
Testing of Concurrent Programs After Specification Changes

In Sang Chung
School of Information and Computer Eng.,

Hansung University
insang@hansung.ac.kr

Hyeon Soo Kim
School of Computer and Software Eng.,

Kumoh National University of Technology
hskim@cespc1.kumoh.ac.kr

Hyun Seop Bae, Yong Rae Kwon
Department of Computer Sci.,

Korea Advanced Institute of Science and Technology
fhsbae, yrkwong@salmosa.kaist.ac.kr

and Dong Gil Lee
Electronics and Telecommunications Research Institute

dglee@etri.re.kr

Abstract

This paper describes a specification-based regression
testing technique that can be applied for revalidating con-
current programs after specification changes. This kind
of regression testing technique requires sequencing con-
straints which specify the precedence relations among syn-
chronization events. In our method, the sequencing con-
straints are extracted automatically from Message Sequence
Charts(MSCs) that are considered to be partial and nonde-
terministic specifications. We show how to identify the se-
quencing constraints affected by the modifications of a spec-
ification rather than creating new sequencing constraints
from scratch to reduce the cost of regression testing. We also
describe how to determine whether the affected sequencing
constraints are satisfied by the program being tested.

1. Introduction

The primary concern of regression testing is to illustrate
that changes introduced in a program are correct and do
not adversely affect the unchanged portions of the program.
During the process of regression testing, all previously de-
veloped test cases may be deployed for revalidating a mod-
ified program. The revalidation methods of this form tend
to consume large amounts of time and computing resources.
There has been a significant amount of research on the de-
sign of effective regression testing techniques to reduce the
cost of regression testing[10]. Many of such techniques
have focused on regression testing of sequential programs.

Furthermore, most prior work on regression testing in-
volves code-based techniques that select test cases using
the code of the original and modified programs[10]. Con-
sequently, little support has been provided for coping with
specification changes. In practice, frequent modifications
are made to specifications for various reasons: to correct the
errors in specifications, to enhance or change functionali-
ties of the corresponding programs. A program is modified
to accommodate changes in its specification, leading to re-
testing the modified program. For effective fault detection,
information on specification changes should be also consid-
ered in selecting test cases. It has been shown that code-
based testing and specification-based testing complement
each other[3]. This is because specification-based testing
is based on valid behaviors that should be exhibited during
executions of a program, while code-based testing depends
on feasible behaviors exercised by program execution.

This paper presents a specification-based regression test-
ing technique for concurrent programs using information on
specification changes. Specification-based regression test-
ing of concurrent programs investigates whether a (modi-
fied) program conforms to its (changed) specification. Spec-
ifications for concurrent programs include the sequencing
constraints among synchronization events that have to be
satisfied during program execution. There has been re-
search on testing concurrent programs using sequencing
constraints[3, 4]. For example, Tai et al. proposed a testing
methodology based on the use of CSPE(Constraints on Suc-
ceeding and Preceding Events) that specifies restrictions on
the event sequences of a concurrent program[3]. This test-
ing method uses sequencing constraints, given by a user or

automatically derived from formal specifications, and then
generates event sequences as test cases according to the se-
quencing constraints. However, they did not address the
problem of re-testing a (modified) program after changes
are made to its specification.

Changes in specifications require us to create new se-
quencing constraints from scratch, which can be expensive
in terms of human and machine effort. One approach to re-
ducing the cost of regression testing is to identify sequencing
constraints affected by specification changes and to perform
testing on the modified program only for the affected se-
quencing constraints. This approach, called incremental
regression testing, can avoid the costly construction of new
sequencing constraints.

In order to illustrate our ideas, we will use Message
Sequence Charts(MSCs) with partial and nondeterminis-
tic (specification) semantics. MSC is a popular and good
means of describing the selected execution behavior of con-
current/distributed programs. Compared to other formal
specification techniques, MSC is a relatively easy way to
show interactions among tasks. The testing technique we
will present in this paper regards MSC specifications as
a suite of sequencing constraints to restrict the execution
behaviors of a concurrent program. Based on this consider-
ation, we present some techniques for impact analysis that
allow us to identify which sequencing constraints have been
affected by the modification.

2. Brief Overview of Message Sequence Charts

MSC provides a graphical means of visualizing se-
lected system runs in distributed systems such as telecom-
munications systems. It has been standardized by the
ITU(International Telecommunication Union) which main-
tains MSC recommendation Z.120[12]. Even before the
approval of the MSC recommendation, it has used for a
long time to specify system requirements, often in combi-
nation with SDL. One major reason for popularity of MSCs
lies in their clear graphical layout that gives an intuitive
understanding of partial system behavior.

MSCs mainly concentrate on showing the interchange of
messages among system components and their environment.
In this paper, we assume that system components refer to
tasks, while they can be modeled by various constructs such
as services, processes, and blocks in SDL. The main features
of MSCs can be illustrated in terms of basic language ele-
ments and structural language elements. The basic language
elements of MSCs include the constructs that are necessary
to specify communications and local actions, whereas the
structural elements include constructs that can be used to
show the hierarchical refinement relations among MSCs.

Figure 11 shows an example of MSC usage. This example
1Note that the MSC is annotated with integer vectors. These vectors

describes a part of a phone conversation scenario using most
of the basic primitives of standard MSC. There are four task
instances: caller, line a, trunk and line b, each of which is
depicted as a vertical line. A horizontal arrow represents
a communication via passing a message between two task
instances.

ringing

accepted

free_tone

free_tone ringing

voice_in

voice_in

voice_out

off_hook

tone_off

tone_off

idle idleidle

busy_tone

liberated

on_hook

liberated

conversation

(3,6,5,2)

(3,7,6,2)

(3,8,6,2)
(4,8,6,2)

(5,9,8,5)

(3,6,6,2)

(3,6,7,4)

(3,6,6,2)

(6,9,9,5)

(7,9,9,5)

(5,9,9,5)

(7,10,9,5)

(7,11,9,5) (7,11,11,5)

(5,9,10,5)

(7,11,12,5)

(9,15,16,8)

(9,14,15,8)

(9,14,16,8)

(9,14,17,10)

(9,14,18,10) (9,14,18,11)

(9,14,15,10)

(9,14,15,9)

(7,11,12,7)

(5,9,10,6)

(3,6,4,2)

(3,6,6,3)

(3,6,6,4)

caller line_a trunk line_b

trunk_in_
control

on_hook

on_hook
(9,12,13,8) (9,13,13,8)

(9,14,13,8)
(9,14,14,8)

end_conversation (8,12,13,8)

Figure 1. A Message Sequence Chart for
Phone Conversation

For example, the task line a passes a free tone message
to a caller task. A hexagon crossing over a task instance
represents a condition to be satisfied by the instance during
execution. For example, the task trunk must be in the ringing
state after it received an accepted message from the task
line b in the phone conversation scenario. Shared conditions
are represented by hexagons crossing over two or more tasks
such as conversation and end conversation. Finally, there is
a coregion that is depicted by a dotted vertical line. Events
in a coregion are not ordered while events in a task instance
are totally ordered along the vertical line. For example, a
task caller cannot send a voice in message until receiving
a tone off message, while a task trunk can send a free tone
message before sending a ringing message and vice versa.

contribute to determining the causal relations among events in MSCs. How
to annotate MSCs with integer vectors and how to catch the causal relations
using the vectors are explained in the following section.

3. Constraint-based Regression Testing

In this section, we present a regression testing method-
ology that uses sequencing constraints between events. The
methodology consists of four steps: constraints elicitation,
impact analysis, nondeterministic testing, and deterministic
testing.

� Constraints elicitation: Events in MSC specifications
are ordered by logical time stamps. By comparing the
time stamps of two events, we can determine the se-
quencing constraints between them. Such sequencing
constraints are used as validity constraints that an im-
plementation has to satisfy.

� Impact Analysis: In specification-based regression
testing, impact analysis is required to identify the af-
fected constraints after a change is made to a specifi-
cation. We can reduce the cost of regression testing
by re-testing a concurrent program against only the
affected constraints rather than testing all constraints.

� Nondeterministic testing: Nondeterministic testing
executes a concurrent program P with a given input
X many times so that as many (distinct) event se-
quences as possible can be exercised. During repeated
nondeterministic execution of P , the event sequences
exercised byP are collected and then scrutinized to de-
termine whether they satisfy the sequencing constraints
obtained during impact analysis.

� Deterministic testing: The deterministic testing tech-
nique forces a program to follow a given event se-
quence with a given input data[9, 11]. This technique
is useful for testing the sequential constraints that non-
deterministic testing did not cover.

3.1. Constraints Elicitation

We adapt Fidge’s vector time stamping method[7] and at-
tach a logical time stamp to each event in the MSC specifica-
tion to detect the precedence relations among events. In this
paper, we assume that the readers are familiar with Fidge’s
method. Constraints elicitation step can be explained using
five rules according to the semantics of MSC constructs.
Figure 1 shows the results of applying these rules to the
phone conversation example.

� Rule 1 : Initialization Rule
Initially, each task is given zero-time. That is, Ti =
(0; � � � ; 0), whereTi denotes the current time of task pi.
The dimension of Ti is the same as the number of tasks
included in the given MSC specification. In Figure 1,
there are four tasks in the specification and all events
have four dimensional time stamps.

� Rule 2 : Inheritance Rule
Basically, the time stamp of each event is inherited
from that of the preceding event. This rule depends on
whether events are located on a coregion or not. Let
Tij denote the time stamp attached to the j-th event of
task pi.

– Rule 2-1 : Normal Inheritance
Whenever the j-th and the (j+1)-th events are not
in a coregion, Tij+1 = Tij + i-th unit vector. In
other words, each event not included in a coregion
inherits its time stamp from that of the event just
preceding with one increment of the i-th column.

– Rule 2-2 : Coregion Inheritance
Let j+1-th, : : :,m-th events of the task pi are in a
coregion. If event j is the latest event which is not
on the coregion, then for 8x 2 fj + 1; : : : ;mg,
Tix = Tij + i-th unit vector. That is, all events
in a coregion have the same time stamp inher-
ited from that of the event preceding coregion
with one increment of the i-th column. Consider
the coregion in the trunk task of Figure 1. Two
sending events trunk-send(free tone) and trunk-
send(ringing) have the same time stamp (3,6,6,2)
which is inherited from the trunk-recv(accepted)
event.

� Rule 3 : Communication Rule
Whenever two tasks communicate with each other,
there is an implicit precedence relationship.

– Rule 3-1 : Sending Rule
If the j-th event of task pi is a sending event, the
time stamp Tij is carried to the receiver task after
applying Rule 2.

– Rule 3-2 : Receiving Rule
If the n-th event of task pm is a receiving event,
Tmn takes the pairwise maximum between its
own time stamp evaluated by Rule 2 and the time
stamp carried from the sending event.

For example, let’s consider the time stamp (3,6,6,3)
of the line b-recv(ringing) event. This is computed
by PAIRWISE MAXf(3,6,4,3),(3,6,6,2)g in Figure 1,
where the time stamp (3,6,4,3) is inherited from the
line b-send(accepted) while (3,6,6,2) is carried from
the trunk-send(ringing).

� Rule 4 : Shared Condition Rule
All tasks (pj ; � � � ; pl) sharing a condition maxi-
mize their time stamps using every other involved
task. That is, for 8x 2 fj; : : : ; lg, Txc = PAIR-
WISE MAXfTj; � � � ; Tlg, where Txc is the time stamp
of the shared condition event. For example, the shared

condition conversation has a time stamp (5,9,8,5)
which is calculated by PAIRWISE MAXf(5,8,6,2),
(3,9,6,2), (3,6,8,4), (3,6,6,5)g.

� Rule 5 : Creation Rule
Whenever task pi creates task pj , pj takes the current
time from pi. That is, Tj = Ti.

Figure 1 includes the results of attaching vector time
stamps using these rules. After attaching the time stamp,
we can determine the precedence between two events by
comparing their time stamps according to the following rule.

� Comparison Rule
For two given events a and b included in the tasks pi
and pj , respectively, the precedence relation between
them can be decided as follows:
a! b, Tia(i) � Tjb(i) ^ Tia(j) < Tjb(j)
where T(k) means the k-th column of the time stamp
T.

3.2. Events Precedence Graph

Using the time stamping rules and the comparison rule,
we can determine the precedence relations among events in
MSCs. The precedence relations included in a given MSC
M is denoted by a partially ordered set, shortly poset, (EM ,
!M) whereEM is the set of events in M and!M is an infix
notation for the precedence relation. Each event in EM is
identified by the task which it is associated with, the type of
action such as send or recv, and the name of message. For
example, the events “task t1 sends a messagem1” and “task
t2 receives a message m2” are denoted by “t1 : send(m1)”
and “t2 : recv(m2)”, respectively. Events involved with
(shared) conditions are used only for establishing prece-
dence relations between communication events, but are not
included in EM .

A poset (EM , !M) can be represented as a directed
acyclic graph GM = (EM ; AM), where AM is a set of
edges such that AM = f(u; v)ju; v 2 EM ; u!M vg. GM

will be referred to as the event precedence graph or EPG
in this paper. The edge (u; v) in AM means a direct prece-
dence relation between two events u and v, but transitive
precedence relations are not explicitly shown in GM . For
each edge (u; v) 2 AM , we say that u is a direct predecessor
of v and v is a direct successor of u. PRED(v) denotes the
set of all direct predecessors of event v, and SUC(v) the
set of all direct successors of event v. For example, Fig-
ure 2 shows the EPG corresponding to the MSC of Figure 1.
Actually, each node must be labeled with an event name
such as “caller : recv(free tone)”. For the simplicity,
however, we use the edge label corresponding the message
name and give a number to each node. Thus, the start node
with edge label m stands for the event “ti : send(m)” and

the end node represents the event “tj : recv(m)”. For
example, a node labeled number 9 stands for the event
“line a : send(free tone)” and a node labeled 10 rep-
resents the event “caller : recv(free tone)”. In this EPG,
PRED(8)=f3,5,7g and SUC(3)=f4,8g.

accepted

free_tone

free_tone

ringing

voice_in

voice_in

voice_out

off_hook

tone_off
tone_off

busy_tone

liberated

on_hook

liberated

on_hook on_hook

12

5 6

78

11

15 16

18

19 20

24

25 26

27

2930

31 32

12

13 14

17

21 22

23

28

34

910

Figure 2. An Event Precedence Graph for the
MSC of Figure 1

3.3. Impact Analysis for Primitive Modifications

This section describes an impact analysis technique to
identify the affected sequencing constraints using GM after
a change is made to an MSC M. In order to facilitate the
presentation, we need following notations for the givenGM .

� B(GM=V) : set of all predecessors of the events in V .
B(GM=V) = fw j for v 2 V , w 2 EM ^ w !?

M v g

� F(GM=V) : set of all successors of the events in V .
F(GM=V) = fw j for v 2 V , w 2 EM ^ v !?

M w g

In this paper, a sequencing constraint is denoted by an
event pair (a; b) such that a; b 2 EM and is used to specify
restrictions over the execution orders of events a and b that
have to be satisfied during program execution. Let the orig-
inal MSC be M and the modified MSC M 0. Then, we say
that a sequencing constraint or an event pair (a; b) such that
a; b 2 EM \ EM 0 is affected if a modification causes:

(A1) a 6!M b ^ b 6!M a ^ a!M 0 b

(A2) a!M b ^ a 6!M 0 b ^ b 6!M 0 a

(A1) means that two concurrent events a and b are se-
quentialized by the modification. Similarly, (A2) means
that two sequential events a and b become concurrent af-
ter the modification. As usual, two primitive actions are
taken to modify an MSC M : adding a message to or delet-
ing a message from M . First, we consider the case in
which a message is added to M. Adding a message m can
be interpreted as an operation of creating a new edge e
such that e = (ti : send(m); tj : recv(m)) in the cor-
responding GM . This provides the precedence relation
between the events “ti : send(m)” and “tj : recv(m)”:
ti : send(m) !M tj : recv(m). Using the fact that
the relation is transitive, it is observed that the newly cre-
ated edge e establishes the precedence relation between two
sets of events: the predecessors of ti : send(m) and the
successors of tj : recv(m). This indicates that all se-
quencing constraints affected by adding a message m are
of the form (A1) above and can be obtained by the cartesian
product of the sets “B(GM=PRED(ti : send(m)))” and
“F(GM=SUC(tj : recv(m)))” which gives us the universe
of sequencing constraints of interest.

Let us denote “B(GM=PRED(ti : send(m)))” by
∆Bm [M] and “F(GM=SUC(tj : recv(m)))” by ∆Fm [M].
In addition, the cartesian product of those two sets is denoted
by ∆m[M]. That is ∆m[M] = ∆Bm [M]�∆Fm [M]Note that
∆m does not contain the newly added events “ti : send(m)”
and “tj : recv(m)”. All event pairs of ∆m are not necessar-
ily considered to be affected because there might be cases
where no new precedence relations are introduced, but still
maintain the relations established before adding the message
m to the MSC M . Such cases might be encountered when
there exist other paths from events in ∆Bm [M] to events in
∆Fm [M] in GM . This indicates that for (a; b) 2 ∆m[M],
the relation, a!M b, that previously hold before adding the
messagem, remains unchanged even after the modification.
In order to formulate the problem of finding affected con-
straints precisely, we shall use graph-theoretic techniques.
The problem can be rephrased as follows.

How many edges must be removed from the EPG
GM in order to disconnect those two subgraphs
that are induced by ∆Bm [M] and ∆Fm [M], respec-
tively?

This question can be answered by finding a cutset whose
removal disconnects two subgraphs, but no proper subset
of which disconnects them. It is well-known fact that more
than one cutset may exist. However, for our purpose, we
consider only a cutset that contains e = (ti : send(m); tj :
recv(m)) as an its element. After finding a cutset C that
disconnects those subgraphs that are induced by ∆Bm [M]
and ∆Fm [M] with respect to GM , we have to check whether
C contains only one edge e, that is, e is a bridge. If e
appears to be a bridge, no paths from events in ∆Bm [M]

to events in ∆Fm [M] exist except the paths containing the
edge e. In this case, all event pairs of ∆m[M], which have
been considered to be concurrent, become related by the
precedence relation after the modification. Otherwise, it is
clear that some events in ∆Bm [M] can reach some events
in ∆Fm [M] via the edges in the set C � feg, say Ce. This
means that there exist unaffected sequencing constraints in
∆m even after the message m is added.

Locating unaffected sequencing constraints can be eas-
ily done by considering the transitive closure of the events
that are incident to the edges in Ce. Suppose that Ce con-
tains the edges (es1 ; et1), � � �, (esp ; etp). Then, we can
obtain the unaffected sequencing constraints by computingSp

i=1 B(GM=fesig)�F(GM=fetig) which will be referred
to as ∆Um [M]. All event pairs in ∆Um [M] preserve their
precedence relations even after the modification. That is, if
a !M b 2 ∆m[M] before the modification and a !M b
still holds after the modification, then (a; b) 2 ∆Um [M]. As
a result, the difference of ∆m and ∆Um , denoted by ∆Am [M],
is the desired set that contains only the event pairs or the
sequencing constraints affected by adding the messagem to
the MSC M . That is, ∆Am [M] = ∆m[M]� ∆Um [M]

For example, consider the case that a message m from a
task line b to a task line a is added to the position underneath
the message tone off and over the message voice in in the
MSC of Figure 1. After adding the message the EPG con-
tains additional nodes representing line b : send(m) and
line a : recv(m), and an edge (line b : send(m), line a :
recv(m)). The node representing line b : send(m) is lo-
cated below node 16 and above node 20 and the node rep-
resenting line a : recv(m) is below node 14 and above
node 17 in the EPG. ∆m[M] for this case is computed
as ∆m[M] = f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 15; 16g �
f17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32g.
And the cutset Ce has the edges (16, 20), (15, 18), (11,
17). Then ∆Um [M] = B(GM=f16g) � F(GM=f20g) [
B(GM=f15g) � F(GM=f18g) [B(GM=f11g) �
F(GM=f17g). Therefore ∆Am [M] = ∆m[M]�∆Um [M] =
f(15; 17); (16; 17); (16; 18); (16; 19)g.

As discussed above, the set ∆Am [M] does not con-
sider the precedence relations arisen due to the events that
are newly added: ti : send(m) and tj : recv(m). Let
∆NAm [M] be the set of newly created precedence relations
after adding messagem to MSCM . Then, we can construct
∆NAm [M] as follows:

∆NAm [M] = fti : send(m); tj : recv(m)g

[f(a; ti : send(m))ja 2 ∆Bm [M]g

[f(a; tj : recv(m))ja 2 ∆Bm [M]g

[f(tj : recv(m); a)ja 2 ∆Fm [M]g

[f(ti : send(m); a)ja 2 ∆Fm [M]g

For example, ∆NAm [M]
for the case above is f(line b:send(m), line a:recv(m)), (16,
line b:send(m)), (line a:recv(m), 17), (line b:send(m), 20),
(14, line a:recv(m))g. Also, ∆NDm

[M] described below is
f(16; 20); (14; 17)g.

On the contrary, when a message m is deleted from
the MSC M , no new precedence relations become estab-
lished, but may remove existing relations that have arisen
due to the message m. Consider the situation in which the
precedence relation, represented by an edge “(ti : send(m),
tj : recv(m))” in the correspondingGM , is removed. As a
result, some events that have been related by the precedence
relation may be concurrent as depicted in (A2) above. As
in the case of adding a message, we can compute the se-
quencing constraints affected by deleting the message m as
follows: ∆Dm

[M] = ∆m[M]� ∆Um [M]

Although computation of ∆Am [M] and ∆Dm
[M] is done

in the same way, ∆Dm
[M] is composed of the event pairs

each being concurrent: we know that ∆Am [M] is composed
of the event pairs each being related by the precedence
relation. Of course, such event pairs have been previously
related by the precedence relation, but deleting the message
m leads them to be converted to being concurrent.

For example, consider the situation in which an edge
(trunk : send(busy tone); line b : recv(busy tone)” in
the Gm is removed. For this case ∆m[M] and ∆Um [M] are
computed as the same way of adding a message m, too.
Here ∆m[M] = f1; : : : ; 24g � f29; : : : ; 32g. Cutset has
(20, 29), (24, 30). Then ∆Um [M] = B(GM=f20g) �
F(GM=f29g) [B(GM=f24g)� F(GM=f30g). Therefore
∆Dm

[M] = f(21; 29); (22; 29); (23; 29); (24; 29)g.
We can also define the set, denoted by ∆NDm

[M], of
event pairs that are no more any valid precedence relations
due to the removal of message m. Since deleting message
m removes its associated events, ti : send(m) and tj :
recv(m) in the correspondingGM , the precedence relations
associated with those two events are exactly the same as
∆NAm [M].

Although both of sets ∆NAm [M] and ∆NDm
[M] are

identical, their meanings are different. Each event pair of
∆NAm [M] represents a newly created precedence relation
that exists only in the modified MSC, whereas each event
pair of ∆NDm

[M] represents a precedence relation that ex-
ists in the original MSC, but does not exist any more in the
modified MSC. Thus, we can characterize sets ∆NAm [M]
and ∆NDm

[M] formally as follows:

(A3) if (a; b) 2 ∆NA[M
0] then a 62 E(M) or b 62 E(M),

but a!M 0 b.

(A4) if (a; b) 2 ∆ND[M 0] then either a!M b or b!M a,
but a 62 E(M 0) or b 62 E(M 0).

3.4. Impact Analysis for Complex Modifications

To be practical, we have to consider the effect of complex
modifications on MSCs. A complex modification is a se-
quence of primitive modifications made by either inserting
or deleting messages. In the previous section, we described
how to identify the sequencing constraints that must be re-
tested after a primitive modification is made to an MSC
specification. It is worth noting that although a complex
modification may be translated into a sequence of primitive
modifications, testing is not performed after each primitive
modification but rather it is performed once per complex
modification. Moreover, later primitive modifications may
invalidate the effects of previous primitive modifications
during a complex modification. Therefore, we suggest how
to compose the sequencing constraints affected by primitive
modifications and determine the constraints which have to
be re-tested after a complex modification.

There are two kinds of primitive modifications as de-
scribed in the previous section: adding a message m denoted
by �m and deleting a message m denoted by �m. In the se-
quel, we will assume the following complex modification
which translates the original MSC M into the final MSC
M? through n primitive modifications. In the modification
sequence, Mi (0 < i � n) denotes the modified MSC after
applying a single primitive modification
mi

toMi�1 where

mi

2 f�mi
; �mi

g.

M = M0

m1! M1

m2! : : :

mn! Mn = M?

In order to figure out the effects of a complex modifica-
tion, consider a complex modification where n = 2;
m1 =
�m1 ;
m2 = �m2 . We first consider the relationship between
∆Am1

[M0] and ∆Dm2
[M1]. The first primitive modification

�m1 may introduce precedence relations between some of
the events in M0 that have been concurrent before the modi-
fication. On the other hand, the later primitive modification
�m2 plays a role in invalidating some of the precedence re-
lations that have been introduced due to �m1 . For the same
reason, ∆Am2

[M1] can be used to invalidate some of the
previously identified sequencing constraints, ∆Dm1

[M0], in
a way that each event pair of ∆Dm1

[M0] representing two
concurrent events is forced to be related by the precedence
relation. We can also find that the same situations exist
between ∆NAm1

[M0](or ∆NDm2
[M1]) and ∆NDm2

[M1](or
∆NAm1

[M0]).
Based on this consideration, we can define the sets of

affected sequencing constraints by a complex modification
in the inductive manner. Here, ∆A[Mi] and ∆D[Mi] include
the affected constraints which satisfy (A1) and (A2) after
i-th primitive modification, respectively. In the following
equations, bScM = f(a; b)j(a; b) 2 S; a; b 2 E(M)g.

(P1) ∆A[Mi] = ∆D[Mi] = ;;

if i = 0

(P2) ∆A[Mi] = b(∆A[Mi�1]� ∆Dmi
[Mi�1])

[(∆Ami [Mi�1]� ∆D[Mi�1])cM0

∆D[Mi] = bb(∆D[Mi�1]� ∆Ami [Mi�1])

[(∆Dmi
[Mi�1]� ∆A[Mi�1])cMi

cM0

if 1 � i � n

We can easily observe that computation of ∆A[Mi] and
∆D[Mi] is order-independent. By order-independent we
mean that the computation always produces the same results
for any modification sequences if they could transform M0

into Mn. Based on this fact, we can reduce the computation
steps by transforming the original modification sequence
into another but smaller sequence that also produces the
same MSC.

∆A[Mi] is the extension of ∆Am [M] in the sense that they
include the events pairs which are converted from concur-
rent relation to sequential relation by modification. Simi-
larly, ∆D[Mi] and ∆Dm

[M] include commonly the events
pairs which become concurrent after modification. It means
that ∆A[Mi] and ∆D[Mi] reference only the events included
in the original MSC M but not new events introduced by
modifications. The flooring operator b cM0 used in (P1) and
(P2) ensures this property.

In the previous section, we defined ∆NAm [M] in order
to compute the sequencing constraints which are associated
with the new events introduced by a primitive modification.
We also defined ∆NDm

[M] to detect the sequencing con-
straints which are invalidated by eliminating some events
from MSC by a primitive modification. Similarly, we need
two sets ∆NA[Mi] and ∆ND[Mi] which include sequencing
constraints associated with new events or eliminated events
by complex modification. They can be computed as follows:

(P3) ∆NA[Mi] = ∆ND[Mi] = ;;

if i = 0

(P4) ∆NA[Mi] = (∆NA[Mi�1]� ∆NDmi
[Mi�1])

[(∆NAmi
[Mi�1]� ∆ND[Mi�1])

∆ND[Mi] = (∆ND[Mi�1]� ∆NAmi
[Mi�1])

[(∆NDmi
[Mi�1]� ∆NA[Mi�1])

if 1 � i � n

Finally, we have to consider a situation where the same
message is inserted and deleted in turn or vice versa at the
same position. In this situation, we should not have any ef-
fects of two primitive modifications. Some spurious events
pairs, however, may be introduced when other primitive
modifications interpose between the insert and the delete
operations. Thus it must be removed from ∆A[M?]. In the
case of ∆D[M?] such problems do not happen because of the
flooring operations. Final results of ∆A[M?] and ∆D[M?]

are defined respectively as follows:

∆A[M?] = ∆A[Mi]�X

∆D[M?] = ∆D[Mi]

where a set X is defined such that f(a; b)j(a; b) 2
∆A[Mi]a !�

Mi
x; y !�

Mi
b for(x; y) 2 S =Sn

k=1 ∆NA[Mk] \
Sn

k=1 ∆ND[Mk]g.

ringing

accepted

free_tone

free_tone ringing

voice_in

voice_in

voice_out

off_hook

tone_off

tone_off

idle idleidle

on_hook

liberated

conversation

end_conversation

(3,6,5,2)

(3,7,6,2)

(3,8,6,2)
(4,8,6,2)

(5,9,8,5)

(3,6,6,2)

(3,6,7,4)

(3,6,6,2)

(6,9,9,5)

(7,9,9,5)

(5,9,9,5)

(7,10,9,5)

(7,11,9,5) (7,11,11,5)

(5,9,10,5)

(7,11,12,5)

(8,12,13,8)

(8,12,14,9)

(9,14,16,9) (9,14,16,10)

(8,12,13,9)

(7,11,12,7)

(5,9,10,6)

(3,6,4,2)

(3,6,6,3)

(3,6,6,4)

on_hook

on_hook
(9,12,13,8) (9,13,13,8)

(9,14,13,8) (9,14,15,9)

liberated
(9,15,16,9) (9,14,16,9)

caller line_a trunk line_b

trunk_in_
control

accepted

free_tone

free_tone

ringing

voice_in

voice_in

voice_out

off_hook

tone_off
tone_off

liberated

on_hook

liberated

on_hook on_hook

12

34 5 6

78910

1112

13 14 15 16

17 18

19 20

21 22

23 24

2728

2930

31 32

Figure 3. A modified MSC and the corre-
sponding EPG

As mentioned above, changes to an MSC specification
consist of more than one primitive changes. For example,
consider two MSCs of Figure 1 and Figure 3. Both of them

show telephone conversation scenarios. The MSC of Fig-
ure 1 shows a situation in which a caller hangs up(on hook)
phone in first, and then a callee(line b) hangs it up after
receiving busy tone(busy tone). But, practically, a caller
may hang up prior to the callee and vice versa. This scenario
is reflected in the MSC of Figure 3 in which a caller and a
callee can hang up the phone concurrently. Small changes
like this accompany many primitive changes to the MSC
specification. Transforming from Figure 1 to Figure 3 is
composed of 5 primitive changes as follows:

1) Delete on hook from the line a to the trunk
2) Add on hook from the line a to the trunk
3) Delete liberated from the trunk to the line a
4) Add liberated from the trunk to the line a
5) Delete busy tone from the trunk to the line b

i ∆A[Mi] ∆D[Mi]
1 ; f(21,29),(22,29),

(23,29),(24,29)g
2 ; f(16,27),(20,27),(21,27),

(22,27),(21,29),(22,29),
(21,30),(22,30),(21,31),
(21,32),(22,31),(22,32)g

3 f(28,31),(28,32)g f(16,27),(20,27),(21,27),
(22,27),(21,29),(22,29),

(21,30),(22,30)g
4 f(28,31),(28,32)g f(21,29),(22,29),

(21,30),(22,30)g
5 f(28,31),(28,32)g f(21,29),(22,29),

(21,30),(22,30)g

M? ; f(21,29),(22,29),
(21,30),(22,30)g

i ∆NA[Mi] ∆ND[Mi]
1 f(20,29),(24,27)g f(24,25),(25,26),

(26,29),(20,26),(25,27)g
2 f(22,28),(19,27)g f(22,23),(23,24),

(24,27),(23,28),(19,24)g
3 f(28,23),(23,24), f(30,31)g

(24,31),(30,24)g
4 f(19,30),(22,23)g f(19,27),(27,28),

(28,23),(22,28),(27,30)g
5 f(24,27), ;

(27,28),(23,28)g

M? f(24,27),(19,30), f(19,24),(20,26),(24,25),
(20,29),(24,31), (25,26),(26,29),(25,27),

(30,24)g (27,30),(30,31)g

Of course, these changes are made randomly to the MSC
of Figure 1. However, after these 5 changes are made to
it, the modified MSC always has the same figure and same
precedence relation even if any change order is performed.

The results after 5 primitive changes have been processed
are as follows:

3.5. Testing Based on Affected Constraints

After computing the affected sequencing constraints
∆A[M], ∆D[M], the added constraints ∆NA[M], and the in-
validated constraints ∆ND[M], we need to test whether the
modified concurrent program complies with the modified
MSC specifications using those constraints. Below details
about how to cover each constraint using either determinis-
tic testing or a combination of nondeterministic testing and
deterministic testing will be given.

Before describing testing techniques in detail, it is worth-
while to discuss on the implications of ∆A[M], ∆D[M],
∆NA[M], and ∆ND[M] to testing phase. The sets ∆A[M]
and ∆NA[M] are composed of constraints of the form
a !M b, which implies that the event a always precedes
the event b whenever both of the events occur. On the other
hand, each event pair of ∆D[M] denotes two events that be-
come concurrent. Let (c; d) refer to a constraint of ∆D[M].
This constraint indicates that the event c may precede d in
some executions of P while d may precede c in other exe-
cutions. Finally, ∆ND[M] includes invalidated constraints.
The constraints must not appear during executions of P .

There are two approaches in testing concurrent programs
with sequencing constraints extracted from specifications:
constraints-oriented approach and trace-oriented approach.
In the constraints-oriented approach, test criteria is defined
upon the coverage of individual constraint[3]. An individual
constraint (a; b) is said to be covered by an execution of
P if both of the events occur during the execution and a
happens before b. Similarly, an execution of P violates a
constraint (a; b) if b precedes a during the execution. In this
framework, coverage of four sets ∆A[M], ∆D[M], ∆NA[M],
and ∆ND[M] can be defined as follows:

� ∆A[M] and ∆NA[M] : each sequencing constraint
(a; b) 2 ∆A[M] [∆NA[M] has to be covered at least
one execution of P . Moreover, v:b is infeasible when-
ever v is a valid and feasible prefix of P without in-
cluding a.

� ∆D[M] : for each sequencing constraint (a; b) 2
∆D[M], a happens before b in some executions of P
and vice versa.

� ∆ND[M] : events pairs in ∆ND[M] never occur during
executions of P .

Nondeterministic testing of P can cover constraint
a !M b if at least one of the collected event sequences
has s as its subsequence such that s preserves the order
specified by a !M b. As an example, event sequence

(e1; e2; e3; e4; e5) covers e3 !M e5 because one of its sub-
sequences, e.g., (e3; e4; e5), preserves the specified prece-
dence relation. Nondeterministic testing, however, does not
exercise all feasible execution sequences. Furthermore, we
cannot show the infeasibility of the given event sequences
using nondeterministic testing[3]. It was pointed out that
deterministic testing may complement the weak sides of
nondeterministic one[3]. In fact, we can perform determin-
istic testing to show the coverage of a!M b as well as the
infeasibility of the given event sequences.

A trace-oriented approach tries to ensure the confor-
mance between specifications and programs in the view-
points of execution traces rather than individual constraints.
This approach may accommodate various conformance re-
lations between specifications and programs[4].

Although most of prior works on trace-oriented testing
methods are concentrated on the equivalence conformance
relations[1, 2, 5, 8], there are many situations in practice
where it is difficult to apply testing techniques based on
the equivalence between specifications and programs. First,
when partial specifications are employed for concurrent pro-
gram testing, we are unable to mark a feasible sequence as
invalid because it is impossible to induce all valid sequences
from a partial specification. In addition, specification lan-
guages for concurrent programs usually have partial order
semantics for describing sequencing constraints among syn-
chronization events. Previous testing frameworks, based on
the equivalence relation, require that all totally ordered se-
quences induced from a partially ordered set be observed
during program execution. One major problem with this ap-
proach is that only a subset of totally ordered sequences may
be realized in the corresponding implementation according
to the design decision. In this case, a target program still
meets its specification although the feasibility of all valid
sequences is not satisfied.

To cope with the partial and nondeterministic character-
istics of MSCs, we consider two types of nondeterminacy
in the specification according to their intentions[4]. One
is intended to be implemented into the program exactly as
described in the specification while the other is just intro-
duced for specification convenience. For example, consider
the two concurrent events in Figure 1: line a-send(on hook)
and line b-send(on hook). In this case, the program must
implement the nondeterminacy since the caller can discon-
nect the phone call before the callee does, and vice versa.
This kind of nondeterminacy is called obligatory nondeter-
minacy. In contrast, the two nondeterministic events line a-
recv(free tone) and line b-recv(ringing) in Figure 1 have
different intentions. It does not matter whether the caller
hears the free tone signal before the callee hears the ringing
signal or vice versa. This kind of optional nondeterminacy
may be serialized by design decisions.

Based on these considerations, we can define two con-

formance relations, which are devised for testing concurrent
programs using partial and nondeterministic specifications
as follows:

� Concurrent program P has behavioral conformance to
MSC M if and only if the feasible event sequences
exercised by executions of P are valid with respect to
M.

� Concurrent program P has nondeterminacy confor-
mance to MSC M with respect to a obligatory event
pair (e1, e2), where events e1 and e2 are concurrent, if
and only if two feasible event sequences s1 and s2 of
P such that event e1 is followed by e2 in s1 and vice
versa in s2 are valid with respect to M . Similarly, P
has nondeterminacy conformance to M if and only if
P has nondeterminacy conformance to M with respect
to all obligatory nondeterministic event pairs.

Testing based on the behavioral relation can be done by
first performing nondeterministic testing of P , which will
cover some of constraints in ∆A[M][∆NA[M]. For uncov-
ered constraints, say (a; b), we generate a valid sequence
v:a:�:b and perform deterministic testing of P with this
sequence.

Similarly, nondeterministic executions of P will cover
some of constraints in ∆D[M]. For uncovered constraints,
say (c; d), we generate two valid event sequences v:c:�:d
and v:d:�:c and perform deterministic testing of P with
those sequences. If P succeeds for one of the sequences,
P satisfies the behavioral conformance relation with respect
to the sequencing constraint (c; d). Note that behavioral
conformance requires just one of the two sequences to be
feasible. We repeat this process until all uncovered con-
straints are satisfied by P .

Since the events pairs in ∆A[M] or ∆NA[M] are sequen-
tialized, nondeterminacy conformance testing is applied
only against ∆D[M]. As in the behavioral conformance
testing, uncovered constraints by nondeterministic testing
are forced to be exercised by deterministic testing. For ex-
ample, if nondeterminacy between e1 and e2 that constitute
an event pair of ∆D[M] appear to be obligatory and only
one sequencing constraint, say e1 !M e2, has been cov-
ered by nondeterministic testing of P , then deterministic
testing of P with v:e2:�:e1 would be performed to satisfy
the nondeterministic conformance relation with respect to
(e1; e2).

4. Discussion

One important concern in concurrent program testing is
to determine whether the system behaves correctly. In [6],
the use of a graphical interval logic(GIL) was presented in
specifying and verifying temporal properties of concurrent

programs. Specifications in GIL describe temporal proper-
ties that every state sequence exercised during an execution
of a program has to satisfy. In order to determine whether
the properties specified in a GIL formula are satisfied, a test
oracle is built by constructing an FSM that accepts precisely
those state sequences satisfying the formula. This approach
supports run-time monitoring and debugging in such a way
that the traces are checked as they are generated and a vi-
olation of a specification is reported as early in a trace as
possible. In order to obtain the traces exercised during an
execution of a concurrent program, nondeterministic test-
ing is employed by manually instrumenting the Ada source
program.

Other interesting languages for specifying sequencing
constraints were defined for concurrent program testing.
One such example includes a constraint notation called
CSPE (Constraints on Succeeding and Preceding Events)[3].
Analogous to our work, CSPE constraint-based testing uses
a combination of nondeterministic and deterministic test-
ing. Furthermore, it can be applied to those situations where
constraints are not complete, even though constraints can be
made complete if they contain every possible pair of events.

As shown above, although diverse techniques are de-
ployed for concurrent program testing, most of the tech-
niques did not address how to test a modified program
against a modified specification. One important distinc-
tion that makes our approach different from previous testing
techniques is that changes to a specification are considered.
In order to reduce the cost of regression testing, impact anal-
ysis is performed to obtain sequencing constraints affected
by modifications made to a specification. Additionally, our
testing technique does not need languages designated for
specifying sequencing constraints such as CSPE and TSL
because sequencing constraints to be covered can be auto-
matically derived through impact analysis.

Furthermore, since the specifications under considera-
tion are supposed to be partial and nondeterministic, we
have proposed two conformance relations: the behavioral
conformance relation and the nondeterminacy relation. The
behavioral conformance relation requires a concurrent pro-
gram to implement at least one synchronization sequence
for each unique behavior described in an MSC specifica-
tion and the nondeterminacy conformance relation requires
that obligatory nondeterminacy must be preserved in the
corresponding implementation.

At present, the technique presented in this paper is still
undergoing extensive evaluation. More experiments are
planned to demonstrate the applicability of our technique.
We believe that the technique will provide a basis for devel-
oping new regression testing techniques for various types of
specifications in the literature.

References

[1] H. AboElFotoh, O. Abou-Rabia, and H. Ural, “A Test
Generation Algorithm for Systems Modelled as Non-
deterministic FSMs,” IEE Software Eng. Journal, pp.
184-188, July 1993

[2] G. v. Bochmann and A. Petrenko, “Protocol Testing:
Review of Methods and Relevance for Software Test-
ing,” Proc. of Int’l Symp. on Software Testing and
Analysis, pp. 109-124, 1994

[3] R. H. Carver and K. C. Tai, “Use of Sequencing Con-
straints for Specification-Based Testing of Concurrent
Programs,” IEEE Trans. on Software Eng., 24(6), pp.
471-490, June 1998

[4] I. S. Chung, H. S. Kim, H. S. Bae, Y. R. Kwon, and
B. S. Lee “Testing of Concurrent Programs based on
Message Sequence Charts,” Proc. of Int’l Symp. on
Soft. Eng. for Parallel and Distributed Systems, pp.
72-82, May 1999

[5] S. K. Damodaran-Kamal and J. M. Francioni, “Testing
Races in Parallel Programs with an OtOt Strategy,”
Proc. of Int’l Symp. on Software Testing and Analysis,
pp. 216-227, 1994

[6] L. K. Dillon and Q. Yu, “Oracles for Checking Tem-
poral Properties of Concurrent Systems,” Proc. of 2nd
ACM SIGSOFT Symp. on Foundations of Software
Eng., pp. 140-153, Louisiana, 1994

[7] C. Fidge, “Logical Time in Distributed Computing
Systems,” IEEE Computer, 24(8), pp. 28-33, August
1991

[8] G. H. Hwang, K. C. Tai, and T. L. Huang, “Reach-
ability Testing : An Approach to Testing Concurrent
Software,” Proc. of Asia Pacific Software Eng. Conf.
1994, pp. 246-255, Tokyo, 1994

[9] T. J. LeBlanc and J. M. Mellor-Crummey, “Debugging
Parallel Programs with Instant Replay,” IEEE Trans.
on Computers, vol. C-36, no. 4, pp. 471-482, 1987

[10] G. Rothermel and M. J. Harrold, “A Safe, Efficient
Regression Test Selection Technique,” ACM Trans. on
Software Eng. and Methodology, vol. 6, no. 2, pp.
173-210, 1997

[11] K. C. Tai, R. H. Carver and E. E. Obaid, “Debug-
ging Concurrent Ada Programs by Deterministic Exe-
cution,” IEEE Trans. on Soft. Eng., vol. 17, no. 1, pp.
45-63, January 1991

[12] ITU-T Recommendation Z.120: Message Sequence
Chart (MSC), April 1996

