
Behavior Verification of Hybrid Real-time Requirements
by Qualitative Formalism

Jang-So0 Leet, Sung-Deok Cha$
'MMIS Lab., Korea Atomic Energy Research Institute

P.O.Box 105, Yusong-ku,Taejeon, 305-600, Korea
jslee @ nanum. kaeri. re .kr

*Computer Science Dept., Korea Advanced Institute of Science and Technology
373- 1, Kusong-dong, Yusong-ku,Taejeon, 305-701, Korea

cha @ salmosa. kaist . ac .kr

Abstract
Although modern control theories have been

successfully applied to solve a variety of problems, they
are often mathematically and physically too specific to
describe and analyze the qualitative properties of hybrid
real-time systems. In this paper, we propose the use of
qualitative formal methods, Compositional Modeling
Language (CML) and Causal Functional Representation
Language (CFRL) in particular, to specify continuous
plant dynamics and the required behavior respectively.
The system behavior has been simulated by a qualitative
simulator known as the Device Modeling Environment
(DME), and verified against the required behavior.
Using the Electrical Power System (EPS) as an example,
we demonstrate the effectiveness of our approach by
illustrating how a simple SCR-style specification can be
transformed and analyzed.

1. Introduction

It is well-known in the software engineering
community that a significant portion of software failures
found in operational software can be traced to errors
made during the requirements engineering phase and
that it is expensive to correct such errors. Hybrid real-
time and embedded software development is an area
where software requirements must be subject to highly
rigorous and systematic analysis. Examples include
software used to control nuclear power plants,
commercial and military jets, satellites, or manufacturing
plants. A typical closed-loop process-control system
consist of the following components (Figure 1): plant,

0-8186-8073-3197 $10.00 0 1997 IEEE
127

controller, actuators, and sensors.

Distur ances
System Output P System Input

4

Monito edVar.
.(

Sensor

I

Actuator 0
Figure 1. The control loop

When developing embedded software, one must have
insight into the properties of the controlled physical
processes and ensure that the behavior of the
controller(C) satisfies the required system behavior(S,,)

when viewed from the perspective of the plant(P) [lo].
That is, the truth of the following proposition must be
demonstrated:

P ~ C -sp (1)

The plant P is usually a non-linear continuous system
with disturbances and modeled by differential equations.
The software-based controller(C) is discrete and
prescriptive, in that it represents a plan for a course of
action to be taken, and so usually modeled by a state
machine. Though modern control theories have been

useful in tackling a variety of real-world problems, they
are often mathematically and physically too specific to
model the qualitative system properties, such as the
discrete description of the digital controller(C) and the
abstract description of the required system behavior(S,)

in the requirements phase, since the focus of control
theory has been on continuous variable systems modeled
by differential and difference equations.

Requirements engineering is not a process of simple
derivation of a controller specification(C) from a given
set of requirements(s,) and plant(P) properties. Rather,

the three models, P, C, and S,, are developed until an

acceptable combination is reached, with the formal
justification between all three being shown to hold. A
consequence of this exploratory, iterative aspect of the
requirements engineering process is that the three models
may be progressively developed and modified, leading to
a need for the formal methods to be not only rigorous, but
also amenable to proof and re-proof with a minimum of
effort. In response to the need for developing the
requirements specification and verification methods for
the hybrid real-time process-control systems, there have
been a number of different formal methods, such as
hybrid automata [4], temporal logic [131, process algebra
[5] , and so on. We believe most of these formalisms are
too rigid to justify the proposition (1) in the early phase
of the iterative requirements engineering process.

This paper concentrates on the qualitative formal
method to specify the continuous plant and the required
system behavior in terms of languages, based on the
qualitative physics, CML and CFRL. The behavior of the
hybrid real-time system has been simulated by a
qualitative simulator, DME, and then verified as to
whether it satisfies the required system behavior. The
qualitative reasoning approach is selected to help the
designers specify the desired system properties concisely
without having to describe unnecessary details.
Furthermore, qualitative simulation techniques allow for
behavioral analysis of such abstract specification. In
order to demonstrate the effectiveness of using a
qualitative formalism in specifying and analyzing
requirements of embedded real-time software, we use an
electrical power system (EPS) to illustrate how SCR-style
specification can be converted transformed and analyzed.
We have chosen the SCR-style specification as an
example because the SCR-style specifications and the
four-variable method have been used on several
industrial projects including the Darlington nuclear
power plant shutdown system (SDS) , a similar SDS

system in the Wolsong plant, and others[l I] .
The rest of our paper is organized as follows: Section

2 briefly describes the Four-variable approach and
explains the limitations encountered when attempting to
analyze software requirements specification. Section 3
provides a brief introduction to the qualitative formalism
we adapted, explains how to transform a Four-variable
model into a qualitative model, and how to conduct
qualitative behavioral simulation of the system. Section 4
concludes the paper.

2. Four-variable model

The Four-variable model, illustrated in Figure 2,
represents requirements of the system in terms of the
mathematical relations of the four sets of variables called
monitored(M), controlled(C), input(I), and output(0).
While a monitored variable represents an environmental
quantity that influences system behavior, a controlled
variable describes an environmental quantity the system
controls.

Disturbances

System Output

I

Controller

C = REQ(M)
C = NAT(M)
C = OUT(SOF(IN(M))) Controller (C)

' Req of Plant (Sp)
Plant Model (P)

Figure 2. Four-variable model

A black box specification of required behavior is
defined as two relations, REQ and NAT, from the
monitored quantities to the controlled quantities. While
NAT describes any constraints on behavior, such as those
imposed by physical laws, REQ defines the additional
constraints imposed by the system to be built. NAT
relation is important because it explicitly captures the
limits of the required behavior. REQ describes the
required system behavior by defining the relation that the
system must maintain between the monitored and the
controlled quantities. There are also three relations, IN,
OUT, and SOF, which are related to the controller [12].
To meet proposition (l), five relations, NAT, REQ, IN,

128

OUT, SOF, are needed to satisfy the following
proposition:

NAT(M) n OUT(SOF(IN(M))) => REQ(M) (2)

This proposition is compatible with the software
acceptability condition in [121. When the Four-variable
model was used to specify and verify the software
requirements specification (SRS) and the software design
description (SDD) of the shutdown system of Wolsong
nuclear power plant, the condition, OUT(SOF(IN(M)))
=> REQ(M), was demonstrated to verify the correctness
of SDD against SRS. The correctness of the SRS itself
against system specification, the satisfaction of
proposition (2), however, was informally reviewed by the
system and software engineers.

3. Qualitative formal models

In requirements engineering, many problems remain
unsolved, such as the completeness of software
requirements, the communication problems between the
software engineer and the system engineer, the
complexity problem, the model mismatch, and so on. We
draw on work in the area of qualitative physics-
qualitative formal models, and its associated reasoning
methods-in order to alleviate the above problems and
support the justification of proposition (2) in the
requirements engineering process. We have used CML[3]
to model the plant instead of the NAT relation, and
CFRL[9] to model the requirements instead of the REQ
relation.

Qualitative physics is an area of artificial intelligence
concerned with reasoning qualitatively about the
behavior of physical systems. An engineer who is
designing an embedded computer system must have
insight in understanding completely the properties of the
controlled physical process to transform the system
requirements into software requirements. By using the
qualitative formal models to transform the requirements
between them, the ability of engineers to specify and
verify the requirements can be enhanced. One of the most
important aspects of the requirements engineer’s
thinking method is the causal reasoning about the given
plant. By reasoning from the knowledge of the structure
and physical principles underlying the functions of the
plant, the qualitative causal model written in CFRL can
provide an intuitive and causal explanation on how the
behavior is achieved. All of these properties of the
qualitative formal models come from the ability to

predict the behavioral aspect of the real-time system at an
abstract level of qualitative characteristics of its behavior
without unnecessary numerical details. We have
conducted a qualitative simulation on the models
represented by CML and CFRL, using the qualitative
simulator DME[6], in order to verify the behavior of the
hybrid system and to support the justification of the
proposition (2). Qualitative simulation is different from
numerical simulation of the physical system behavior in
that behavior reasoning is carried out, not by collecting
the numerical values of variables at different time points,
but by employing a more abstract method involving the
qualitative characteristics of its behavior [11.

3.1 An example: Electrical Power System (EPS)

EPS, an example adapted from Iwasaki’s work [9], is
a hybrid real-time system embedded in an earth orbiting
satellite. A simplified schematic diagram of the EPS is
shown in Figure 3. The main purpose of the EPS is to
supply a constant source of electricity to the other
subsystems of the satellite. The charge of the battery is
maintained by a solar array. When the charge level of the
battery exceeds a threshold, the charge-current controller
opens the relay, allowing the battery to provide the power
to the load. When the charge level drops below another
threshold, the charge-current controller closes the relay,
allowing the solar array to recharge the battery. Many of
these kinds of the electro-mechanical devices exhibit both
continuous and discrete behavior. Modeling such hybrid
systems presents special challenges for specification and
verification [4].

I I

I

SA: Solar Array ‘$*I
R: Relay
RB: Rechargeable Baterry
ELB: Electrical Load on Board
CCC: Charge Current Controller

- Electrical connection
------e Sensor data connection
O- - - + Control signal connection

Figure 3. An Electrical Power System

3.2 Transformation of the plant model

When the NAT relation is used to model the physical
behaviors of the plant, only certain quantities in the

129

environment are relevant. The external behavior of the
system is specified by describing the relationships which
must be maintained between the quantities it monitors
and those it controls. For example, the NAT relation for
the EPS can be described as follows using only one
monitored variable (Rbvoltage).

1. Monitored Variables
Name TypeNalues Physical Interpr< I i m n

RBvoltage volts Since the battery can be damaged when
31 0 33 8 Volts i t is charged beyond its capacity, the CCC

opens the relay when the voltage exceeds
a threshold to prevent the battery from
being over-charged

6 ampere-hours< d(RBvoltage(t))/d& 30 ampere-hours
31 0 volts 5 RBvoltage 5 33 8 volts

2. NAT Relation

RBvoltage

Figure 4. Monitored variable and NAT relation

The NAT relation makes explicit the environmental
constraints that are implicit in most specifications.
However, when expressing the NAT relation using
differential equations and time functions for the physical
situation of the plant, the expressed model will bring
about a complexity problem in the requirements
engineering process, which can make it hard to justify
the proposition (2). In addition, it is hard to simulate and
verify formally whether the requirement model(S,)
follows from the conjunctive behavior of the controller
model(C) with the plant model(P), because the NAT
relation does not describe the plant model(P) but rather
the external constraints by the plant.

On the other hand, a qualitative modeling approach
can capture the behavioral aspects of the plant itself. The
external plant behavior modeled as C=NAT(M) in Figure
2 can be expressed using the qualitative physics model
based on the structure and the behavior of the plant
because both models are governed by the same physical
laws. There have been a variety of productive approaches
to qualitative reasoning about physical systems used to
analyze their behavior over time [2] . Although detailed
analysis procedures are different, the basic idea behind
all of them can be clarified by decomposing qualitative
reasoning into two tasks:
0 Model-building task: creates a qualitative

differential equation as a model of a physical
situation.
Qualitative simulation task: starts with a
qualitative differential equation, and predicts the
possible behaviors following the model.

0

The CML is a declarative model-building language for
logically specifying the symbolic and mathematical
properties of the structure and behavior of physical
systems qualitatively. CML can specify an abstract
behavior of the plant by using qualitative physics and
causality, instead of differential equations and time
function. As illustrated in Figure 5, the physical situation
is modeled as a collection of model fragments, each of
which represents a physical object or a conceptually
distinct physical phenomenon, such as a particular aspect
of component behavior or a physical process. A model
fragment representing a phenomenon specifies a set of
conditions under which the phenomenon occurs and a set
of consequences of the phenomenon. The conditions
specify a set of instances of object classes that must exist
(called Participants) and a set of relations (called
Conditions) that must hold among those objects and their
attributes for the phenomenon to occur. The
consequences hold when an instance of the model
fragment is active. Model fragment consequences are
typically qualitative differential equations that describe
the behavior of the entities that satisfy the conditions.

The physical situation and structure of the plant are
captured in a general purpose domain theory that
describes a class of related phenomena and systems. A
domain theory consists of a set of quantified definitions,
called model fragments, each of which describes some
partial piece of the domain’s physics, such as the
processes (e.g., liquid flows), devices (e.g., transistors),
and objects (e.g., containers). Each definition applies
whenever there exists a set of participants for whom the
stated conditions are satisfied. A specific system or
situation being modeled is called a scenario. A model of
the scenario consists of fragments that logically follow
from the domain theory and the scenario definition.

A typical implementation supporting CML might be
used as follows to predict the behavior of a nuclear power
plant. A domain theory is constructed to describe the
objects, systems, and phenomena present in a typical
nuclear power plant. The theory would include physical
phenomena such as mass and heat flows, boiling,
evaporation, and condensation; it would also include
chemical reactions, the effects of catalysts, and models of
components such as reaction vessels, pumps, controllers,
and filters. A major goal of CML is to support the
interchange and reuse of such theories.

Once the domain theory has been constructed, it can
be used to model many different processing plants under
a variety of different conditions. The user spqcifies a

130

scenario that defines an initial configuration of the plant,
the initial values of some of the parameters that are
relevant to modeling it, and perhaps conditions that
further characterize the system. The CML
implementation automatically identifies model fragments
that are applicable in the scenario. These model
fragments are made into a single model that consists of
both a symbolic description as well as a set of governing
equations. The equations may be solved or simulated to
produce a behavioral description. Because the conditions
under which the model fragments hold are explicit in the
domain theory, the system automatically constructs
additional models that describe the plant as it moves into
new operating regions.

The part of the plant model specified by NAT in
Figure 4 can be transformed to a model fragment,
specified by CML in Figure 5, which represent the
behavior of a rechargeable battery when it is charged
beyond its normal operating range. The model fragment
definition states that it requires a rechargeable battery
whose charge level is over 30 ampere-hours. When these
conditions are satisfied, the consequence is that the
electro-motive force produced by the battery can be
expressed as a monotonically increasing function,
denoted as M+ in the example, of the charge level.

Battery-over-charged
Participants: (rechargeable-battery ?b)
Conditions: (Charge ?b) > 30.0 amp-hours
Consequences: (Electro-Motive-Force ?b) =

M+((Charge-level ?b))

Figure 5. Model fragment example

While the EPS is modeled by a differential equation
and a time function in Figure 4, the same physical
situation can be declaratively modeled by a qualitative
differential equation, denoted M+, and a causal relation
as in Figure 5. Given a CML representation of the
physical situation, DME generates an equation model,
analyzes its behavior, and gives a causal explanation for
the behavior. The role of a qualitative simulator, such as
DME, is to identify the set of model fragment instances
that are active in a scenario and compose a mathematical
model from the consequences of the activated instances.
The behavior of the plant model which is specified by
CML and transformed from the original model,
C=NAT(M), can then be verified against the required
behavior model, which is described by CFRL and
transformed from C=REQ(M), by a qualitative

simulation under DME.

3.3 Transformation of the required behavior
model

The REQ relation in the Four variable model specifies
the required external behavior of the system. Required
behavior relates specific, observable changes in the
environment to observable system actions. REQ is
typically a relation instead of a function because there is
tolerance in the required behavior of time, value, or both.
The controlled variables specify what observable
behavior the software must produce in response to
environmental changes. For example, Figure 6 shows the
controlled variable definition and the REQ relation of a
required behavior of EPS.

1. Controlled Variables
Name TypeNalues Physical Interpretation

RState :ENUMERATED:
ON
OFF

It opens the electrical connection.
It closes the electrical connection

2. REQ Relation (Required Behavior)

Figure 6. Controlled variable and REQ relation

In practice, although FEQ is a relation, it is specified
by giving an ideal behavior as a function and defining
the allowed tolerances in value or time separately. It
means the required behavior of physical systems should
be specified qualitatively. It is hard to verify formally that
behavior of the plant satisfies the required behavior
modeled by C=REQ(M) because NAT is just the external
constraints imposed by the plant. When the required
behavior is described by CFRL, it has been possible to
verify formally the required behavior against the plant
because CFRL has the same behavior-based semantics as
the behavior of the plant.

CFIU is a language for specifying an expected
function of a device and defines its semantics in terms of
the type of behavior representation used in model-based,
qualitative simulation. In order to use both functional
and behavioral models to verify the behavior of the real-
time system, it is crucial that the functional model is
represented in such a way that it has a clear

131

interpretation in terms of observed behavior. For
example, in EPS the function of a charge current
controller is to prevent damage to a battery by cutting off
the charge current when the battery is fully charged. To
be able to determine whether this function is actually
accomplished by an observed behavior of the device, the
representation of the function must specify conditions
that can be evaluated against the behavior. Such
conditions might include the Occurrence of a temporal
sequence of expected events and causal relations among
the events and the components. Without clear semantics
given to a representation of functions in terms of
behavior, it would be impossible to evaluate a design
based on its predicted behavior and intended functions.
An essential element in a requirement model is causality.
In order to say that a device has achieved a function,
which may be expressed as a condition on the state of the
world, one must show not only that the condition is
satisfied, but also that the device has participated in the
causal process bringing about the condition

A behavior is a linear sequence of states. The output
of a qualitative simulation by DME is a graph of states.
Each path through the graph represents a possible
behavior over time. We call such a path, i.e., a linear
sequence of states, a trajectory. Because the semantics of
CFRL is defined in terms of the matching between a
trajectory of the plant’s states and a functional
specification of the required behavior, the language is
immediately useful for the purpose of behavior
verification. The language allows engineers to explicitly
describe the physical context in which the function is to
be achieved, the structural characteristics of the device
that are assumed in the function description, and the
causal sequence of events that must Occur for the function
to be achieved [9]. In CFRL, the function F is a four-
tuple Ef, Df, Cf, Gf, where:
0

0

Ef is the name of a function which F elaborates.
Df is a description of the device of which F is a
function.
Cf is a description of the context in which the device
is to function.
Gf is a description of the functional goal to be
achieved.

0

0

Figure 7 shows an example of the top-level
representation of the required behavior of the EPS. The
device description, Df, consists of three parts, Device,
Components, and Conditions. The Conditions typically
specify aspects of the device structure that are assumed in
the description of the function. The specification assumes

that there exists a generic description of the Electrical-
power-system with a Plus-terminal and Minus-terminal
as its components. The notion of a device function
assumes some physical context in which the device is
placed, and Cf is a specification of such a context. The
description of the functional goal, Gf, is represented as
an expression consisting of a Causal Process
Description(CPD), quantifiers, and Boolean
connectives. There are two quantifiers, ALWAYS and
SOMETIMES. Connectives are AND, OR, IMPLIES,
and NOT. A CPD is a directed graph, in which each
node describes a state and each arc describes a temporal
relation between states. CPDs are abstract descriptions of
expected behavior in terms of a conditionalized sequence
of events. A CPD can be considered as an abstract
specification of a trajectory. Unlike a trajectory, it does
not specify every state or everything known about each
state. It only specifies some of the facts that must be true
during the course of the trajectory and partial
temporalkausal orderings among those facts. In other
words, ordering is total for states in a trajectory because a
trajectory is a linear sequence of states, while the order is
partial for states in a CPD. The intuitive meaning of a
CPD is that:

For each node in the CPD, there must be a state in the
trajectory in which the condition specified by the
node is satisfied, and

0 For each pair of nodes directly connected by an arc,
the causal and temporal relationships specified by the
arc must hold in the trajectory.

E t nil
Df: Device: (?eps Electrical-power-system)
Cf: Objects:

(?sun Sun)
(?load Electrical-load)

Conditions:
(Electrically-connected (Plus-terminal ?eps)

(Electrically-connected (Minus-terminal ?eps)
(P1 us-termin a1 ?load))

(Minus-terminal ?load))
Gf: (ALWAYS (Powered-p ?load))

Figure 7. Function F1 of EPS

3.4 Verification of the behavior

When the shutdown system of the Wolsong nuclear
power plant in Korea was developed by a Rational
Design Process (RDP) [I I] and the Four variable model,

132

there was no method to verify the required behavior
modeled as C=REQ(M) against the plant model. While
the software design description of the system specified by
OUT(SOF(IN(M))) in Figure 2, was formally verified
with respect to the software requirements specification,
modeled as C=REQ(M), the software requirements itself
was informally reviewed against the system
requirements. That is, it was not possible to verify
proposition (2) , NAT(M) and OUT(SOF(IN(M))) =>
REQ(M).

In our approach, after the required behavior
C=REQ(M) is transformed into the required behavior
model, specified CFRL, and the plant model C=NAT(M)
is transformed into a model fragment by the CML, it is
possible to verify the plant against the required behavior
because the semantic of CFRL is defined in terms of
matching between a trajectory of the plant’s states and a
functional specification of the required behavior. The
DME is used to do a qualitative simulation of the
behavior of EPS, and produce the behavior trajectory
from the plant model represented by CML.

The notion of a causal dependency relation between
states in a behavior trajectory and the causal constraints
of a CPD arc is used to define the requirements for a
behavior trajectory needed to achieve a function
represented by CFRL,. The causal dependency among
facts in a trajectory is based on the theory of causal
ordering [7]. Though mathematical equations are
inherently acausal and symmetric, causal ordering theory
can be used to reveal causal dependencies among
variables in a set of equations and produce a directed
graph structure that reflects an intuitive notion of causal
relations among variables. Given a self-contained set of
equations, the theory essentially orders variables in the
order they can be solved, starting from the given
independent variables. The algorithm that verifies
trajectories produced by the DME system with respect to
a function specified in CFRL was developed by Iwasaki’s
work [9]. Given a function F and trajectory T, the
function verifier performs the following tests:

Determines whether trajectory T achieves function F;
If trajectory T achieves function F and function F
elaborates function F’, determines whether trajectory
T also achieves function F’.

These tests either confirm or refute the claim that the
device denoted by Df of the model fragment in Figure 7
achieves function F. Defining verification with respect to
a specific trajectory, avoids the generally undecidable
problem of proving that a given design always implies

the achievement of F. If a case is discovered where the
design fails to achieve F, it is proof that either the design
or the functional specification must be revised.

Though the algorithm is still exponential in the
number of states of the trajectory, the behavior
verification capability, the prediction capability, and the
causal relationship can be useful designing of the safety-
critical hybrid real-time system. Since the simulation
system, such as DME, knows the exact condition
necessary at each branching point to follow a desired
path, there is also a possibility of using the conditions as
a guide for safety analysis, like fault tree analysis in the
requirement phase.

4. Conclusion

In this paper, we demonstrated that a qualitative
formal method is effective in specifying and verifying the
behavior of a real-time process control system. The
qualitative reasoning approach is selected to help the
designer specify his insight on the properties of the
physical plant, to eliminate unnecessary numerical
details, and to predict the behavior of the embedded, real-
time system in the requirements phase. We have
illustrated an application of our approach by converting a
SCR-style specification, used in several safety-critical
industrial applications, into qualitative models. While
existing analysis methods on SCR-style specification did
not provide adequate means of’ verifying proposition (2),
we were able to overcome such a limitation using a
qualitative formal method.

Furthermore, our approach enables causal reasoning
when an explanation on how observed behavior is
actually achieved. Reasoning from knowledge of the
structure and the physical principles underlying functions
is similar to that of humans. We believe that such causal
analysis capability can be effectively used to guide safety
analysis on the system. The causal ordering which results
from qualitative reasoning on the dynamic behavior of
physical systems could assume the role of guide in
determining the root cause a fault.

References

[l] A. Barr, P. R. Cohen, and E. A. Feigenbaum, The
Handbook of Artificial Intelligence, Vol. IV, Addison-
Wesley Pub. 1989.

121 D. Bobrow, Qualitative Reasoning about Physical Systems,
MlT Press, 1985.

[3] B. Falkenhainer, A. Farquhar, D. Bobrow, R. Fikes,

133

K. Forbus, T. Gruber, Y. Iwasaki, and B. Kuipers, “CML:
A Compositional Modeling Language,” KSL in SRI
Technical Report KSL-94-16, 1994.

[4] A. R. Courcoubetis, C. Henzinger, and P. H. Ho, “Hybrid
automata: an algorithmic approach to the specification
and verification of hybrid systems,” Proceedings of the
Workshop on the Theory of Hybrid Systems in Lyngby,
Denmark, 1992.

(51 C. A. R. Hoare, Communicating Sequential Processes,
Prentice-Hall International, 1985.

[6] Y. Iwasaki and C. M. Low, “Model generation and
simulation of device behavior with continuous and discrete
change,” Intelligent Systems Engineering, 1(2), 1993.

Abstraction,” Artificial Intelligence, Vol. 67(1), May
1994.

[8] Y. Iwasaki, A. Farquhar, V. Saraswat, D. Bobrow, and V.
Gupta. “Modeling Time in Hybrid Systems: How Fast is
‘Instantaneous’?,’’ Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence,
1995.

[9] Y. Iwasaki, M. Vescovi, R. Fikes and B. Chandrasekaran.
“A Causal. Functional Representation Language with
Behavior-Based Semantics,” Applied Artificial
Intelligence, Vol. 9(1), pp. 5-31, Jan. 1995.

Research Studies Press Ltd. 1989.

Process: How and Why to Fake It,” IEEE TSE, SE-12(2),
Feb. 1986.

for Computer Systems Engineering,” Technical Report 90-
287, Queen’s University, TRIO, Sep. 1990.

[13] A. P. Ravn, H. Rischel, and K. M. Hansen, “Specifying
and Verifying Requirements of Real-Time Systems,”
IEEE TSE, vol. 19, no. 1, Jan. 1993.

[7] Y. Iwasaki and H. A. Simon. “Causality and Model

[I O] J. S. Ostroff, Temporal Logic for Real-Time Systems,

[I 11 D.L. Parnas and P.C. Clements. “A Rational Design

[121 D.L. Parnas, J . Madey, “Functional Documentation

[141 Wolsong NPP 2/3/4, “Software Requirements
Specification for Shutdown System 2 PDC,” 86-68350-
SRS-001, Rev. 0, Jun. 1993.

134

