states of safety-critical systems are the primary tar-
get of CMF analysis. The labor-intensive part of the overall
process can be minimized if an interactive tool is utilized
for some simple analysis rules.

A proper specification of a postcondition is another ob-
stacle for a effective application of the proposed method.
The postcondition is a condition about outputs and an im-
proper postcondition might lead to an ineffective analysis
results. For safety critical systems, the results of system the
hazard analysis might be used as a basis for specifying the
postcondition and formalization of transforming results of
system hazard analysis to postconditions might be helpful
in applying the proposed method.

References

[11 A. Avizienis and L. Chen, “On the Implementation of
N-Version Programming for Software Fault Tolerance
During Execution,” Proc. IEEE COMPSAC ’77, pp.

[2] A. Avizienis, M. R. Lyu, and W. Schutz, “In Search of
Effective Diversity: A Six-Language Study of Fault-
Tolerant Flight Control Software,” 18th International
Symposium on Fault Tolerant Computing, 1988.

[3] P. Bishop, “software Fault Tolerance by Design Diver-
sity,’’ In Sofmare Fault Tolerance, Edited by M. R.
Lyu, pp. 21 1-229, John Wiley & Sons Ltd, 1995.

[4] S. S. Brilliant, J. C. Knight, and N. G. Leveson, “The
Consistent Comparison Problem in N-version Soft-
ware,” IEEE Trans. SofnYare Eng., vol. 15, pp. 1481-
1485, Nov. 1989.

[5] S. S. Brilliant, J. C. Knight and N. G. Leveson, “Anal-
ysis of Faults in an N-Version Software Experiment,”

149-155, NOV. 1977.

lEEE Trans. Software Eng., vol. 16, no. 2, pp. 238-247,
Feb. 1990.

[6] E. W. Dijkstra, “Guarded Commands, Nondetermi-
nacy and Formal Derivation of Programs,” CACM,
vol. 18, no. 8, pp. 453-457, Aug. 1975.

[7] D. E. Eckhardt and L. D. Lee, “A Theoretical Ba-
sis for the Analysis of Redundant Software subject to
Coincident Errors,” NASA Langley Research Center,
Hampton, VA, Rep. NASA TM 86369, Jan. 1985

[SI D. E. Eckhardt , A. K. Caglayan, J. C. Knight, L. D.
Lee, D. F. McAllister, M. A. Vouk and J. P.J. Kelly, “An
Experimental Evaluation of Software Redundancy as a
Strategy for Improving Reliability,” IEEE Trans. Soft-
ware Eng., vol. 17, pp. 692-702, July 1991.

[9] D. Gries, “The Science of Programming,” Springer-
Verlag New York Inc., 1981

[101 J. P. J. Kelly and A. Avizienis, “A Specification Ori-
ented Multi-Version Software Development,” In Di-
gest of 13th FTCS, pp. 120-126, Jun. 1983.

[111 J. P. J. Kelly and S. C. Murphy, “Achieving Depend-
ability Throughout the Development Process: A Dis-
tributed Software Experiment,” IEEE Trans. Sofmare
Eng., vol. 16, no. 2,pp. 153-165, 1990.

[12] J. C. Knight and N. G. Leveson, “An Experimental
Evaluation of the Assumption of Independence in Mul-
tiversion Programming,” IEEE Trans. Software Eng.,
vol. 12, No. 1, pp. 96-109, Jan. 1986

[131 J. C. Knight and N. G. Leveson, “A Reply to the Crit-
icisms of the Knight & Leveson Experiment,” ACM
SIGSOFT Software Engineering Notes, vol. 15, no. 1,
pp. 24-35, Jan. 1990.

[14] N. G. Leveson, P. R. Harvey, “Software Fault Tree
Analysis,” Journal of Systems and Software, Vol. 3,

151 N. G. Leveson, S. S. Cha, J. C. Knight and T. J.
Shimeall, “The Use of Self Checks and Voting in Soft-
ware Error Detection: An Empirical Study,” IEEE
Trans. SoforJare Eng., vol. 16, no. 4, pp. 432-443, Apr.
1990.

161 N. G. Leveson, S. D. Cha and T. J. Shimeall “Safety
Verification of Ada Programs using Software Fault
Trees,” IEEE Software, Vol. 8, No. 4, July 199 1 .

171 N. G. Leveson, Safeware : System Safety and Com-
puters, Addison-Wesley Pub. Co., 1995.

181 M. R. Lyu and A. Avizienis, “Assuring Design Diver-
sity in N-Version Software: A Design Paradigm for
N-Version Programming,” pp. 197-218. In J.F. Meyer
and R. D. Schlichting, editors, Dependable Computing
for Critical Applications 2, Springer-Verlag, 1992.

NO. 2, pp. 173-181, 1983.

278

A. Modified Program Listings

The modified program of version 3 follows.

1

4
5

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

function lic3: boolean;

begin
. . . .

lic3 := false;

if ((xl=x2 and xl=y2) or (x2=x3 and y2=y3))
then lic3 := false
else begin

if (xl=x3 and yl=y3)
then alpha : = 0
else begin

. . . .

a := pointdistance (xl,yl, x3,y3);
b := pointdistance (xl,yl, x2,y2);
c := pointdistance (x2,y2, x3,y3);
if (a+b=c or a+c=b or b+c=a)
then alpha := pi { * FAULT 3.1 * I
else begin

s := 0.5 * (a + b + c);
r := sqrt (((s-a)*(s-b)*(s-c))/s);
alpha := 2 * arctan (r/(s-a));
end; {else}

end; {else}
if (alpha<pi-epsilon) or (alpha>pi+epsilon) then

lic3 : = true;
end ;

end ;

function pointdistance (xl,yl,x2,y2: real): real;
var xd, yd: real;
begin

xd := ~2 - xl;
yd := y2 - yl;
pointdistance : = sqrt ((xd*xd) + (yd*yd));

end :

The modified program of version 8 looks as follows.

1 function lic310():boolean;
. . .

13 begin
14 found:=false;

19 - if not (((xl=x2) and (yl=y2
20 then begin

. . .
) or ((x2=x3) and (~ 2 = ~ 3

21 if ((xl=x3) and (yl=y3))
22 then testangle:=O.o
2 3
24
25 else
26 begin

else if (((~ 1 ~ x 2) and (x2=x3)) or ((Yl=Y2) and (Y 2 = y 3)))
then testangle:= Pi { * FAULT 8.2 * >

279

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

6 4

if not ((xl=x2) or (x2=~3))
then beg in

slopel:=(yl-y2)/(~1-~2);
slope2:=(y3-~2)/(~3-~2);

end
else begin

slopel:=lll;
slope2:=999

end :

if slopel=slope2
then testangle:=pi { * FAULT 8.1 * }
else
begin

distances(xl,x2,~3,yl,y2,y3,
a,b,c);

asqr: =sqr (a) ;
bsqrcsqr:=sqr(b) + sqr(c);

if asqr=bsqrcsqr
then testangle:=pi/2.0
else
begin

. . .

findangles(xl,x2,~3,yl,y2,y3,

if asqr<bsqrcsqr
then testangle:=arctan(rsina/rcosa)
else testangle:=pi - arctan(rsina/rcosa)

a,b,c,semi,sina,cosa,rsina,rcosa);

end

end :
if (testangle<(pi-epsilon)) or

then found:=true

end

(testangle>(pi+epsilon))

end
. . .

end ;

procedure findangles(xl,x2,x3,yl,y2,y3,a,b,c,sem~,s~na,cosa:real;

begin
var rsina,rcosa:real);

semi:=(a+b+c)/2.0;
sina:=2.0/(b*c) * sqrt(semi*(semi-a)*(semi-b)*(semi-c));
cosa:=sqrt(l.O-sqr(sina));
rsina:=sina* pi/180.0;
rcosa:=cosa* pi/180.0

end ;

280

