
Analysis and Enactment of A Distributed Software Process Model :
The AttNet Model

Woo Jin Leet, In Sang Chungt, and Yong Rae Kwont
t Department of Computer Science, Korea Advanced Institute of Science and Technology

373-1, Kusong-dong, Yusong-gu, Taejon 305-701, Korea
E-mail: {woojin,yrkwon}@salmosa.kaist.ac.kr

$Department of Computer Science, Hallym Univ.
1, Okchon-dong, ChunChon, KangWon-do 200-702, Korea

E-mail: ischung@sun.hallym.ac.kr

Abstract

Process modeling has increasingly attracted an the
software engineering community. In the process mod-
eling, the enactment of software process model is a
dominant theme. In order to correctly and smoothly
enacting the software process model, it is necessary to
early detect the inconsistencies contained in the soft-
ware process model before the software process model i s
instantiated to actual enactment engine. In this paper ,
we provide an analysis framework and an enactment
mechanism for the AttNet model which is based on
Petri-nets and supports the distributed software pro-
cesses.

1 Introduction

Process modeling has increasingly attracted atten-
tion in the software engineering community. One
dominant theme in process modeling is the notion
of a process-centered environment, which operates as
an enactment engine for a specific process modeling
language[ll]. For correctly and smoothly enacting a
software process model, it is necessary to early de-
tect its inconsistencies which are caused by modeling
errors, before the software process model is instanti-
ated to actual enactment engines. Analysis of a soft-
ware process model is dependent to its software pro-
cess modeling language since it is carried out consid-
ering the characteristics of the target software process
model language.

Many software process model languages are based
on notational paradigms originally devised for other
purposes. APPL/A[6] extends Ada, Funsoft nets[3] is
based on Petri-nets, Marvel[5] is described by rules,

HFSP[4] is based on functional language, etc. Re-
cently, there have been the efforts to dealing with the
support of distributed software processes as software
projects become more larger and more complex. In
distributed software development environment, differ-
ent teams which may be located at different sites, have
different views on the software processes. According
to roles in a team or life cycle phase, a particular sub-
set of software processes may be emphasized. There-
fore, the knowledge about software development in
such projects should be distributed over the particu-
lar teams. In describing this distributed software pro-
cesses, it is important to independently divide the soft-
ware processes into geographically distributed teams
and to properly integrate each tasks into entire model.

There are some approaches to describe this dis-
tributed software processes. ASL[11] is extended the
Marvel by representing global control flow and syn-
chronization over local constraints which are described
by rules. SLANG[8] is based on Petri-nets. It pro-
vides a language construct, activity, which represents
a unit of execution. As a similar approach, there is
the AttNet[l] which is also based on Petri-nets. But
it is different with the SLANG approach in the ba-
sic idea of language construct, activity object and the
communication mechanism among them. The detail
comparisons will be given in Related Works. The At-
tNet is an adaptation of OPNets[2] which introduced
the concept of objects into Petri-nets in order to model
the real-time system by Petri nets objects. In AttNet,
each software process is described independently using
activity object and communications among them are
established by message-passing.

Although there have been many software process
model languages, only a few of them support analysis
frameworks for checking their consistencies[3, 91. In

278
0-8186-6960-8/94 $04.00 0 1994 IEEE

I

this paper, we provide a framework for analysis and
an enactment mechanism for a distributed software
process model, the AttNet model. Since the AttNet
model is hierarchically constructed by activity objects
which are divided into visible external structures and
invisible internal structures from outside, analysis of
the AttNet model is performed along the hierarchy
of activity objects by bottom-up approach. At first,
the activity objects in the bottom-level of the hierar-
chy are analyzed using analysis methods. For analyz-
ing a higher-level activity object which contains other
activity objects in its internal structure, internal ac-
tivity objects are abstracted about their reachability
properties and are represented in Petri-nets forms. In
the abstracted net, the analysis is carried out like a
bottom-level activity object.

In enactment, the AttNet model is considered as a
pool of activity objects regardless of calling relation-
ships between activity objects. When each activity
object is invoked, it is copied from the pool of activity
object and instantiated to an enactment process. The
enactment process executes its own actions and passes
messages between internal activity objects as a mes-
sage handler. Like the SLANG[8] approach for the
computational reflection, the AttNet provides reflec-
tion and evolution of process model by using a special
activity object, modify-model, which gets an activity
object from the pool and modifies it and puts it into
the pool again. The modify-model activity object is
similar to the assert and retract rules in Prolog.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the AttNet and gives its formal defi-
nition and shows an example described by the AttNet.
Section 3 explains a hierarchical analysis framework
and provides the abstraction algorithm of activity ob-
jects. Section 4 provides an enactment mechanism of
the AttNet model. Section 5 surveys related works.
And conclusions are given in Section 6.

2 The AttNet model

The AttNet was proposed for supporting dis-
tributed software processes with a language construct,
activity object, which represents a unit of task. As an
activity object can be described its task with other
sub-activity objects, the AttNet model is hierarchi-
cally constructed by activity objects. Activity ob-
jects can be performed concurrently at different sites
and communicate with each other by message-passing
mechanism.

2.1 Activity object

Since the internal details of each activity object
performed by each team should be hidden and only
external interface should be visible from outside in
the distributed software environment, activity objects
in the Attnet separate internal and external structure
clearly. The internal structure in activity object de-
scribes what an activity object performs by Petri-nets
notations. And the external structure represents in-
terfaces among other activity objects with input and
output message queues. In Figure 1, the external

Validate Program
473

472

f

--_.
interface gate

Figure 1: A representation of an activity object

structure of activity object, Validate Program, have
two input message queues and one output message
queue, but its internal structure is not visible. Arrival
of tokens at some of input message queues is regarded
as the request of services from other activity objects.
With input data, i t performs its own functionality by
enacting a fragment of Petri-nets. Output message
queues contain messages which may require the com-
munications with other related activity objects, after
performing its services. There are two types of activity
objects : primitive activity object which has no other
activity objects in its internal structure and composite
activity object which contains other activity objects.

2.2 Communication between activity ob-
jects

Activity objects communicate with each other
through input and output message queues connected
to the interface gates. The interface gate is a sort
of transition and passes messages from one output
queue to one input queue by firing it. Each inter-
face gate can be considered as an envelope of an exe-
cutable procedure consisting of two major concurrent
processes, Sender and Receiver. Conceptually , Sender
is a process which transmits messages from the out-
put message queue of one activity object to Receiver

279

and Receiver is a process which receives messages from
Sender and places them to the input message queue of
other activity object. The interface gate is appeared
in Figure 1.

2.3 Definition of the AttNet

The activity object in the AttNet model is a mod-
eling entity which may contain other activity objects
in its internal structure. Thus, the structure of the
AttNet model is similar to the tree structure, where
each activity object corresponds to node in a tree and
child activity object is contained in its parent activity
object. The AttNet model is recursively defined with
an activity object, which is similar to defining the tree
structure. We choose Predicate/Transition Net[l7] as
a Petri-Net notation for describing the internal struc-
ture of activity objects. Each place in P r /T net has
a strongly typed token which represents data type to
be performed.

Definition 2.1 The AttNet model

Activity object A N = (0, T, F ; IQ, OQ; A, MO)

AN‘ : set of internal activity objects,
1. 0 = S U AN‘ ,where

s = s s t a t e U stool U S f ina l -produc t
2. T = Tact U T g a t e , where

Tact : set of transitions,
T g a t e : set of interface gates

3. IQ = set of input queues
4. OQ = set of output queues
5. F = set of arc,

F ((Os US) x T) U (T x (1s US)), where
Is = I&(set of input queues in AN’) U OQ,
Os = Ob(set of output queues in AN’) U IQ

6. A = annotations for place, transition and arc
7. MO = initial marking

2.4 An Example

The example refers to one representative subprocess
of Develop Change and Test Unit[l2] in ISPWG, that
of making the design and code changes necessitated by
requirements change. This subprocess is represented
by four activity objects which may be performed con-
currently. Figure 2 shows the interfaces among four
activity objects. Internal structures of each activity
object are not visible. Each activity object which is
contained in Develop Change and Testing is further
defined with another activity object on the lower level
of the hierarchy in details. Each activity object is de-
scribed as follows :

Figure 2: Example: Develop Change and Testing

Modify design activity object modifies the current
design with regard to requirements change. This
activity object communicates with review design
activity object for checking the consistency of the
modified design.

Review design activity object reviews the modi-
fied design for keeping the design consistent.

Modify code activity object modifies the infected
part of codes with regard to modification of de-
sign. For testing the modified code, this activity
object interacts with testing activity object.

Testing activity object is to test the modified
codes. Testing activity object may be divided
into several activity objects : Modify Test Plans,
Modify Unit Test Package, and Test Unit.

Figure 3 shows the internal structure of activity object
modify design. In Figure 3, the thick transition such
as modify-infected-design-pad means that i t will be
further described in details.

3 Analysis of The AttNet Model

Analysis of software process model aims at de-
tecting errors and inconsistencies in software process
models before models are used for governing software

280

3 AttNet model, the analysis procedure is divided into
Modify W i n two main sub-procedures. One is to independently

analyze one activity object regardless of other related
activity objects. The other is to abstract each activity
object about the reachability property which we want
to analyze for checking the inconsistencies in commu-
nications among activity objects in the composite ac-
tivity objects.

3.1

le=st(E)I

Analysis of an activity object

Analysis of each activity object is performed in
two sides : static properties and dynamic behaviors.
In analysis for static properties, structural properties

<D> CuneatDesiga <E> Des1gnErrOr which were defined in [3], such as source channel, use-
<F_C> FeedbackChanges <A> AmeOdmentofDesign less object type, sink channel, unprocessable object

type, sink agency and so on are treated by checking
connectivities between places and transitions. These
syntactic errors are mainly caused by mistakes of pro-
cess model designers. And they are easily checked dur-

L

k g e d

< R _ R Design Review Feedback <M_D> Moddid Design

<R_C> Requlrem~lt Changes <F_D> Final Design

Figure 3: Modify Design process

processes[3]. Since the AttNet model consists of activ-
ity objects which represents distributed software pro-
cesses, its analysis should include local analysis of each
activity object and checking for inconsistencies in the
communications among activity objects. Analysis of
the AttNet model is carried out along the hierarchy
of activity objects by bottom-up approach. Figure 4
shows the overall procedure of the analysis for the At-
tNet model. At first, bottom-level activity objects are
analyzed and then they are abstracted about its reach-
ability, which are used for analyzing activity objects in
higher level. In order to analyze a composite activity
object, internal activity objects of the activity object
are replaced into their abstract forms and then, in the

-
ing writing model since they are visible in Petri-Nets
graphical notations. But, for checking dynamic behav-
iors, we have to construct a reachability tree of each
activity object. In order to simplify construction of
a reachability tree in PrT net, we don’t consider the
transition annotation(transiti0n selector). The tran-
sition selector is used to choose one transition from
some firable transitions which have the same preset.
Since transition selectors are used for making a net
deterministic, it only increases nondeterminism to get
rid of transition selectors in net. Assuming that all
input data are available at beginning, the reachabil-
ity tree of activity objects can be constructed. Using
reachability tree, we checks following properties:

replaced net, the analysis of the activity object is to
be performed. Considering hierarchical analysis of the

0 liveness : each action in an activity object
should be firable at least once. And there is no
dead sequence in a reachability tree.

present level = bottom
while (there i s n o activity object)

s tep 1 : for each activity object in present level
replace each in t e rna l activity object
i n to i t s abstract f o r m

step 2 : analyzes each activity object
s tep 3 : abstracts each act iv i ty object about i t s

reachabilit y
s tep 4 : moves t o upper level

Figure 4: Analysis of The AttNet Model

0 reversibility : a Petri net(N,Mo) is said to be
reversible if, for each marking M in R(Mo) , MO
is reachable from M[16].
In a reversible net, it always get back to the initial
marking or state.

For checking liveness, we search for the dead state
node: that is, the state which any transition cannot be
firable and transitions which are not appeared on arcs
in reachability tree. In the AttNet model, a reversible
activity object means it will always do the same ac-
tions given the same input data. For satisfying the
reversibility, each terminal node can be back to the
root node in the reachability tree.

28 1

step 1 : constructs a reachability tree
step 2 : obtains ordering relationships from

a reachability tree
step 3 : constructs Extended Hasse Diagram
step 4 : transforms Extended Hasse Diagram

(a) I1 AND I2 (b) 01 OR 02
into an IEN

Figure 5: Abstracting an activity object into an IEN Figure 6: AND, OR relations in ordering relations

3.2 Abstraction of activity objects of related queues to be executed , which we define as
a O R relation.

An activity object consists of a visible external
structure and an invisible internal structure from out-
side. Since the internal structure of an activity object
cannot be seen from outside, there should be a mech-
anism which can represent its characteristics using its
visible external structure, for analyzing composite ac-

Definition 3.1 Extended Hasse Diagram
Hasse Diagram is used for graphically representing the
partial ordering relations. Extended Hasse Diagram i s
a Hasse Diagram which contains AND, OR relations
On each branching and joining.
An A N D relation among places that all related

tivity Objects* As a property for characterizing the
behavior Of an activity Object, we use the Ordering

places have to be passed. An O R relation among places
that one of related places m a y be passed.

relationships of its input and output queues, which
are used for constructing reachability tree in compos-
ite activity objects. For representing these ordering
relationships with Petri-net notations, we generalized
the Interface Equivalent Net(1EN) concept which was
proposed in order to analyze interactions among se-
quential objects in OPNet[2]. An IEN is a Petri-net,
where transitions represent input, output queues and
places are used for achieving ordering relationships
between the external structures. That is, an IEN is
a abstract representation of an activity object about
its reachability property from outside views. Figure 5
shows the overall procedure for abstracting an activity
object into an IEN form. The ordering relationships
are extracted from its reachability tree and then they
are represented Extended Hasse Diagram(EHD) which
contains AND, OR relations on the branch over Hasse
Diagram and finally, it is transformed into IEN.

3.2.1 Extracting ordering relationships

A reachability tree contains all possible ordering se-
quences of firable actions. From the reachability tree,
we can get ordering relations of all pairs of input and
output queues. These ordering relations satisfies the
condition of a partial ordering relation ,eliminating
two special cases which are appeared in Figure 6. In
Figure 6 (a), joining and branching at a transition
cause all related queues to be executed in arbitrary
order, which we define as a AND relation. In Fig-
ure 6(b), joining and branching at a place cause one

The ordering relationships of the external structure
can be described with Extended Hasse Diagram.

3.2.2 Transforming into an IEN

An EHD is transformed into an IEN by transformation
rules shown in Figure 7. Input and output queues
in EHD are transformed into transitions in IEN. For
reserving the ordering relations, places are inserted
between transitions in IEN. In Figure 7, a sequence of
two queues is represented as a sequence of place and
a transition. And the AND or OR relations in the
EHD are transformed the branching and the joining
on transitions or places, respectively. Transitions in
the IEN are used for synchronizing with other activity
objects : input queue synchronizes with incoming arc
into that transition, output queue with outgoing arc
from that transition.

Figure 8(a) shows Develop Change and Testing ac-
tivity object whose internal activity objects are re-
placed its IEN. In Figure 8(a), SubNetl is the IEN for
Modify Design, SubNet2 for Review Design, SubNet3
for Modify Code, and SubNet4 for Testing. In Fig-
ure 3, we can easily extract the ordering relationships
of external gates(ig1 - ig5), (ig2, ig3 ; ig5; igl; ig4).
That is, in Figure 3, Design and Requirement Change
are used for generating Modified Design and then Re-
view Feedback from activity object, Review Design, is
used for producing Final Design. These ordering re-
lationships which are represented in EHD are trans-

282

I

r Develop Change and Testing

Y A Y if?? 2

Figure 7: Rules for transforming from EHD to IEN

formed into an IEN, SubNetl, by applying transfor-
mation rules. Each SubNet is merged into one net
by unifying the same interface gates in each SubNet.
That is, input and output queues which are the same
data type are unified into one transition in a merged
net. We call this merged net as abstract object. Fig-
ure 8(b) is the IEN which is obtained by applying the
abstraction procedure to the abstract object of Fig-
ure 8(a). In Figure 8(a), we can get the ordering rela-
tionships among external interface gates, (gl , g2; g4;
83; g5, g6). Analysis of abstract object is carried out
by the same analysis method which was described in
section 3.1.

4 Enactment of The AttNet Model

The AttNet model can be considered as a pool of
activity objects although they are logically connected
in a hierarchical structure. Also, each activity object
has its own life-cycle : after it is invoked at a stimulus,
it performs its own function and finally dies. In enact-
ing the AttNet model, activity objects are instantiated
from the pool of activity objects, like rules in rule-
based system. Figure 9 shows the overall structure of
enacting the AttNet model. Since each activity object
is invoked by its parent activity object, running enact-

(a) After abstracting internal activity objects

(b) The IEN of (a)

Figure 8: An example for IEN

ment processes construct a tree structure,enactmenl
process tree, by calling relations. In Figure 9, an en-
actment process B is invoked by its parent process A
and is to be a child of parent process. Each process
on enactment process tree has two roles : one is to
invoke sub-activity objects and enact actions in its in-
ternal structure; the other is to pass messages among
child enactment processes as an message handler. In
Figure 9, an enactment process, A, plays a role as an
message handler of enactment processes B,C, and D.

There is one special activity object which modi-
fies the AttNet model itself. In Figure 9, enactment
process F modifies activity objects in the pool. Us-
ing this activity object, we provide the reflection and
evolution properties of software process model. Like
SLANG[8] approach for providing computational re-
flection, we treat the AttNet model as data which can
be represented in tokens. Figure 10 shows the spe-

283

I

modify-mobel
activity object

Figure 9: The overall structure of enacting the AttNet

e execution engine selects firable actions by refer-
ring to the local status. Then it enacts one of
firable actions. And it invokes activity objects
which include in its internal structure.

e message handler passes messages among child-
enactment processes.

e exception handler treats the issues involved in on-
the-fly modification of process(that is, rollback-
ing, undoing, passing steps and so on) by updat-
ing the local status in order to keep enactment
processes consistent. Also, this part has the full
responsibility for whether to terminate this en-
actment process or not.

model An enactment process is invoked by an execution en-
gine of parent’s enactment process. Its termination is

status. When the present state of local status is the
same of the initial state, the exception handler ter-
minates its enactment process and informs its parents
process of termination.

4.2 Evolution of process model

c \ decided by the exception handler by checking the local

Activities for evolving software process model are
appeared in root activity object of the AttNet model.
Figure 11 shows the mechanism for supporting evolu-
tion of process model. Main software processes and an
evolution process are concurrently executed. The evo-
lution process is considered as a monitoring process
for main software processes. That is, i t is monitoring

Legend :

A-0 : activity objects R-m : requests of modification

E : Errors in AttNet model Ack : acknowledge

Figure 10: activity object modify model

-
the request of changing model and, if any request, it
invokes the modify-model activity object and finally
returns to the initial monitoring state. The heart of
the evolution process is the modify-model activity ob-
ject. The evolution process will be terminated after
the final product is delivered.

cia1 activity object,modify model. After it receives the
request of modification as an input, it copies activ-
ity objects which we want to modify from the pool
of activity objects and then i t modifies activity- ob-
jects. The modified AttNet model have to be checked
its consistency by analysis methods before i t is put at 5 Related Works
the pool again. Like assert and retract rules in Pro-
log, the modify-model is used at changing the activity
objects of the pool.

There have been many process modeling languages
which are based on notational paradigms originally
devised for other purposes[lO]. But, a few process

4.1 Enactment Process modeling languages support the distributed software
processes. In describing the distributed software pro- -

cesses, it is important to clearly separate tasks of each
team and to properly integrate them into entire pro-
cess model for the convenience of describing and ana-
lyzing software processes.

e local status keeps the current state of the enact- As distributed software process modeling lan-
guages, there is a ASL[11]. ASL provides bi-level

Each activity object is instantiated into an enact-
ment process which consists of four important parts.
They are described as followings :

ment process. It is updated by other three parts.

284

<finalgroduct> 61
I

Figure 11: activity object modify model

formalisms suitable for expressing and enacting large-
scale software processes. The global formalism con-
centrates on the overall control flow and synchroniza-
tion among processes. And local formalism is used
for expressing constraints and policies on individual
tools and data. Since ASL combines two different for-
malisms for describing distributed software processes,
it is difficult to check the consistency of software pro-
cess model. But, the AttNet can support global and
local formalisms using a single language construct, ac-
tivity object .

SLANG[8] is based on Petri-nets for describing dis-
tributed software processes. It is very similar to the
AttNet approach in hierarchically constructing pro-
cess model with activities and enacting the model by
instantiating the activities. But, they have differences
in their basic language constructs: SLANG’S activity
vs. AttNet’s activity object. Followings are basic dif-
ferences of two approaches.

0 In the AttNet, activity objects are based on the
object concept with the message passing mech-
anism for communicating between activity ob-
jects. But, in SLANG, activities communicate
and are synchronized via global data, interface
places. That is, while SLANG is tightly coupled,
the AttNet is loosely coupled.

0 Since SLANG communicate via global data, there
are some dificulty in analyzing each activity inde-
pendently. Therefore, entire model is considered
at the same time rather than one by one in analy-
sis. In AttNet, the activity object may be consid-
ered as an independent object. So, it is possible to

analyze each activity object and then merge the
analyzed results for checking global consistencies.

In the view of the checking the consistency of soft-
ware process model, there are a few process model
languages. DesignNet[9] is based on Petri-nets and
AND-OR graphs. AND-OR graphs are used to decom-
pose goals into subgoals and Petri-nets describes pro-
cess model skeletons. In DesignNet, some properties of
project are analyzed: connected, plan complete, plan
consistent, and well-executed. Funsoft nets[3] is also
based on high-level Petri-nets, Predicate/Transition
net. With transitions refinement, Funsoft nets is con-
structed hierarchically. In Funsoft nets, there are a va-
riety of analysis methods for static and dynamic prop-
erties of a software process model. Although these
two nets provide some analysis methods by adapting
a variety of Petri-nets analysis methods, there are no
language constructs for describing and analyzing dis-
tributed software processes.

6 Conclusions

In this paper, we presented an analysis framework
and enactment mechanism for a distributed software
process model, the AttNet model. Considering the
hierarchical structure of the AttNet model, the hier-
archical analysis is performed by using the abstrac-
tion of activity objects. The abstraction algorithm
extracts the reachability property from the internal
structures of activity objects and represents it in ab-
stract net using the same Petri-nets form. In execut-
ing the AttNet model, activity objects are considered
as independent items in the pool. After being copied
from the pool, activity objects are instantiated to en-
actment processes, which are concurrently executable
units at different sites. For providing the concepts
of reflection and evolution of process model, a special
activity object, modify-model, which modifies activity
objects is proposed.

Since this work represents at the minimum of anal-
ysis framework and enactment mechanism for the At-
tNet model, the further researches on describing and
analyzing resources and data types which are defined
as tokens are to be done.

References

[l] I S . Chung and Y.R. Kwon, “The AttNet Model:
A Petri Net Based Language for Modeling Dis-

285

I

tributed Software Processes”, Proc. Infoscience
’93, pp. 121-128, Oct 1993.

[2] Y.K. Lee and S.J. Park, “OPNets : An Object-
oriented High-level Petri Net for Real-time System
Modeling”, Journal of Systems and Software, Vol.
20, pp. 69-86, Jan 1993.

[3] V. Gruhn, Validation and Verification of Software
Process Models, University Dortmund, 1991.

[4] T. Katayama, “A Hierarchical and Functional
Software Process Description and its Enaction” ,
Proc. 9th Int’l Conf on Software Eng., pp. 343-
352, 1989.

[5] G.E. Kaiser, P.H. Feiler and S.S..Popovich, “In-
telligent Assistance for Software Development and
Maintenance”, IEEE Software, pp. 40-49, May
1988.

[S] S.M. Sutton, L.J. Osterweil and D. Heimbiger,
“Language Constructs for Managing Change in
Process-Centered Environments”, Proc. 4th A CM
SIGSOFT Symposium on Software Development
Environment, pp. 206-217, 1990.

[7] S. Bandinelli and A. Fuggetta, “Computational
Reflection in Software Process Modeling : the
SLANG Approach”, Proc. 15th In27 Conf. on Soft-
ware Eng., pp. 144-154, 1993.

[8] S. Bandinelli, A. Fuggetta and C. Ghezzi, “Soft-
ware Process Model Evolution in the SPADE Envi-
ronment”, IEEE Trans. on Software Engineering,
Vol. 19, No. 12, Dec. 1993.

[9] L.C. Liu and E. Horowitz, “A Formal Model for
Software Project Management”, IEEE Trans. on
Software Engineering, Vol. 15, No. 10, pp. 1280-
1293, May 1989.

[lo] B. Curtis, M.I. Kellner and J . Over, “Process
Modeling”, Comm. of the ACM, Vol. 35, No. 9,
pp. 75-90, Sep 1992.

[ll] G.E. Kaiser, S.S. Popovich and I.Z. Ben-Shaul,
“A Bi-Level Language for Software Process Mod-
eling”, Proc. 15th Int’l Conf. on Software Eng., pp.
132-143, May 1993.

[12] M.I. Kellner, P.H. Feiler, A. Finkelstein, T.
Katayama, L.J. Osterweil and M.H. Penedo,
“ISPW-6 Software Process Example”, Proc. 1st
Int’l Conf. on the Software Process : Manufactur-
ing Complex Systems, pp. 176-186, Oct 1991.

[13] D. Heimbiger and M.I. Kellner, “Software Pro-
cess Example for ISPW-T, avail-
able in /pub/cs/techreports/ISP W7/ispw7.ex.ps. Z
b y anonymous f t p ftp.cs.colorado.edu, Aug 1991.

[14] B. Peuschel, W. Schafer and S. Wolf, “A
Knowledge-Based Software Development Environ-
ment Supporting Cooperative Work”, Interna-
tional Journal of Software Engineering and Knowl-
edge Engineering(SEKE), Vol. 2, No. 1, pp. 79-106,
1992.

[15] W. Reisig, Petri Nets: An Introduction, Springer-
Verlag, 1986.

[16] T. Murata, “Petri Nets: Properties, Analysis and
Applications”, Proceedings of the IEEE, Vol. 77,
No. 4, pp. 541-580, Apr 1989.

[17] H.J. Genrich, “Petri Nets: Applications and Re-
lationships to other Models of Concurrency”, Pred-
icate/Transition Nets, edited by W. Brauer, W.
Reisig, G. Rozenberg, Springer-Verlag, pp. 207-
247, 1987.

286

http://ftp.cs.colorado.edu

