
An Empirical Study on Software Error Detection:
Voting, Instrumentation, and Fagan Inspection *

Sunsup So, Yongseop Lim, Sung Deok Cha, and Yong Rae Kwon
Department of Computer Science

Korea Advanced lnstifute of Science and Technology
373-1, Kusong-dong, Yusong-gu, Teajon 305-701, Korea
E-mail: (triples, yslim, cha, yrkwon)@salmosa. kaisf. ac.kr

Abstract

This paper presents the results of an experiment that
compared error detection capability of voting,
instrumentation, and Fagan inspection methods. Several
experiments have measured effectiveness of various error
detection methods. However, most experiments have used
different programs; consequently, the results are
generally incompatible and do not allow one to make
objective comparison on the cost-effectiveness of various
approaches. No software can be developed using
unlimited amount of resources, practitioners need
empirical and objective data on the cost-effectiveness of
various errw detection methods to decide which methods
to use during sojbvare development.

Results of this experiment is significant because these
methods have been applied to the same program.
Futhermore, the participant 's educational and industrial
experience are comparable to that of the previous
experiments.. We conprmed the previous Pnding that
detecting errors in reliable programs is diBcult; none of
the three methods detected more than half of all the
known errors in the programs. Of the three methods
employed, participants detected more errors by using
Fagan inspection method than they did by voting or
instrumentation. When the average number of hours
needed to detect an error was compared, Fagan
inspection method was shown to be more cost-effective
than instrumentation method.

1. Introduction

Critical digital systems can fail because of errors in
either software or hardware. Although hardware
unreliability was known to be a major contributor to
system failures in the past, it is fast becoming an
insignificant factor with advances in hardware
technology and commercial availability of fault-tolerant

computers[']. Instead software unreliability has become a
major bottleneck in further improving the system
reliability. In order to enhance software reliability in
cost-effective manner, it is important to detect any
residual software errors at the earliest possible

Many proposals have been made in literature on how
errors in software code or documentation can be detected.
Some of frequently used error detection methods include
voting (also known as back-to-back testing), Fagan
inspection, and instrumentation (also known as self-
checking c0de)[~9~3~~*]. Since no software can be
developed using unlimited amount of resources,
practitioners need empirical and objective data on the
cost-effectiveness of various error detection methods to
decide which methods to use during software
development. Unfortunately, relatively little empirical
data exist to assist practitioners in making such decisions
wisely. Although several controlled experiments have
measured cost-effectiveness of various error detection
methods, these results remain largely incompatible (i.e.,
have been applied on Werent problems). There have
been only a couple of relevent controlled experiments
[6*7381 that compared several error detection methods
using the same program.

Knight and Leveson developed 27 Launch
Interceptor Program (referred to as LIP hereafter)
versions to determine if independently developed
versions fail in statistically independent manner. Leveson
et al. used eight of the 27 LIP versions in a subsequent
experiment 16] to compare error detection capabilities of
voting and instrumentation methods. In order to conduct
an instrumentation experiment, they hired 24 graduate
students majoring in computer science at UCI and W A
for a week. Each version was assigned 3 students who
reviewed specification, performed informal and
individual code reading, and developed self-checks to
detect software errors. They placed no restrictions on the
participants as to how many self-checks to develop and

opportunity.

* This work is partially supported by Korea Institute of Nuclear Safety under contract number KS95-018 and by Korea Atomic Energy Research Institute
under contract number KAF,WCM-103/94

345
0-8186-7171-8/95 $04.00 0 1995 IEEE

where to place the self-checks. The conclusion from the
instrumentation experiment was that voting and
instrumentation methods are complementary error
detection methods to each other in that each method
detected the same number of but different types of errors
in the programs.

Another controlled experiment on the subject was
conducted by Shimeall i79 *I. His experiment compared
error detection capability of functional testing, back-to-
back testing, instrumentation, code reading, and static
data-flow analysis. He found that voting and functional
testing techniques detected more errors than the other
techniques did and that each of the surveyed techniques
were complementary to others in that each technique
tended to detect largely distinct types of errors.

Although there have been several controlled
experiment on Fagan Inspection methods, there have
been no experiments that compared Fagan inspection
method against other error detection methods such as
voting or instrumentation using the same program. Since
Fagan inspection method is gaining acceptance among
practitioners and researchers alike as a promising a cost-
effective method, we felt important to extend the previous
experiment L6] to include Fagan inspection method.

The rest of this paper is organized as follows. Section
2 briefly summarizes Fagan inspection method and its
industrial application experiences. Section 3 describes
our experimental design, and Section 4 discusses the
results obtained from the experiment. Section 5
concludes the paper and discusses future research
directions.

2. Fagan Inspection

Fagan inspection [9710,1 1J2] process involves
systematic group review of code (or related artifacts such
as requirements or design documents). Each team
member participating in Fagan inspection has well-
defined roles, and the team conducts reviews following
specific guidelines. An inspection team is most
productive when its team members work in harmony and
fulfill the assigned roles.

Typical Fagan inspection team consists of moderator,
reader, inspector, and author. Moderator manages the
inspection meetings and is responsible for scheduling and
result archiving. Moderator plays especially important
leadership roles and must ensure that the team stays
focused on detecting errors without being sidetracked
(e.g., suggesting necessary corrections or desirable
enhancements). Properly trained and technically
experienced personnel who have worked on similar
projects to the one being inspected would be a good
candidate to serve as a moderator. Reader's role is to
paraphrase the product being reviewed at a reasonable

346

pace. Otherwise, an inspection team might be tempted to
inspect software too quickly and superficially;
consequently, the team may not detect as many errors as
they could otherwise. Author's presence in the inspection
meetings is generally considered beneficial because; (1)
author can assist the inspection team to understand the
product and (2) author can understand exact nature of the
errors the inspection team found. An inspector's role is to
examine sohare from a tester's viewpoint. All team
members, including moderator and reader, also play
inspector's role and should actively participate in error
detection process.

Fagan inspection process consists of the following
steps, each with a specific objectives: planning, overview,
preparation, inspection, rework, and follow-up.
0 PLANNING When materials to be inspected pass

entry criteria (i.e., source code successfully compiles
without syntax errors), inspection team members are
selected, and inspection schedules (e.g., time and
place) are established.

0 OVERVIEW: Team members are briefed on the
material to be inspected, and roles are assigned.

0 PREPARATION: Team members review the
material individually to prepare themselves to fulfill
the assigned roles.

0 INSPECTION: The team conducts an inspection
meeting to find errors and records errors detected.
Purpose of the inspection meeting is solely on the
error detection, and any attempts to find alternative
solutions should be strongly discouraged by the
moderator.

0 REWORK. The author revises the product to fix all
the detected errors.

0 FOLLOW-UP: Moderator or the entire inspection
team reviews the product again to assure that all fixes
are effective and that no additional defects have been
introduced during rework.

Experiences obtained from industrial application of
Fagan inspections strongly suggests that omitting or
combining any of the six inspection steps is undesirable
in that degraded inspection efficiency outweighs apparent
short-term cost saving. Since Fagan inspection process is
quite labor-intensive, each session is recommended not to
last more than two hours, and a team is recommended
not to schedule more than two inspection sessions per
day.

Since not all inspectors start off being good
detectives, a checklist that describes the types of
frequently detected errors is provided to assist inspection
teams and to class@ the detected errors. Typical
checklist include the following types of errors: data
reference (e.g., out-of-bound array subscript), data
declaration, computation, comparison, control-flow,

interface, input/output, logic, bad styles, and others.
Detected errors are normally recorded as follows:

"In module:XXX, Line: YTY, NAME-CHECK is
performed one less time than required --- LO/W/MAJ."

Error description is self-explanatory. Error
classification "LO/W/MAJ" means that this is a error in
Logic and that an incorrect (i.e., Wrong) logic is detected
- as opposed to Missing or Extra - and that it is a major
defect - as opposed to Minor - that would result in a
malfunction or unexpected result if left without being
corrected. Minor errors are usually critiques on
programming styles.

3. Experimental Design

Our experiment was carried out as a term project in a
graduate-level software engineering class at the Korea
Advanced Institute of Science and Technology (KAIST).
Participants in the experiment were volunteers, and
unfortunately, we were unable to recruit sufficient
number of volunteers to perform Fagan inspections on all
8 versions the previous experiment used. We were also
unable to find volunteers to formulate "full" Fagan
inspection teams. Therefore, we selected 4 out of the 8
LIP programs used in the previous experiment ['I and
formed three different inspection teams (referred to as
the team A, B, and C hereafter) so that each team
inspected all of the four versions. They were known as
version 3, 6, 12, and 25 and had 757, 643, 573, and 906
lines of Pascal code, respectively, including the
comments. Each team had only two members who
actively played the roles of a moderator and a reader as
well as inspectors. Because the LIP versions had been
developed elsewhere, the authors could not have been a
part of the inspection teams. Each inspection team tried
to fully adhere to the principles and recommendations of
Fagan inspection technique as practically as possible.

Team A consisted of a first-year graduate student in
software engineering at KAIST and a technical staff
member from Agency for Defense Development (ADD)
with seven years of industrial experience and a M.S.
degree in software engineering. Team B consisted of two
technical staff members from ADD each with four years
of industrial experience. Team C consisted of two
graduate students at KAIST. One had 3 years of
industrial and 5 years of graduate study experiences in
computer science, while the other was enrolled in a
second year in the M.S. program in computer science
with no industrial experiences. None of the participants
had prior knowledge on Fagan inspection method, LIP
programs, or errors that have been found on the LIP
programs.

Because rework and follow-up phases were

unnecessary for our experiment, only the first four phases
of Fagan inspection were applied. During the overview
and preparation phases, experiment administrators
briefed the team members on the purpose of the
experiment, Fagan inspection method, the checklist, and
the LIP specification. These sessions took three hours for
team A and 1 hour for teams B and C, respectably.
Checklist was used merely as a guideline, and the
inspection teams were not restricted to report only the
errors mentioned in the checklist. Care was taken to
accurately record the amount of time each team spent on
various inspection activities. At the end of the inspection
meetings, list of detected errors was submitted to the
experiment administrators along with the time sheet.

4. RESULTS

Results obtained from the experiment are presented
in two parts. We present data on the amount of time
spent on Fagan inspection by each team as well as
number and types of detected errors. In the second part,
using results reported in 16], we compare error detection
capabilities of voting, instrumentation, and Fagan
inspection methods.

4.1 LIP Errors Detected by Fagan Inspection

Figure 1 shows the number of hours spent by each
Fagan inspection team as well as the average number of
source code lines inspected per hour.

Figure 2 presents the number of major and minor
errors detected by three teams. Major errors refer to the
ones that would cause production of incorrect outputs
while minor errors refer to those that would have no
impact on the correctness of the outputs but could
influence other aspects of software quality such as
maintainability, performance, etc. Therefore, we consider
only the major errors when the effectiveness of Fagan
inspectlon method is compared against that of voting and
instrumentation.

We performed a statistical analysis, known as t test,
to determine if there were significant relationship
between the number of hours spent on inspection and the
number of errors detected. We found no statistically
significant relationship between the number of errors
detected and the number of hours spent. That is, more
time spent on the inspections didn't necessarily result in
detecting more errors. However, Figure 2 shows
sigmficant variation on the number of errors detected by
each team, and the team's (or team member's) ability
seems to be the most significant factor in detecting
errors.

347

A , -.

3
2 HTeamB
1
0

v3 v6 v12 $25

I I

1 1 &c ... I
400
300
200
100

0
I v3 v12

Figure 1. Number of hours spent by each team on Fagan Inspection (le$) and Lines of Code inspectedper hour by
each team (right)

Major Errors

v3 v6 v12 v25

12
10

8

HTeamB

v3 v6 v12 v2s

Figure 2. Major (i’ep) and Minor (rightj errors detected in each program

Table 1 shows how many of the previously known
errors in the LIP programs were detected by each Fagan
inspection. List of known faults are derived from the
results reported in f6* 131. It shows that nearly half of all
the known faults were detected by Fagan inspection
method. Surprisingly, Fagan inspection method detected
one error in version 6 (referred to as error 6.5 hereafter)
that had not been detected despite extensive voting and
instrumentation effort that had been applied on this
version. This finding is impressive because (1) LIP
versions were known for their high (i.e., over 99.99% on
the average) reliability when they were initially
developed; (2) each version had been tested on more than
1,100,000 randomly generated test cases based on
realistic operational profiles; and (3) each version had
been subject to informal code reading by three
participants during instrumentation experiment.
Erroneous code fragment, designed to compute the slope
between the two points (xa,ya) and (xb,yb), is shown
below:

. . . .
else if (realcompare(xa-xb,O.O) 0 eq) and

(realcompare(xb-xc,O.O) = eq) then
begin

. . . .
mab := (ya-yb)/(xa-xc);

m b := -l.O/mb;
. . . .
This code fragment is unstable under a very few

condition even though xb is considered to be equal to xc
(i.e., realcompare (xb-xc)=eq). More specifically, this
formula is incorrect because actual computation mab do
not depend on finite precision arithmetic that
realcompare function uses. Therefore, the value of xc is
approximately (but not exactly) equal to that of xb, and
the value of mab is assigned an incorrect value. This
error is quite subtle and left undetected. Had the program
been executed with test cases that would have caused
failures, voting method would have detected the error. As
for instrumentation, one of the three participants failed to
detect the error during informal code reading but added a
valid self-check that would have detected the error.
However, the valid self-check was never activated when
tested by test cases generated based on operational
profile. This result shows that randomly generated test
cases alone may be insufficient criteria to effectively
expose residual software errors.

Unfortunately, Fagan inspection teams made several
inaccurate or incorrect error identification. Such
possibility is perhaps inevitable given that Fagan
inspection involves group and manual review of source
code by humans whose fallibility is well-understood. In

348

our experiment, team A indicated a correct code block as
a faulty one in the version 25, and team C identified two
correct code fragments as faulty ones in the version 3(see
table 1). We believe that the possibility of such shortfalls
can be reduced if Fagan inspection process is augmented
with a set of sohare tools such as dynamic testing tools
to assist inspection activities.

Already Known Faults Other Faults
Number Present Detected Faults Detected Faults

3A 1 0
3B 4 1 0
3 c 3 0
6A 2 1
6B 4 0 0
6C 3 0
12A 1 0
12B 4 1 0
12c 4 0
25A 3 0
25B 4 0 0
25C 3 0
Total 48 22 1

4.2 Comparisons with Instrumentation and Voting

Wrong
Identification

0
0
2
0
0
0
0
0
0
1
0
0
3

Table 2 compares the errors in the LIP programs
detected by voting, instrumentation, and by Fagan
inspection method. Fault numbers in the table are
assigned the same ones assigned in the previous
experiments [6] . Fault 6.5 refers to the error that had not
been detected in the previous experiments. Voting is
considered to have detected an error if any of the voting
triples or pairs detected the error (i.e., failing to produce
correct and majority result). Likewise, instrumentation
and Fagan inspection methods were considered to have
detected an error if at least one of the three instrumented
versions or Fagan inspection teams correctly reported the
presence of the error, respectively.

Fagan inspection technique detected a few more
errors than voting and inspection methods did. This
result demonstrates that Fagan inspection method is as
effective (if not more) as voting or instrumentation in
detecting errors. Fagan inspection method detected all
the errors (except error 3.4) that voting pairs or triples
did. Similarly, all but two errors detected by
instrumentation method were also detected by Fagan
inspection method. If one were to compare the number of
errors detected during individual code reading performed

during instrumentation experiment (shown as $ in the
table) against the number of errors detected by Fagan
inspection method, Fagan inspection is shown to be
clearly superior method to the code reading. Success of
Fagan inspection method is even more impressive if one
takes into consideration that Fagan inspection teams
were shorthanded. inspection method is even more
impressive if one takes into consideration that Fagan
inspection teams were shorthanded.

Another important consideration is the cost-
effectiveness of each method. We used the average
number of staff hours needed to detect an error as the
criterion. This criterion excludes the possibility of direct
and quantitative comparison of cost-effectiveness
between voting and the other methods. Voting, in
principle, may seem to cost effective because no further
human intervention is required once all the independent
versions and voter have been implemented. However, we
have several reasons to believe that voting is not as cost-
effective as instrumentation or Fagan inspection
methods: (1) multiple (2- or 3-) versions must be
developed, and software development processes well-
known to be a costly activity. While one might argue that
specification and testing costs need not be duplicated, we
note that extra overhead is needed to manage multiple
development teams and that such cost would not be
insigmficant cost. (2) Executing two- or three- versions
together and comparing the outputs do not necessarily
result in "complete" error detection. For example, if two
versions failed to produce a majority (unanimous in this
case) result, we have no option but to manually examine
which of the two versions (or both) was incorrect.

349

Table 2. Number of errors detected by voting,
instrumentation, and Fagan inspection. (Note: $ in the
instrumentation column means that the error was
detected during informal and individual code reading
phase ofthe instrumentation.)

6.5 * I

Error I Voting I Instrumentation I Inspection I

J

3.1 J J

3.3

12.4
25.1
25.2
25.3

J $
6.3 J
6.4 J

J J

J $ 4
J J
J J $ J

J $
6.3 J
6.4 J

25.4
Total

J

11 11 (7) 14

12.1 I J I J $ I J I
12.3
12.2 I I J

That is, voting method can reveal that one or more errors
exist in the program but provides little help in
pinpointing exact error location. Based on our
experience, we do not believe voting method to be a cost-
effective error detection method.

Cost-effectiveness of instrumentation and Fagan
inspection method can be objectively compared, and
Table 3 shows data obtained from our experiment. The
number of hours spent on Fagan inspection include time
for planning, overview, preparation, and inspection
phases. Similarly, the number of hours spent on
instrumentation includes, as reported in L61, times spent
reading spec~cation, developing self-checks,
implementing self-checks, and debugging instrumented
versions. 1

This result clearly shows that Fagan inspection
method is more cost-effective than instrumentation in
detecting errors. We note that average number of hours
needed to detect an error using Fagan inspection in our
experiment is comparable to what others have reported
from the industrial applications of Fagan inspection
method [11,12714]. However, we urge readers to interpret
our data with caution.

Our experiment is just one sample, and more data on
cost-effectiveness of instrumentation method are needed
before we can make more convincing and objective
conclusions on relative cost-effectiveness.

5. CONCLUSIONS

Based on our experience and empirical data we have
collected to date, we believe the Fagan inspection method
(or its variations) to be more cost-effective than voting or
instrumentation methods. Therefore, we would, as others
who applied Fagan inspection method on industrial
projects almost unanimously did, highly recommend
systematic application of Fagan inspection method
throughout software development life cycle phases.

Despite positive results on Fagan inspection we report
in this paper, we see several enhancements that can be
introduced to the Fagan inspection process to further
enhance its effectiveness. For example, Table 2 shows
that there are two errors (errors 6.4 and 25.4) that were
detected during instrumentation experiment but by none
of the Fagan inspection teams. Incomplete analysis seems
to be the primary factor in failing to detect error 6.4.
However, interestingly enough, error 25.4 is identical in
nature to error 12.4 which was successfully detected by
the Fagan inspection method and the Fagan inspection
teams reviewed the version 12 before they reviewed the
version 25. Yet, error 25.4 was not detected while error
12.4 was successfully detected. There appears to be two
contributory factors at work: (1) although these errors
had common semantics, their appearances didn't share
such explicit similarities; and (2) Fagan inspection teams
may have forgotten about the error that had been detected
earlier. Developing a tool that maintains a database of
known errors and allows dynamic testing of the selected
code fragment would be useful to Fagan inspection
teams. Such tools could be a part of an environment
whose goal is to maximize the productivity of the
inspection method.

Further empirical studies that can provide objective
comparison of various error detection methods are
needed. Our experiment extended a previous experiment
16] to compare voting, instrumentation, and Fagan
inspection method. We are in the process of conducting
another empirical experiment, extending Shimeall's
expenmentm, to compare effectiveness of Fagan
inspection against functional testing, voting,
instrumentation, and static analysis.

On the other hand, one of the three participants who instrumented version
25 did not submit a time sheet and was excluded in the comparison.

350

