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Abstract 

An underlying assumption for N-version programming 
technique is that independently developed versions would 
fail in a statistically independent mannel: Howevel; empir- 
ical studies have demonstrated that common mode failures 
can occur even for independently developed versions, and 
that common mode failures degrade system reliability. 

In this papel; we demonstrate that the weakest precondi- 
tion analysis is effective in determining input spaces leading 
to common mode failures. We applied the weakestprecondi- 
tion to the Launch Interceptor Programs which were used in 
several other experiments related to the N-versionprogram- 
ming technique. We detected 13 out of 18 fault pairs which 
have been known to cause common mode failure. These 
faults were due to logicaljaws in program design. Although 
the weakest precondition analysis may be labor-intensive 
since they are applied manually, our results convincingly 
demonstrate that it is effective for identifying input spaces 
causing common mode failures and further improving the 
reliability of N-version software. 

1. Introduction 

The N-version programming(NVP) is a software fault 
tolerance technique being widely applied to safety-critical 
industrial systems such as the Airbus flight control system, 
railway interlocking system and train control system [ 3 ] .  

*This research is supported in part by ETRI(E1ectronics and Telecom- 
munications Research Institute) project with the name of Reliability Im- 
provement of Switching Software 

An N-version system(NVS) is composed of more than one 
functionally equivalent programs. It is based on the as- 
sumption that independent programming efforts will greatly 
reduce the probability of producing identical software faults 
in two or more versions and that each version would fail in 
a statistically independent manner [ 13. 

Common mode failures(CMF) occur when more than 
one version fail simultaneously on the same input producing 
identical incorrect output. Reliability of an NVS is reduced 
substantially when CMF exists [7]. Several approaches have 
been suggested to develop versions that would fail indepen- 
dently [ 10, 2,  111. However their effectiveness in prevent- 
ing CMF during the development phase has not been ver- 
ified, and according to independent experiments, common 
mode failures are known to exist regardless of approaches 
taken [8, 121. 

In this paper, we propose to use the weakest precondition 
analysis to detect inputs causing CMFs. The weakest pre- 
condition analysis is a well known technique used to prove 
the correctness of programs [6, 91. It is a formal backward 
analysis method and the effectiveness of analysis results 
does not depend upon the domain knowledge of the analyst. 
The overall process of our approach can be divided into a 
number of phases. First, a postcondition representing pro- 
gram failures is specified in terms of output variables. Then 
each version is analyzed backward, and the weakest precon- 
ditions are derived. The derived weakest preconditions are 
validated with respect to the specification and conditions 
for CMF are identified. Finally, the identified conditions 
causing CMF can be used in testing and debugging. Fea- 
sibility of the proposed method was verified by conducting 
an experiment with realistic example programs. In our ex- 
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Figure 1. Expected Reliability V.S. Actual Re- 
liability of N-Version Systems 

periments, 13 out of 18 fault pairs known to cause CMF in 
example programs were detected. 

In Section 2, the effects of CMF for an NVS reliability 
and existing NVS development methods are examined. In 
Section 3, we present a detailed description of our proposed 
method. An experimental application of proposed method 
to existing programs is described in Section 4. Conclusions 
are given in Section 5. 

2. Research Backgrounds 

A general model for the probability PN that a majority 
of the components fail in a system of N versions ( N  = 
1 , 3 , 5 , .  . .) is 

where m = (N + 1)/2 and e(z) is the probability that a 
program, randomly chosen out of a population of versions, 
will fail on a particular input z [7 ,8 ] .  If the versions were to 
fail independently, that is, O(z) does not vary with different 
inputs, Eq. (1) yields an estimator of PN given by 

where l j  is an estimate of the failure probability of a sin- 
gle version. Difference between Eq. (1) and Eq. (2), re- 
liability degradation due to CMF, can be seen from the 
experimental data of [ 121. The average failure rate of 27 
versions used for the experiment was 0.0007 [12]. Substi- 
tuting $ with 0.0007 and 1 with a number, the probability 
that 1 versions fail simultaneously when the independent 
failure assumption holds(+xpected) can be derived. Fig. 1 

shows the expected reliability( l - F ~ ~ ~ ~ ~ ~ ~ d )  and the ob- 
served reliability( l-FObserved) of N-version systems. It 
is clear from Fig. 1 that the actual N-version systems have 
higher failure rates than when the independent failure as- 
sumption holds. Furthermore, the effects of CMF are greater 
when the NVS is composed of relatively small number of 
versions(Fig. 1). Considering that it is extremely rare in 
an industrial application of NVP to develop more than 3 
versions due to high development cost, there must be some 
means to reduce the effects of CMF to further improve the 
reliability of N-version systems. 

Several approaches to the development of NVS have been 
proposed to maximize the diversity among versions to re- 
duce the possibility of CMF. The diversity encompasses dif- 
ferent algorithms, programming languages, environments, 
implementation techniques and tools [2]. Kelly proposed 
to use more than one specification derived from the same 
set of user requirements [IO], and Avizienis proposed to use 
different programming languages for each version [2]. Lyu 
proposed an NVP development method called "N-version 
Software Design Paradigm" which defines strict rules for 
independent development of component versions [ 181. 

However, whether proposed NVP development methods 
were successful in effectively avoiding CMF is in question; 
independently performed experiments showed that CMF do 
occur despite all these efforts [12, 8, 131. 

3. Detecting Common Mode Failures 

A version of an NVS can fail at the same time as other 
versions in two different ways. It can fail with the same 
outputs as other versions or with different outputs. The 
versions failing with different outputs are less harmful than 
versions failing with the same outputs because the different 
results produced by failing versions can be detected and 
some actions can be taken to decrease the effect of incorrect 
outputs. In this paper, we concentrate on CMF caused by 
versions failing with the same incorrect output. 

Testing has been the primary mean to detect CMF in 
previous studies related to NVP. For example, a gold pro- 
gram, which had been subject to extensive analysis, was 
used as an oracle to test CMF in the experiment of [12]. 
The output of each version was compared to that of the gold 
program and the mismatch was judged to be a failure of a 
tested version. But in later studies using the same program 
as [12], additional failures were identified [15]. This in- 
completeness is inherent in testing because it is impractical 
to test a program for all possible inputs. Testing is one of 
forward approaches in which subsets of inputs are chosen 
and then output spaces that can be generated by these inputs 
are verified against some kind of oracles. 

Forward approaches like testing may not be effective 
for the CMF detection. Fig. 2 represents a general model 
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Figure 2. Detection of Common Mode Failures 

of the forward analysis to detect CMF. In Fig. 2 (a), three 
versions(v1, v2, w3) are analyzed for a possibility of CMF. 
If each version is analyzed for a subset of input space 12, 
and the shaded areas are the cases where incorrect output 
values occur, then v 1 and v 2  have CMF. On the other hand, 
v 1 and w 3  do not have CMF as far as I 2  is concerned. In the 
forward analysis, determining which subsets of input spaces 
to analyze is the most important and difficult step. Subsets of 
the input space to be examined are determined mainly by the 
analyst’s experience and domain knowledge. Operational 
profiles from a real environment in which the system will 
operate can be used also, Inappropriate choices of the input 
subsets may result in incomplete analysis. Suppose that in 
Fig, 2 (a), input space subsets I 1  and I 2  may cause CMF 
but I 1  is not selected for analysis. Then analysis results 
may be incomplete, that is, v2 and v3 may have CMF for 
input space subset I 1  but only CMF between v 1 and w2 are 
detected. 

Detection of CMF can be done backward, where failure 
conditions are determined first and analyzed backward to see 
if there exist some input space subsets that result in program 
states satisfying failure conditions. In Fig. 2 (b), as the result 
of backward analysis for the given failure condition, v l  and 
w2 have common failure modes, whereas v3 has not with 
other versions for the given failure condition. 

As in the case of forward analysis, determining which 
subsets of output space to analyze is a crucial step for 
an effective analysis, and it is not possible to analyze the 
given programs against every possible failure. However for 
safety-critical systems, where NVS is frequently employed, 
results of hazard analysis can be used as the primary tar- 
get of backward analysis. Backward analysis can increase 
confidence in the system safety by showing that there is no 
CMF leading to a mishap [ 171. 

Software fault tree analysis is a well known backward 
analysis method [14]. In software fault tree analysis, a 
program state is analyzed using Boolean logic. The root 
of a fault tree is the event to be analyzed. Children of 
the root are the causes of the root event. Two events are 

conjoined(Boo1ean AND) if both are required to cause the 
parent event. They are disjoined(Boo1ean OR) if any one 
of the event can cause their parent event. Those events 
perceived to be capable of causing the top-most fault are 
themselves broken down into their component causes, and 
this process is repeated until the basic events are reached or 
it is decided that the events are unanalyzable [14]. 

The weakest precondition concepts are similar to the soft- 
ware fault tree analysis in that from output spaces, input 
spaces that can result in given output spaces are analyzed. 
In fact, software fault tree analysis is a graphical represen- 
tation of the weakest precondition concepts [16] and the 
weakest precondition analysis is more formal than the soft- 
ware fault tree analysis. In software fault tree analysis, the 
analyst can arbitrarily declare an event as infeasible and stop 
further analysis. 

The weakest precondition of a program for a given pred- 
icate(postcondition) is a predicate representing program 
states which guarantees the program termination and will 
result in program states that satisfy the postcondition after 
the program terminates [6]. For example, if the statement is 
“ i fx  2 y then z:=x else z:=y“, and the postcondition is “z=y“ 
then wp(S ,  R)  = y 2 x. With wp(S,  R )  = y 2 x we can 
be sure that the execution of the ifstatement will terminate 
resulting in a program state satisfying “z=y” whenever the 
execution begins from a program state satisfying y 2 2.  In 
this paper, we will use the weakest precondition analysis to 
detect CMF. 

A version fails when an input results in a specific output 
that does not comply to the specification. Let PI be a predi- 
cate representing the input space, PO a predicate represent- 
ing the output space, PEI and PEO predicates representing 
subsets of input and output spaces related to the failure, re- 
spectively. Then failures can be modeled as PEI A PEO. 
However a predicate of the form PEI A PEO cannot be used 
for analysis of programs in general; it requires the complete 
information about subsets of input space that can result in 
failures. It is not possible to decide P E 1  completely in gen- 
eral. In this paper, we will specify a postcondition in the 
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then compared to each other in step 3. The conjunction of 
all P E I , ~  or some of them represents input conditions that 
result in CMF of conjoined versions. In step 4, the identified 
CMF conditions, AV, PEI,?, are utilized for further testing 
and debugging. 

Fig. 3 graphically shows these 5 steps for version l(Vl), 
version ~ (VZ) ,  and the postcondition PEO. As step 2 is 
completed, the weakest preconditions W P ,  and W P ,  are 
derived. Then PEI,, and PE1,2 are identified not to comply 
to the specification. PEI,, A PEI,~ is the input space that 
incorrectly results in PEO simultaneously. 

CO"On 

'EI.1 Made PEI, 2 

output space 

Figure 3. Postcondition, Preconditions and 
Common Mode Failure 

step 1. 

step 2. 

Compose PEO from system hazard analy- 
sis information 
For each version V; do 
step 2.1 Compute the weakest precondition 
WP% 
step 2.2 Compare WP; to the specification 
and identify PEI,; 
Check if Avi P E I , ~  is not null 
If Avi PEI,; is not null 
give this subset of input space the highest 
priority in testing and debugging 

step 3. 
step 4. 

Figure 4. Steps of Applying the Weakest Pre- 
condition Analysis 

Fig. 4 shows the steps of the proposed method. In step 
1, a postcondition PEO is specified. This step can be done 
according to several guidelines. The postcondition can be 
specified based on the analyst's insights or experiences. It 
can be specified utilizing the results from system hazard 
analysis also. As previously mentioned, the postcondition 
consists of conditions about output variables. In step 2, 
each version is analyzed for CMF with the postcondition 
specified in step 1. Step 2 can be divided into two minor 
steps. First, the version under consideration(T/,) is deployed 
for the weakest precondition analysis with the given post- 
condition. As we compose the postcondition out of output 
variables, each derived weakest precondition( W Pi) should 
be compared to the specification to see if there exist some 
parts of the weakest precondition that do not comply to the 
specification. The identified mismatched parts(PE1,i) are 

4. A Case Study:Launch Interceptor Program 

The Launch Interceptor Program(L1P) is a simple but 
realistic anti-missile software that was used in several ex- 
periments related to NVP technique [ 12,151. LIPis required 
to check launch interceptor conditions(L1C) for given data 
representing radar reflections. Twenty seven versions were 
developed by independent programmers. The existence of 
CMF in 27 versions was verified in [ 121 and 45 faults were 
identified in [SI. Most of the failures were caused by a sin- 
gle fault, but some of them by more than 2 faults. Then, 
each fault pair was statistically tested if they cause CMF. 
Ninety three fault pairs out of 945 fault pairs were iden- 
tified to cause CMF and 67 fault pairs were suspected to 
cause CMF but the number of test samples was not large 
enough to be statistically valid. Identified faults could be 
classified as logical faults and faults related to the preci- 
sion of arithmetic operations [ 5 ] .  The arithmetic operations 
performed in a finite precision give rise to consistent com- 
parison problems [4]. The weakest precondition analysis, 
a logical analysis method, is inadequate to analyze these 
finite precision-related faults. We excluded these faults in 
this analysis by assuming that all numerical operations are 
carried out with a mathematical precision. 

Among 27 versions and 15 LIC's, LIC 3 of versions 3, 
8, 20, 25 were analyzed in this paper. These versions were 
chosen because they have a relatively small number of faults 
related to the finiteness of numerical operations. LIC 3 reads 
as follows [ 12](Fig. 5). 

"3) There exists at least one set of three consec- 
utive data points which form an angle such that: 
angle < (T  - E )  or angle > (T + E ) .  The sec- 
ond of the three consecutive points is always the 
vertex of the angle. If either the first point or the 
last point(or both) coincides with the vertex, the 
angle is undefined and the LIC is not satisfied by 
those three points. (0 5 E < T ) "  

Faults of analyzed versions identified in [5] are listed in 
table 1. 
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I FAULT I LIC# I INPUTCONDITION I FAULT DESCRIPTION 

I 3.1 I LIC 3 I Three collinear points (subtended I Path that handles collinear points always gives T as subtended angle - I I angle zero) I misses case in which angle is zero. 
3.4 I LIC 3.10 I Three almost collinear points I Inaccurate algorithm to determine collinearity; points treated as collinear 

I when just nearly collinear. 
I LIC 3,10 1 Three collinear points (subtended I Similar to fault 3.1. 8.1 I angle zero) 

8.2 I LIC 3,10 I Three collinear points (subtended I Similar to fault 8.1 but on special path to handle horizontal and vertical I angle zero) I lines 
20.1 I LIC 3.10 I Three collinear points (subtended 1 Similar to fault 3.1. 

I angle zero) 
20.2 I LIC 3,lO 1 Three collinear or almost collinear I In applying formula tan = sqrt(1-sqr(cos))/cos, roundoff error causes 

I points (subtended angle zero) I negative argument to sqrt 
25.1 I LIC 3,10 I Three collinear points (subtended I Missing case in computing angle formed by three points when point 1 

I angle zero) I lies between points 2 and 3 and is closer to point 2 than to point3. 
25.2 I LIC 3,lO I Three collinear points (subtended I Similar to fault 25.1 different path 

Table 1. Faults of Analyzed Versions 

4 -  

, 
Y 

Figure 5. Requirements of LIC3 

To apply the weakest precondition analysis to LIP ver- 
sions, we modified original programs in two ways. Origi- 
nal programs use realcompare (x, y )  to allow tolerance 
when comparing two real numbers with finite precision. 
Since we assumed a mathematical precision for numerical 
operations, comparison operations allowing tolerance is not 
needed. For example, 

. . .  
lic3cond := 

(realcompare(alpha,pi-repsilon)=lt) 
or 
(realcompare(alpha,pi+repsilon)=gt); 

was changed into 

. . .  
lic3cond :=  (alpha<pi-repsilon) or 

(alpha>pi+repsilon) 
. . .  

Second, we eliminated loops over input arrays. LIP ver- 
sions are required to check each LIC over all possible input 

subsequences. LIP versions do this by checking each LIC 
for an input set and repeat the checking process after chang- 
ing the input set by modifying indices to input array. For 
example, 

repeat 
j :=  i + 1; 
k :=  j + 1; 
. . .  
if equalpoints (i, k) 

then . . . ; 
. . .  

i := i + 1; 
until (i >= maxloop) or lic3cond ; 

checks whether inputarray[i] is the same point as 
inputarray[k] varying indices of inputarray to maxloop. 
We changed this code into 

. . .  
if equalpoints (xl,yl,x3,y3) 

then . . . ; 
. . .  

eliminating the loop, and modifying variables appropriately. 
The listings of the modified program against which we ap- 
plied our method can be found in the Appendix. 

In this paper, we used LIC3=False as the postcondition. 
As it is not a complete specification of failures but a con- 
dition about the output variables, the weakest preconditions 
attained through the analysis should be examined against 
the LIC3 specification. 

Let ( x i ,  y i )  denotes coordinates of ith point and A ,  B 
and C denote the distances between two points as shown 
in Fig. 6. Then, version 3 fails with output False when 
( ~ l  # x3 V y l  # y3) A ( A  + C = B V B + C = A ) .  
We applied the weakest precondition analysis to version 8 
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also and identified subsets of the input space that incorrectly 
result in L I C 3  = False for version 8. 

0 When (x l  # x3Ayl = y2Ay2 = y3A(-(sl  < 22 < 
x3)Vi(s3  < 22 < xl ) ) )V(yl  # y3Azl = x2Ax2 = 
23 A ( ~ ( y l  < y2 < y3) V l ( y 3  < y2 < y l ) ) ) .  When 
three points form a horizontal or vertical line and the 
second point does not lie in the middle of other points, 
the angle formed by three point is 0. The output should 
be True. 

0 When ( 2 1  # 23 V y l  # y3) A (21 # s 2  A 22 # 
23) A yl--y2 = y3--y2 Two lines have the same slopes 
resulting in the angle of size 0, thus the output should 
be True. It is an incorrect output. 

From these results it can be found that version 3 incor- 
rectly sets its output as False when three points are on a 
line and the distance between (zl, y l )  and (23, y3) is not 
the longest of all distances and version 8 incorrectly sets its 
output as False when three points are on a line and (22, y2) 
is not in the middle of three points. These cases represent 
the same condition and versions 3 and 8 have CMF. 

We analyzed other two versions also and identified con- 
ditions that result in CMF for each version pair. Version 
20 had the same CMF as versions 3 and 8. It produced 
the incorrect False output when the angle formed by three 
points was zero. Version 25 produced the incorrect False 
output when the angle formed by three points were zero and 
A is equal to or longer than B. This condition is a subset of 
CMF condition between other three versions. 

We located the faults causing specified failures using 
identified incorrect input conditions as explained in the step 
4 in Fig. 4. We performed the program reading with an 
input satisfying identified incorrect input conditions. Other 
testing and debugging methods could be also used, but for 
this example, program reading was sufficient. Fault 3.1 is 
related to lines 20 and 21 of version 3. The condition part 
of the i f  statement should be refined for this version to be 
correct. Fault 8.1 is related to line 38 of version 8. The angle 
defined should be zero rather than n. Fault 8.2 is similar to 
fault 8.1 but related to line 24. Line 24 handles special cases 
of three points forming a horizontal or vertical line. These 

x l - a 2  a3-a2' 

0 

1 1 1 
w - w 

x2 x3 xl 
x2 xl x3 

x2 xl x3 
x3 xl x2 

(x3 I Y3) 

Y2 Y2 YlY3 

0 Y3 YlY3 Yl 

4t Yl Y3 Y2 Y2 

Figure 7. Three points form a horizontal or a 
vertical line 

results are summarized in table 1. We identified faults 3.1, 
8.1, 8.2,20.1,25.1 and 25.2 of table 1. 

Table 2 compares our analysis results with the previously 
identified fault pairs causing CMF. There are 24 fault pairs 
that are capable of causing CMF in 4 versions. Among 
them, 6 fault pairs were identified not to cause CMF in the 
previous analysis and also in our analysis. We identified 13 
of the rest of the fault pairs to cause CMF, and 5 fault pairs 
not found by our analysis contains faults related to finite 
precision numerical operations. 

5. Conclusions 

Several approaches for NVS development have been pro- 
posed to prevent CMF and thus enhancing the overall reli- 
ability, but they failed to prevent CMF completely. After 
all, it is unlikely that a single method can prevent CMF 
completely. 

In this paper, we proposed to detect CMFs related to the 
more important properties than to try to remove all possible 
CMFs in the system using the weakest precondition analysis. 
Beginning with a predicate described in terms of output 

3.1 
3.4 
8.1 
8.2 
20.1 
20.2 
25.1 

v .  
v .  
v .  
m .  
v .  

v v -  
m m  - 
v v v m -  

. 
I 3.1 3.4 8.1 8.2 20.1 20.2 25.1 25.2 

(v: causing CMF and found by analysis, m:causing CMF but not found, 
-: not applicable, .: not causing CMF and related to the precision of 
numerical operations 

Table 2. Summary of Analysis Results 
Figure 6. Angle formed by three points 
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variables, we identified input regions that could result in 
outputs satisfying the given predicate through the weakest 
precondition analysis. Each identified input region was then 
compared to the specification and subsets of input spaces that 
cause CMF were identified. Our experimental application of 
the proposed method to a existing realistic example program, 
the Launch Interceptor Program, showed its effectiveness in 
detecting CMFs related to logical flaws in the program. 

As the development cost is a prohibiting factor for a 
wider application of NVP, the cost of applying the pro- 
posed method might be problematic; the cost of applying 
our method is inevitable to some extent. The diversity re- 
quired for each version of the NVP implies that the actual 
processes of the proposed analysis method do not have much 
in common, resulting in a high cost. However, this cost can 
be reduced. The proposed method is a backward approach, 
and it can be applied according to the importance of the fail- 
ure modes. When the cost is important, it can be applied to 
a limited number of properties of the system. For example, 
hazard states of safety-critical systems are the primary tar- 
get of CMF analysis. The labor-intensive part of the overall 
process can be minimized if an interactive tool is utilized 
for some simple analysis rules. 

A proper specification of a postcondition is another ob- 
stacle for a effective application of the proposed method. 
The postcondition is a condition about outputs and an im- 
proper postcondition might lead to an ineffective analysis 
results. For safety critical systems, the results of system the 
hazard analysis might be used as a basis for specifying the 
postcondition and formalization of transforming results of 
system hazard analysis to postconditions might be helpful 
in applying the proposed method. 
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A. Modified Program Listings 

The modified program of version 3 follows. 

1 

4 
5 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

function lic3: boolean; 

begin 
. . . .  

lic3 :=  false; 

if ( (xl=x2 and xl=y2) or (x2=x3 and y2=y3) ) 
then lic3 := false 
else begin 

if ( xl=x3 and yl=y3 ) 
then alpha : =  0 
else begin 

. . . .  

a := pointdistance (xl,yl, x3,y3); 
b :=  pointdistance (xl,yl, x2,y2); 
c :=  pointdistance (x2,y2, x3,y3); 
if ( a+b=c or a+c=b or b+c=a ) 
then alpha := pi { *  FAULT 3.1 * I  
else begin 

s :=  0.5 * (a + b + c); 
r :=  sqrt (((s-a)*(s-b)*(s-c))/s); 
alpha :=  2 * arctan (r/(s-a)); 
end; {else} 

end; {else} 
if (alpha<pi-epsilon) or (alpha>pi+epsilon) then 

lic3 : =  true; 
end ; 

end ; 

function pointdistance (xl,yl,x2,y2: real): real; 
var xd, yd: real; 
begin 

xd := ~2 - xl; 
yd := y2 - yl; 
pointdistance : =  sqrt ((xd*xd) + (yd*yd)); 

end : 

The modified program of version 8 looks as follows. 

1 function lic310():boolean; 
. . .  

13 begin 
14 found:=false; 

19 - if not (((xl=x2) and (yl=y2 
20 then begin 

. . .  
) or ( (x2=x3) and ( ~ 2 = ~ 3  

21 if ((xl=x3) and (yl=y3)) 
22 then testangle:=O.o 
2 3  
24 
25 else 
26 begin 

else if ( ( ( ~ 1 ~ x 2 )  and (x2=x3)) or ((Yl=Y2) and ( Y 2 = y 3 ) ) )  
then testangle:= Pi { *  FAULT 8.2 * >  
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27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 

6 4  

if not ((xl=x2) or (x2=~3)) 
then beg in 

slopel:=(yl-y2)/(~1-~2); 
slope2:=(y3-~2)/(~3-~2); 

end 
else begin 

slopel:=lll; 
slope2:=999 

end : 

if slopel=slope2 
then testangle:=pi { *  FAULT 8.1 * }  
else 
begin 

distances(xl,x2,~3,yl,y2,y3, 
a,b,c); 

asqr: =sqr (a) ; 
bsqrcsqr:=sqr(b) + sqr(c); 

if asqr=bsqrcsqr 
then testangle:=pi/2.0 
else 
begin 

. . .  

findangles(xl,x2,~3,yl,y2,y3, 

if asqr<bsqrcsqr 
then testangle:=arctan(rsina/rcosa) 
else testangle:=pi - arctan(rsina/rcosa) 

a,b,c,semi,sina,cosa,rsina,rcosa); 

end 

end : 
if (testangle<(pi-epsilon)) or 

then found:=true 

end 

(testangle>(pi+epsilon) ) 

end 
. . .  

end ; 

procedure findangles(xl,x2,x3,yl,y2,y3,a,b,c,sem~,s~na,cosa:real; 

begin 
var rsina,rcosa:real); 

semi:=(a+b+c)/2.0; 
sina:=2.0/(b*c) * sqrt(semi*(semi-a)*(semi-b)*(semi-c)); 
cosa:=sqrt(l.O-sqr(sina)); 
rsina:=sina* pi/180.0; 
rcosa:=cosa* pi/180.0 

end ; 
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