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Abstract 
Although modern control theories have been 

successfully applied to solve a variety of problems, they 
are often mathematically and physically too specific to 
describe and analyze the qualitative properties of hybrid 
real-time systems. In this paper, we propose the use of 
qualitative formal methods, Compositional Modeling 
Language (CML) and Causal Functional Representation 
Language (CFRL) in particular, to specify continuous 
plant dynamics and the required behavior respectively. 
The system behavior has been simulated by a qualitative 
simulator known as the Device Modeling Environment 
(DME), and verified against the required behavior. 
Using the Electrical Power System (EPS) as an example, 
we demonstrate the effectiveness of our approach by 
illustrating how a simple SCR-style specification can be 
transformed and analyzed. 

1. Introduction 

It is well-known in the software engineering 
community that a significant portion of software failures 
found in operational software can be traced to errors 
made during the requirements engineering phase and 
that it is expensive to correct such errors. Hybrid real- 
time and embedded software development is an area 
where software requirements must be subject to highly 
rigorous and systematic analysis. Examples include 
software used to control nuclear power plants, 
commercial and military jets, satellites, or manufacturing 
plants. A typical closed-loop process-control system 
consist of the following components (Figure 1): plant, 
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controller, actuators, and sensors. 
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Figure 1. The control loop 

When developing embedded software, one must have 
insight into the properties of the controlled physical 
processes and ensure that the behavior of the 
controller(C) satisfies the required system behavior( S,, ) 

when viewed from the perspective of the plant(P) [lo]. 
That is, the truth of the following proposition must be 
demonstrated: 

P ~ C  -sp (1) 

The plant P is usually a non-linear continuous system 
with disturbances and modeled by differential equations. 
The software-based controller(C) is discrete and 
prescriptive, in that it represents a plan for a course of 
action to be taken, and so usually modeled by a state 
machine. Though modern control theories have been 



useful in tackling a variety of real-world problems, they 
are often mathematically and physically too specific to 
model the qualitative system properties, such as the 
discrete description of the digital controller(C) and the 
abstract description of the required system behavior( S,) 

in the requirements phase, since the focus of control 
theory has been on continuous variable systems modeled 
by differential and difference equations. 

Requirements engineering is not a process of simple 
derivation of a controller specification(C) from a given 
set of requirements( s, ) and plant(P) properties. Rather, 

the three models, P, C, and S,, are developed until an 

acceptable combination is reached, with the formal 
justification between all three being shown to hold. A 
consequence of this exploratory, iterative aspect of the 
requirements engineering process is that the three models 
may be progressively developed and modified, leading to 
a need for the formal methods to be not only rigorous, but 
also amenable to proof and re-proof with a minimum of 
effort. In response to the need for developing the 
requirements specification and verification methods for 
the hybrid real-time process-control systems, there have 
been a number of different formal methods, such as 
hybrid automata [4], temporal logic [ 131, process algebra 
[ 5 ] ,  and so on. We believe most of these formalisms are 
too rigid to justify the proposition (1) in the early phase 
of the iterative requirements engineering process. 

This paper concentrates on the qualitative formal 
method to specify the continuous plant and the required 
system behavior in terms of languages, based on the 
qualitative physics, CML and CFRL. The behavior of the 
hybrid real-time system has been simulated by a 
qualitative simulator, DME, and then verified as to 
whether it satisfies the required system behavior. The 
qualitative reasoning approach is selected to help the 
designers specify the desired system properties concisely 
without having to describe unnecessary details. 
Furthermore, qualitative simulation techniques allow for 
behavioral analysis of such abstract specification. In 
order to demonstrate the effectiveness of using a 
qualitative formalism in specifying and analyzing 
requirements of embedded real-time software, we use an 
electrical power system (EPS) to illustrate how SCR-style 
specification can be converted transformed and analyzed. 
We have chosen the SCR-style specification as an 
example because the SCR-style specifications and the 
four-variable method have been used on several 
industrial projects including the Darlington nuclear 
power plant shutdown system (SDS) , a similar SDS 

system in the Wolsong plant, and others[l I] .  
The rest of our paper is organized as follows: Section 

2 briefly describes the Four-variable approach and 
explains the limitations encountered when attempting to 
analyze software requirements specification. Section 3 
provides a brief introduction to the qualitative formalism 
we adapted, explains how to transform a Four-variable 
model into a qualitative model, and how to conduct 
qualitative behavioral simulation of the system. Section 4 
concludes the paper. 

2. Four-variable model 

The Four-variable model, illustrated in Figure 2, 
represents requirements of the system in terms of the 
mathematical relations of the four sets of variables called 
monitored(M), controlled(C), input(I), and output(0). 
While a monitored variable represents an environmental 
quantity that influences system behavior, a controlled 
variable describes an environmental quantity the system 
controls. 

Disturbances 

System Output 

I 

Controller 

C = REQ(M) 
C = NAT(M) 
C = OUT(SOF(IN(M))) Controller ( C )  

' Req of Plant (Sp) 
Plant Model (P) 

Figure 2. Four-variable model 

A black box specification of required behavior is 
defined as two relations, REQ and NAT, from the 
monitored quantities to the controlled quantities. While 
NAT describes any constraints on behavior, such as those 
imposed by physical laws, REQ defines the additional 
constraints imposed by the system to be built. NAT 
relation is important because it explicitly captures the 
limits of the required behavior. REQ describes the 
required system behavior by defining the relation that the 
system must maintain between the monitored and the 
controlled quantities. There are also three relations, IN, 
OUT, and SOF, which are related to the controller [12]. 
To meet proposition (l), five relations, NAT, REQ, IN, 
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OUT, SOF, are needed to satisfy the following 
proposition: 

NAT(M) n OUT(SOF(IN(M))) => REQ(M) (2) 

This proposition is compatible with the software 
acceptability condition in [ 121. When the Four-variable 
model was used to specify and verify the software 
requirements specification (SRS) and the software design 
description (SDD) of the shutdown system of Wolsong 
nuclear power plant, the condition, OUT(SOF(IN(M))) 
=> REQ(M), was demonstrated to verify the correctness 
of SDD against SRS. The correctness of the SRS itself 
against system specification, the satisfaction of 
proposition (2), however, was informally reviewed by the 
system and software engineers. 

3. Qualitative formal models 

In requirements engineering, many problems remain 
unsolved, such as the completeness of software 
requirements, the communication problems between the 
software engineer and the system engineer, the 
complexity problem, the model mismatch, and so on. We 
draw on work in the area of qualitative physics- 
qualitative formal models, and its associated reasoning 
methods-in order to alleviate the above problems and 
support the justification of proposition (2) in the 
requirements engineering process. We have used CML[3] 
to model the plant instead of the NAT relation, and 
CFRL[9] to model the requirements instead of the REQ 
relation. 

Qualitative physics is an area of artificial intelligence 
concerned with reasoning qualitatively about the 
behavior of physical systems. An engineer who is 
designing an embedded computer system must have 
insight in understanding completely the properties of the 
controlled physical process to transform the system 
requirements into software requirements. By using the 
qualitative formal models to transform the requirements 
between them, the ability of engineers to specify and 
verify the requirements can be enhanced. One of the most 
important aspects of the requirements engineer’s 
thinking method is the causal reasoning about the given 
plant. By reasoning from the knowledge of the structure 
and physical principles underlying the functions of the 
plant, the qualitative causal model written in CFRL can 
provide an intuitive and causal explanation on how the 
behavior is achieved. All of these properties of the 
qualitative formal models come from the ability to 

predict the behavioral aspect of the real-time system at an 
abstract level of qualitative characteristics of its behavior 
without unnecessary numerical details. We have 
conducted a qualitative simulation on the models 
represented by CML and CFRL, using the qualitative 
simulator DME[6], in order to verify the behavior of the 
hybrid system and to support the justification of the 
proposition (2). Qualitative simulation is different from 
numerical simulation of the physical system behavior in 
that behavior reasoning is carried out, not by collecting 
the numerical values of variables at different time points, 
but by employing a more abstract method involving the 
qualitative characteristics of its behavior [ 11. 

3.1 An example: Electrical Power System (EPS) 

EPS, an example adapted from Iwasaki’s work [9], is 
a hybrid real-time system embedded in an earth orbiting 
satellite. A simplified schematic diagram of the EPS is 
shown in Figure 3. The main purpose of the EPS is to 
supply a constant source of electricity to the other 
subsystems of the satellite. The charge of the battery is 
maintained by a solar array. When the charge level of the 
battery exceeds a threshold, the charge-current controller 
opens the relay, allowing the battery to provide the power 
to the load. When the charge level drops below another 
threshold, the charge-current controller closes the relay, 
allowing the solar array to recharge the battery. Many of 
these kinds of the electro-mechanical devices exhibit both 
continuous and discrete behavior. Modeling such hybrid 
systems presents special challenges for specification and 
verification [4]. 

I I 

I 

SA: Solar Array ‘$*I 
R: Relay 
RB: Rechargeable Baterry 
ELB: Electrical Load on Board 
CCC: Charge Current Controller 

- Electrical connection 
------e Sensor data connection 
O- - - + Control signal connection 

Figure 3. An Electrical Power System 

3.2 Transformation of the plant model 

When the NAT relation is used to model the physical 
behaviors of the plant, only certain quantities in the 
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environment are relevant. The external behavior of the 
system is specified by describing the relationships which 
must be maintained between the quantities it monitors 
and those it controls. For example, the NAT relation for 
the EPS can be described as follows using only one 
monitored variable (Rbvoltage). 

1. Monitored Variables 
Name TypeNalues Physical Interpr< I i m n  

RBvoltage volts Since the battery can be damaged when 
31 0 33 8 Volts i t  is charged beyond its capacity, the CCC 

opens the relay when the voltage exceeds 
a threshold to prevent the battery from 
being over-charged 

6 ampere-hours< d(RBvoltage(t))/d& 30 ampere-hours 
31 0 volts 5 RBvoltage 5 33 8 volts 

2. NAT Relation 

RBvoltage 

Figure 4. Monitored variable and NAT relation 

The NAT relation makes explicit the environmental 
constraints that are implicit in most specifications. 
However, when expressing the NAT relation using 
differential equations and time functions for the physical 
situation of the plant, the expressed model will bring 
about a complexity problem in the requirements 
engineering process, which can make it hard to justify 
the proposition (2). In  addition, it is hard to simulate and 
verify formally whether the requirement model( S,) 
follows from the conjunctive behavior of the controller 
model(C) with the plant model(P), because the NAT 
relation does not describe the plant model(P) but rather 
the external constraints by the plant. 

On the other hand, a qualitative modeling approach 
can capture the behavioral aspects of the plant itself. The 
external plant behavior modeled as C=NAT(M) in Figure 
2 can be expressed using the qualitative physics model 
based on the structure and the behavior of the plant 
because both models are governed by the same physical 
laws. There have been a variety of productive approaches 
to qualitative reasoning about physical systems used to 
analyze their behavior over time [ 2 ] .  Although detailed 
analysis procedures are different, the basic idea behind 
all of them can be clarified by decomposing qualitative 
reasoning into two tasks: 
0 Model-building task: creates a qualitative 

differential equation as a model of a physical 
situation. 
Qualitative simulation task: starts with a 
qualitative differential equation, and predicts the 
possible behaviors following the model. 

0 

The CML is a declarative model-building language for 
logically specifying the symbolic and mathematical 
properties of the structure and behavior of physical 
systems qualitatively. CML can specify an abstract 
behavior of the plant by using qualitative physics and 
causality, instead of differential equations and time 
function. As illustrated in Figure 5, the physical situation 
is modeled as a collection of model fragments, each of 
which represents a physical object or a conceptually 
distinct physical phenomenon, such as a particular aspect 
of component behavior or a physical process. A model 
fragment representing a phenomenon specifies a set of 
conditions under which the phenomenon occurs and a set 
of consequences of the phenomenon. The conditions 
specify a set of instances of object classes that must exist 
(called Participants) and a set of relations (called 
Conditions) that must hold among those objects and their 
attributes for the phenomenon to occur. The 
consequences hold when an instance of the model 
fragment is active. Model fragment consequences are 
typically qualitative differential equations that describe 
the behavior of the entities that satisfy the conditions. 

The physical situation and structure of the plant are 
captured in a general purpose domain theory that 
describes a class of related phenomena and systems. A 
domain theory consists of a set of quantified definitions, 
called model fragments, each of which describes some 
partial piece of the domain’s physics, such as the 
processes (e.g., liquid flows), devices (e.g., transistors), 
and objects (e.g., containers). Each definition applies 
whenever there exists a set of participants for whom the 
stated conditions are satisfied. A specific system or 
situation being modeled is called a scenario. A model of 
the scenario consists of fragments that logically follow 
from the domain theory and the scenario definition. 

A typical implementation supporting CML might be 
used as follows to predict the behavior of a nuclear power 
plant. A domain theory is constructed to describe the 
objects, systems, and phenomena present in a typical 
nuclear power plant. The theory would include physical 
phenomena such as mass and heat flows, boiling, 
evaporation, and condensation; it would also include 
chemical reactions, the effects of catalysts, and models of 
components such as reaction vessels, pumps, controllers, 
and filters. A major goal of CML is to support the 
interchange and reuse of such theories. 

Once the domain theory has been constructed, it can 
be used to model many different processing plants under 
a variety of different conditions. The user spqcifies a 
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scenario that defines an initial configuration of the plant, 
the initial values of some of the parameters that are 
relevant to modeling it, and perhaps conditions that 
further characterize the system. The CML 
implementation automatically identifies model fragments 
that are applicable in the scenario. These model 
fragments are made into a single model that consists of 
both a symbolic description as well as a set of governing 
equations. The equations may be solved or simulated to 
produce a behavioral description. Because the conditions 
under which the model fragments hold are explicit in the 
domain theory, the system automatically constructs 
additional models that describe the plant as it moves into 
new operating regions. 

The part of the plant model specified by NAT in  
Figure 4 can be transformed to a model fragment, 
specified by CML in Figure 5, which represent the 
behavior of a rechargeable battery when it is charged 
beyond its normal operating range. The model fragment 
definition states that it requires a rechargeable battery 
whose charge level is over 30 ampere-hours. When these 
conditions are satisfied, the consequence is that the 
electro-motive force produced by the battery can be 
expressed as a monotonically increasing function, 
denoted as M+ in the example, of the charge level. 

Battery-over-charged 
Participants: (rechargeable-battery ?b) 
Conditions: (Charge ?b) > 30.0 amp-hours 
Consequences: (Electro-Motive-Force ?b) = 

M+((Charge-level ?b)) 

Figure 5. Model fragment example 

While the EPS is modeled by a differential equation 
and a time function in Figure 4, the same physical 
situation can be declaratively modeled by a qualitative 
differential equation, denoted M+, and a causal relation 
as in Figure 5.  Given a CML representation of the 
physical situation, DME generates an equation model, 
analyzes its behavior, and gives a causal explanation for 
the behavior. The role of a qualitative simulator, such as 
DME, is to identify the set of model fragment instances 
that are active in a scenario and compose a mathematical 
model from the consequences of the activated instances. 
The behavior of the plant model which is specified by 
CML and transformed from the original model, 
C=NAT(M), can then be verified against the required 
behavior model, which is described by CFRL and 
transformed from C=REQ(M), by a qualitative 

simulation under DME. 

3.3 Transformation of the required behavior 
model 

The REQ relation in the Four variable model specifies 
the required external behavior of the system. Required 
behavior relates specific, observable changes in the 
environment to observable system actions. REQ is 
typically a relation instead of a function because there is 
tolerance in the required behavior of time, value, or both. 
The controlled variables specify what observable 
behavior the software must produce in response to 
environmental changes. For example, Figure 6 shows the 
controlled variable definition and the REQ relation of a 
required behavior of EPS. 

1. Controlled Variables 
Name TypeNalues Physical Interpretation 

RState :ENUMERATED: 
ON 
OFF 

It opens the electrical connection. 
It closes the electrical connection 

2. REQ Relation (Required Behavior) 

Figure 6. Controlled variable and REQ relation 

In practice, although FEQ is a relation, it is specified 
by giving an ideal behavior as a function and defining 
the allowed tolerances in value or time separately. It 
means the required behavior of physical systems should 
be specified qualitatively. It is hard to verify formally that 
behavior of the plant satisfies the required behavior 
modeled by C=REQ(M) because NAT is just the external 
constraints imposed by the plant. When the required 
behavior is described by CFRL, it has been possible to 
verify formally the required behavior against the plant 
because CFRL has the same behavior-based semantics as 
the behavior of the plant. 

CFIU is a language for specifying an expected 
function of a device and defines its semantics in terms of 
the type of behavior representation used in model-based, 
qualitative simulation. In order to use both functional 
and behavioral models to verify the behavior of the real- 
time system, it is crucial that the functional model is 
represented in such a way that it has a clear 
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interpretation in terms of observed behavior. For 
example, in EPS the function of a charge current 
controller is to prevent damage to a battery by cutting off 
the charge current when the battery is fully charged. To 
be able to determine whether this function is actually 
accomplished by an observed behavior of the device, the 
representation of the function must specify conditions 
that can be evaluated against the behavior. Such 
conditions might include the Occurrence of a temporal 
sequence of expected events and causal relations among 
the events and the components. Without clear semantics 
given to a representation of functions in terms of 
behavior, it would be impossible to evaluate a design 
based on its predicted behavior and intended functions. 
An essential element in a requirement model is causality. 
In order to say that a device has achieved a function, 
which may be expressed as a condition on the state of the 
world, one must show not only that the condition is 
satisfied, but also that the device has participated in the 
causal process bringing about the condition 

A behavior is a linear sequence of states. The output 
of a qualitative simulation by DME is a graph of states. 
Each path through the graph represents a possible 
behavior over time. We call such a path, i.e., a linear 
sequence of states, a trajectory. Because the semantics of 
CFRL is defined in terms of the matching between a 
trajectory of the plant’s states and a functional 
specification of the required behavior, the language is 
immediately useful for the purpose of behavior 
verification. The language allows engineers to explicitly 
describe the physical context in which the function is to 
be achieved, the structural characteristics of the device 
that are assumed in the function description, and the 
causal sequence of events that must Occur for the function 
to be achieved [9]. In CFRL, the function F is a four- 
tuple Ef, Df, Cf, Gf, where: 
0 

0 

Ef is the name of a function which F elaborates. 
Df is a description of the device of which F is a 
function. 
Cf is a description of the context in which the device 
is to function. 
Gf is a description of the functional goal to be 
achieved. 

0 

0 

Figure 7 shows an example of the top-level 
representation of the required behavior of the EPS. The 
device description, Df, consists of three parts, Device, 
Components, and Conditions. The Conditions typically 
specify aspects of the device structure that are assumed in 
the description of the function. The specification assumes 

that there exists a generic description of the Electrical- 
power-system with a Plus-terminal and Minus-terminal 
as its components. The notion of a device function 
assumes some physical context in which the device is 
placed, and Cf is a specification of such a context. The 
description of the functional goal, Gf, is represented as 
an expression consisting of a Causal Process 
Description(CPD), quantifiers, and Boolean 
connectives. There are two quantifiers, ALWAYS and 
SOMETIMES. Connectives are AND, OR, IMPLIES, 
and NOT. A CPD is a directed graph, in which each 
node describes a state and each arc describes a temporal 
relation between states. CPDs are abstract descriptions of 
expected behavior in terms of a conditionalized sequence 
of events. A CPD can be considered as an abstract 
specification of a trajectory. Unlike a trajectory, it does 
not specify every state or everything known about each 
state. It only specifies some of the facts that must be true 
during the course of the trajectory and partial 
temporalkausal orderings among those facts. In other 
words, ordering is total for states in a trajectory because a 
trajectory is a linear sequence of states, while the order is 
partial for states in a CPD. The intuitive meaning of a 
CPD is that: 

For each node in  the CPD, there must be a state in the 
trajectory in which the condition specified by the 
node is satisfied, and 

0 For each pair of nodes directly connected by an arc, 
the causal and temporal relationships specified by the 
arc must hold in the trajectory. 

E t  nil 
Df: Device: (?eps Electrical-power-system) 
Cf: Objects: 

(?sun Sun) 
(?load Electrical-load) 

Conditions: 
(Electrically-connected (Plus-terminal ?eps) 

(Electrically-connected (Minus-terminal ?eps) 
(P1 us-termin a1 ?load)) 

(Minus-terminal ?load)) 
Gf: (ALWAYS (Powered-p ?load)) 

Figure 7. Function F1 of EPS 

3.4 Verification of the behavior 

When the shutdown system of the Wolsong nuclear 
power plant in Korea was developed by a Rational 
Design Process (RDP) [I I ]  and the Four variable model, 
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there was no method to verify the required behavior 
modeled as C=REQ(M) against the plant model. While 
the software design description of the system specified by 
OUT(SOF(IN(M))) in Figure 2, was formally verified 
with respect to the software requirements specification, 
modeled as C=REQ(M), the software requirements itself 
was informally reviewed against the system 
requirements. That is, it was not possible to verify 
proposition (2) ,  NAT(M) and OUT(SOF(IN(M))) => 
REQ(M). 

In our approach, after the required behavior 
C=REQ(M) is transformed into the required behavior 
model, specified CFRL, and the plant model C=NAT(M) 
is transformed into a model fragment by the CML, it is 
possible to verify the plant against the required behavior 
because the semantic of CFRL is defined in terms of 
matching between a trajectory of the plant’s states and a 
functional specification of the required behavior. The 
DME is used to do a qualitative simulation of the 
behavior of EPS, and produce the behavior trajectory 
from the plant model represented by CML. 

The notion of a causal dependency relation between 
states in a behavior trajectory and the causal constraints 
of a CPD arc is used to define the requirements for a 
behavior trajectory needed to achieve a function 
represented by CFRL,. The causal dependency among 
facts in a trajectory is based on the theory of causal 
ordering [7]. Though mathematical equations are 
inherently acausal and symmetric, causal ordering theory 
can be used to reveal causal dependencies among 
variables in a set of equations and produce a directed 
graph structure that reflects an intuitive notion of causal 
relations among variables. Given a self-contained set of 
equations, the theory essentially orders variables in the 
order they can be solved, starting from the given 
independent variables. The algorithm that verifies 
trajectories produced by the DME system with respect to 
a function specified in CFRL was developed by Iwasaki’s 
work [9]. Given a function F and trajectory T, the 
function verifier performs the following tests: 

Determines whether trajectory T achieves function F; 
If trajectory T achieves function F and function F 
elaborates function F’, determines whether trajectory 
T also achieves function F’. 

These tests either confirm or refute the claim that the 
device denoted by Df of the model fragment in Figure 7 
achieves function F. Defining verification with respect to 
a specific trajectory, avoids the generally undecidable 
problem of proving that a given design always implies 

the achievement of F. If a case is discovered where the 
design fails to achieve F, it is proof that either the design 
or the functional specification must be revised. 

Though the algorithm is still exponential in the 
number of states of the trajectory, the behavior 
verification capability, the prediction capability, and the 
causal relationship can be useful designing of the safety- 
critical hybrid real-time system. Since the simulation 
system, such as DME, knows the exact condition 
necessary at each branching point to follow a desired 
path, there is also a possibility of using the conditions as 
a guide for safety analysis, like fault tree analysis in the 
requirement phase. 

4. Conclusion 

In this paper, we demonstrated that a qualitative 
formal method is effective in specifying and verifying the 
behavior of a real-time process control system. The 
qualitative reasoning approach is selected to help the 
designer specify his insight on the properties of the 
physical plant, to eliminate unnecessary numerical 
details, and to predict the behavior of the embedded, real- 
time system in the requirements phase. We have 
illustrated an application of our approach by converting a 
SCR-style specification, used in several safety-critical 
industrial applications, into qualitative models. While 
existing analysis methods on SCR-style specification did 
not provide adequate means of’ verifying proposition (2), 
we were able to overcome such a limitation using a 
qualitative formal method. 

Furthermore, our approach enables causal reasoning 
when an explanation on how observed behavior is 
actually achieved. Reasoning from knowledge of the 
structure and the physical principles underlying functions 
is similar to that of humans. We believe that such causal 
analysis capability can be effectively used to guide safety 
analysis on the system. The causal ordering which results 
from qualitative reasoning on the dynamic behavior of 
physical systems could assume the role of guide in 
determining the root cause a fault. 
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