
Applying Conventional Testing Techniques
for Class Testing *

In -S Chung Malcolm Munro

Hallym University University of Durham
Department of Computer Engineering

1 Okchun-Dong Chunchun 200-702 Korea

Centre for Software Maintenance

Durham England DH1 3LE

W. K. Lee and Y. R. Kwon
Department of Computer Science

Korea Advanced Institute of Science and Technology
373-1 Kusung-Dong Yusung-Gu Taejon 305-701 Korea

Abstract

This paper discusses how conventional testing cri-
teria such as branch coverage can be applied fo r the
testing of member functions inside a class. To sup-
port such testing techniques we employ symbolic ex-
ecution techniques and finite state machines(FSMs).
Symbolic execution is performed on the code of a mem-
ber functzon to identify states that are required t o ful-
fill a given criterion. We use FSMs to generate a
sequence of member functions leading to the identi-
f i e d states. Our technique is a mixture of code-based
and speci.fication-based testing techniques in the sense
that it uses information derived from codes using sym-
bolic execution together with information from specifi-
cations using FSMs for testing activitaes.

Keywords: software testing, object-oriented pro-
grams, classes, finite state machines, symbolic execu-
tion

1 1nti:oduction

Recently there has been much research on testing
techniques for a class which is often considered as the
basic unit in an object-oriented program[3, 5, 8, 11,
la]. Morjt exsiting work in conducting class testing
has focused on specification-based testing techniques
which involve selecting sequences of member functions
to test for defects in their interactions. One reason
why test cases are made of sequences of member func-
tions is that execution paths of each member function

*This work was supported in part by the Korea Science &
Engineering Foundation under contract number 951-0908-022-2.

are determined by states of the object to be consid-
ered as well as its input parameter values. Usually, the
values of data members that define the current state
of an object depend on some other member functions
within the class.

Suppose that a class STACK has public member
functions PUSH(), POP() and a data member Top
which is assumed to be accessible only by PUSH() and
POP(). Then, for example, determination of which
paths in the POP method are executed depends on
the values of data member Top which are affected by
mernber functions PUSH() and POP() itself. From
this fact we can find that it is difficult to isolate a
member function as the basic testing unit from its
class.

In contrast, conventional (unit) testing techniques
deal with the procedure, or the function, as its basic
testing unit and involve selecting a collection of in-
put data values as test cases. This is one important
reason why it is difficult to apply conventional test-
ing techniques to object-oriented programs directly.
Moreover, since most existing techniques on class test-
ing select test cases on the basis of specifications, they
do not require coverage of particular code components.
In order to obtain confidence, the notion of coverage
which is analogous to that used in conventional code-
based unit testing should be introduced into class test-
ing as well.

In this paper, we present a testing method that
combines specification-based testing and code-based
testing for class testing. The testing method adapts
conventional code-based unit testing techniques to test
member functions of a given class. In order to apply
the notion of coverage provided by conventional test-
ing we consider each member function inside a class
as the basic testing unit. Because the testing of mem-
ber functions requires states of the object as discussed

447
0730-3157/96 $5.00 0 1996 IEEE

above, it is necessary to identify the states and then
build up the identified states.

We use symbolic execution techniques to identify
states which are required by each member function
for satisfing a given coverage criterion. By performing
symbolic execution on the paths of the member func-
tion that are not yet exercised, we can obtain expres-
sions in terms of data members. The resultant expres-
sions indicate the states to be required for the testing
of member functions. The testing method proposed in
this paper is also based on finite state machines(FSMs)
in order to generate a sequence of member functions
that leads to the identified states.

The remainder of this paper is organized as follows:
Section 2 discusses how to employ conventional test-
ing techniques for class testing. Section 3 describes a
state model needed for generating test sequences. Sec-
tion 4 presents our testing technique with an example.
Section 5 describes related works to class testing and
compares our work with them. Conclusion and future
works are given in Section 6.

2 Adequate Testing of Member Func-
tions in a Class

When building a test set for testing a member func-
tion inside a class it is not sufficient to consider only
its input parameter values. We should consider one
additional factor, states which the objects of the class
may be in. A state of an object is defined in terms
of data members of the object. For example, con-
sider a stack object with its data member Top of type
unsigned integer. Then, the stack object may be re-
garded as having two states, an initial state Empty
characterized by Top=O and a state NotEmpty char-
acterized by Top>O. It is evident that the dynamics
of a member function such as POP() depends on the
current state of the object. Therefore, we must take
into account the state of the object as well as the val-
ues of the input parameters of the member function.
Consequently, we can represent a test case of a mem-
ber function m as a pair t , = (v , s) , where U is an
input value vector corresponding to the input param-
eters of m and s is a state of the object which m is
applicable to.

Definition 2.1 Let T, = { t h l k = 1 , 2 , ..., n} be a
test set of a member function m , where tk = (d, s k) .
Let A be a conventional test criterion. We say that
T, is A-adequate for m and write A(m,T,) if T,
contains test cases to satisfy the criterion A .

This form of a test case of a member function re-
quires some means to identify the states as well as
input value vectors in order to perform the adequate

testing of the member function, thereby compound-
ing the difficulty of test case selection. Furthermore,
even though we can identify the desired states, testing
a member function requires building up the states in
such a way that the member function can be tested
isolated from its surrounding class.

One way to resolve these problems is to remove all
other code fragments except the member function un-
der testing and then write test drivers and test stubs.
The role of these driver and stubs is to adjust the val-
ues of data members to make the desired state and
replaces the code removed. However, this approach
has some difficulties in being applicable in practice.
Especially, it is difficult to write test drivers and stubs
when the majority of code in the member function is
already provided in the form of other member func-
tions in the class. Furthermore, the test drivers must
supply to the member function the states which are
required to fulfill a given test criterion. In general,
test drivers with such facilities are likey to require as
much testing effort as when testing all the member
functions of the class.

Another approach is to use the member functions
in the class to make the intended states without re-
moving them. Suppose, for example, that we want to
test member function POP() in the (bounded) STACK
class of size n according to some test criterion. If
POP() requires the bounded stack object being full
to satisfy the criterion, then we can construct the re-
quired state by using a sequence of member functions,

e.g., < PUSH, . . . , PUSH >. After selecting a possible
sequence of member functions, we can apply POP()
to the state resulting from execution of the selected
sequence. Of course, there is no gurantee that such a
sequence reaches the intended state because the mem-
ber functions associated with the sequence may have
defects. However, we know that testing is the process
of finding defects rather than certifying correctness, in
this sense, this approach is of value.

n -

3 The State Model

We employ a state model to generate a sequence of
member functions leading to the required state. State
models such as finite state machines(FSMs) can be
used in representing a set of states and the transitions
between those states to capture the dynamic behavior
of class instances, i.e., objects[l, 9, lo].

There are many candidates for representing the
state model, including the model proposed by Rum-
baugh et a1[9] and that of Shaler and Mellor[lO].
Such representations provide enough highly expressive
power to use them as analysis and design tools. How-
ever, the state model needed for testing activities does
not necessarily have to encompass all the features pro-

448

vided by the existing models. In this paper, we will
use a very simple state model based on finite state
machines.

Constructing the state model involves two steps:
1) building a basic state machine(BSM) for each data
member which has the significant effect on the be-
havior of an object and 2) building a composite state
machine(CSM) from the constructed BSMs. In the
following subsections, we describe these steps in de-
tail.

3.1 Constructing Basic State Machines

When constructing BSMs it is not likely to be use-
ful to consider all data members; some data members
may exist, only for housekeeping and, therefore, they
do not pahc ipa te in the definition of the object's state
because state changes of an object are independent of
them. Tlhis leads to the reduction of the number of
data members that need to be considered. A second
consideration to build the (sub)state space for a data
member is that the state space must be partitioned to
equivalent classes each of which shares the properties
of interest. For example, in an array-based implemen-
tation of a stack of size n, there may be from 0 to
n elements on the stack as indicated by data mern-
ber Top and, therefore, the state space for Top can
be partitioned to n+1 states. From a modeling or
testing perspective, we are usually only interested in
the stateis characterized by Top=O, 0 <Top< n , and
Top = n . Rather than considering n states we need
only to caonsider three. The formal definition of BSM
is as follows.

Definitilon 3.1 A basic state machine(BSM) of a
class C is a tuple (d, F, S, T) where

0 d is an element in the set of data members, D, of

0 F is a finite subset of member functions of C that

0 S is afinite set of states, i.e., S = { s I s = (d e f) }

0 T is a finite set of transitions, i.e., T = { (s i , t , s j)

C i.e., d E D.

can modify d.

where de f is a predicate on data member d.

~ s i ~ ~ s j , s ~ , s j E S a n d t E F }

Figure 1 shows a class specification for an
unbounded integer queue, QUEUE, using C++
notations. Class QUEUE has member func-
tions QUEUE(), -QUEUE(), ADD&(), DEL&(),
FRONT(:), ISEMPTY() and data members f r o n t ,
rear of type NodePtr. QUEUE(), called a construc-
tor, creates a new queue, -QUEUE(), called a de-
structor, destroys a queue object. We will not describe
the functionalities of the other member functions and
the role 'of data members because the QUEUE speci-
fication is well-known.

class QUEUE {
public:

QUEUEO;
-QUEUE();
Boolean ISEMPTY() const;
int FRONT() const;
void ADDQ(int newItem);
void DELQO;

NodePtr* front;
NodePtr* rear;

private:

1
Figure 1: A class specification for unbounded queue,
QUEUE

In order to construct BSMs for class QUEUE, we
firstly must consider which data members of QUEUE
influence the definition of queue objects. Because, in
this example, both data members f ront , and rear af-
fects the class behavior, it is required to construct one
BSM for each of the data members.

Figure 2: A BSM for data member front

Figure 2 shows a BSM for data member front of
QUEUE. As can be seen in Figure 2, the domain of
data member front is partitioned into two equivalent
classes sll, s12. The states are associated with the
values of front as follows:

s l l . d e f : f ront = N U L L
s l2 .de f : f r o n t f N U L L

Also, there are two specially designated states in
BSM, SO and s f :

0 so is an initial state representing the period be-
fore an object is created, i.e., a constructor of an
object is called. so.def is undefined because the
data member being considered have not yet been
created.

449

e sf is a final state representing the period after an
object is destroyed, i.e., a destructor of an object
is called. s f . d e f is undefined because the data
member being considered are killed in sf.

The transitions between the states of a data mem-
ber v consists of pre-state, post-state, and a member
function. A data member changes its state if its value
is changed by execution of a, member function. Thus,
a state transition from a pre-state to a post-state can
occur if the pre-condition of the member function can
be satisfied by the pre-state. The final value expres-
sion of the data member can be satisfied by the post-
state. For example, the transition, tagged with mem-
ber function ADD&(), from sll to 512 can occur if
the precodition of ADD&() can satisfied by state s11,
i.e., front = N U L L . When the transition occurs,
the state is changed into s12 that represents the state,
f r o n t # N U L L . Similarily, we can construct a BSM
for data member rear. Figure 3 shows a BSM that
partitions the domain of data member into two states,
s21 and s22; s21 represents the state rear=NULL and
5 2 2 represents the state r e a r f N U L L .

(Sp, t ,sq)

Figure 3: A BSM for data member rear

1 if q = q’, Ap 5 p‘ E Ti,
or p = p’,Aq 5 q’ E T 2 ,

3.2 Constructing Composite State Ma-
chines

After constructing BSMs for each data member of
a class, we are able to derive a composite state ma-
chine(CSM) for the class. In this section, we describe
how to construct a CSM from BSMs. We only con-
sider the case in which a CSM is constructed from two
given BSMs because it is straightforward to construct
a CSM for more general cases. Suppose that a class
contains data members, d l , d2. Then, let us denote
BSMs for the data members by BSM1 and BSM2,
where BSMi(i = 1 , 2) is a tuple (d i , F;, Si, T i) . Then,
the definition of CSM is as follows:

Definition 3.2 A CSM of a class C is a tuple (D, F,
S, T) such that:

D = { d l } U { d a } .

Let’s consider a CSM for class QUEUE. We have al-
ready constructed the BSMs for data members f ront
and rear. Because the BSMs, shown in Figure 2 and
Figure 3 contain four states respectively, there may
exist 16 composite states in the CSM. However, from
the above assumptions, we only consider six states,
i.e., (S O , SO) , (S J , s f) , (~11,s21), (~ 1 1 , s 2 2) , (512, sal),
(~ 1 2 , sa^), as valid. By eliminating the other ten states
and their associated transitions, we can obtain the
CSM for QUEUE as depicted in Figure 4.

However, the CSM in Figure 4 is not the final
version because it still contains so-called contrudzc-
tory states. A composite state is contradictory if the
predicates associated with some of its substates are
inconsistent with the specification of a given class.
The contradictory states in Figure 4 are (~ 1 2 , s21) and
(s11,s22) that are enclosed in the dotted region. The
predicates of these states are as follows:

(s l z , s 2 l) . d e f = (front # N U L L A r e a r = N U L L)

450

1 I

,
I

, , , ,
, ,

,

- - _ _ _ -

Figure 4: A CSM for QUEUE before eliminating con-
tradictory states

(sii,szz).def = (front = N U L L rear # N U L L)

The predicate of (5 1 2 , sal) implies that at least one
item exists in the queue, but the rear of queue does not
have an item. Obviously, this is contradictory to the
QUEUE: class specification because rear is required
to point to the rear item (i.e., f ront = rear A rear #
N U L L) , if it exists, in the queue. Likewise, we can re-
gard (~ 1 1 , s22) as a contradictory state. Figure 5 shows
the CSM for the QUEUE class after eliminating the
contradictory states and their associated transitions.

b'
Figure 5: A CSM for class QUEUE

4 Testing Process

The testing technique proposed in this paper con-
sists of the following steps:

1. Establish a test criterion and instrument each
member function inside a class module under test
in accordance with the criterion.

2. Perform random testing on the class module.

3. For each member function, investigate the unex-
ercised blocks for test cases generated in Step 2
and determine the paths to be required for satis-
fying the given criterion.

4. Perform symbolic execution on the paths pro-
duced in the previous step and produce the path
constraints in terms of data members.

5. Generate test cases from CSM with respect to the
path constraints.

6. Execute the generated test cases on each member
function that has the paths produced in Step 3.

The following subsections describe theses steps in
detail.

4.1 Symbolic execution on member func-
tions

This subsection is mainly devoted to illustratining
Steps 3 and 4. Before proceeding, we briefly mention
Steps 1 and 2.

A class module under test is instrumented in Step 1
for the purpose of collecting coverage information for
the generated test cases and evaluating if more test-
ing effort is needed for the chosen criterion. In Step 2 ,
we generate sequences of member functions arbitrarily
and use them as test cases for the class. In fact, we can
employ the existing techniques for this purpose. One
of the techniques that we can consider in this step is
the technique proposed by Jalote et al[6]. Their tech-
nique uses the syntactic information of each member
function to generate sequences of member functions.
The reason why we firstly perform random testing on
a class is that it can reduce the computational effort
required to develop new test cases for satisfying the
testing criterion.

The coverage statistics after random testing is used
to determine whether or not additional test cases
are necessary. If the intendend coverage level is not
achieved, we produce path constraints for the paths
required for satisfying the criterion through symbolic
execution. This task is carried out in Steps 3 and 4.
For example, consider member function ADD$() in
the QUEUE class. Figure 6 shows the code fragment
of ADDQ() that contains numbered statements.

45 1

void QUEUE::ADDQ(int newItem) {
1:
2: newPtr-data = newItem;
3: newPtr+link = NULL;
4: if (front == NULL)
5: front=rear=newPtr;

6: rearilink = newPtr;
7 : rear = newPtr;

NodePtr newPtr = new NodeType;

else {

1
1

Cbll I NULL 1 don’t care
Cbzl I not NULL I don’t care

Figure 6: The member function ADD&() in the
QUEUE class

1

don’t care.
don’t care.

There are two execution paths in ADDQ(); one
is (1,2,3,4,5), denoted by pl, and the other is
(1,2,3,4,6,7), denoted by p z . Suppose that testing of
member function ADD&() requires branch coverage.
We should develop test cases t o exercise these two
paths if the paths have not been traversed by test cases
generated during random testing. In order to develop
test cases for the paths, we use symbolic execution
techniques to find the path contraints. The following
table shows the resulting path constraints for p1 and
Pz :

data member I parameter
rear I newltem

We use these path constraints to check if there exist
states in CSM to satisfy them. In this example, we
can find that the following implications between the
path constraints and the states in the CSM given in
Figure 5 holds:

(S l l , m) . d e f * Cbll, (s12, szz).def * Cb21.

From this, we know that (SII, SZI) and (512, S Z Z) are
the states required to achieve branch coverage of the
ADD&() member function.

We must also consider the case where there exists
a path constraint, C[pk], such that Cbk] cannot be
satisfied by any states in a given CSM. In this case, it
is necessary to transform the CSM into the one that
contains the states to satisfy the path constraint. If
we assume that the path constraint is legal(i.e, there
exist sequences of member functions leading to the
states the path constraint requires), it is possible to
derive a CSM with such states from a given CSM as
described below:

Select a state Si that intersects with Cbk].

Form states S,, S, in such a way that
S,.def = S i .de f - (S;.defnC/&]) and
S, .de f = Si .de f n C[pk].

Replace Si by S, and S,.
Repeat the above steps until no intersecting states
exist in the CSM.

Following the above procedure, the resulting CSM
contains a t least one state S, holding

S, =+ Cbkl.

We can show the existence of S, by proving that there
exists a state intersecting with Cbk] in the original
CSM. I t is straightforward to prove the fact. Be-
cause the states of the CSM are mutually exclusive
and Cbk] is assumed to be legal, there exists a se-
quence of member funtions the execution of which re-
sults in a state S such that S n C[pk] # 8. Tha t is,
S n C[pp,] = S,. and S,. + Cbk].

4.2 Test generation from CSMs

Once the required states are identified, we must
generate test cases the execution of which can form
the states. For branch coverage of ADD&, we can
form the state (~ 1 1 , s l 2) by executing the sequence
(QUEUE,ADDQ,DELQ,DELQ). Also, we can observe
that executing (QUEUE,ADDQ,DELQ,ADDQ) re-
sults in the state (~ 1 2 , ~ 2 2) . So, the testing of ADDQ()
may involve executing the following sequences:

e (QUEUE,ADDQ,DELQ,DEL&,ADDQ)

(QV EU E, ADDQ , DELQ, ADDQ , ADDQ)

In fact, there may exist infinite number of sequences
that play a role as preambles t o a member function in
cases where CSMs have loops. Because we cannot test
a member function for all possible sequences in prac-
tice, it is necessary to introduce some sequence selec-
tion rules that specify which of all possible sequences
can be preambles to the member function under test.
To this ends, we firstly generate a test tree from a
CSM by following the steps given below:

Starting from the initial state in CSM, the root
of the test tree is constructed.

We now examine the nodes in the test tree one
by one. Let the node being examined be labeled

If Si has already occurred at a higher level in the
tree, then the node becomes a leaf node and will
not be examined. Go to Step (2) and examine the
next node; otherwise go t o Step (4).

by si.

452

If there exists a transition t such that Si -4, Sj
in the CSM, then we attach a branch and a suc-
c e s s ~ ~ ; node to Si, the branch is labeled t and the
successor node is labeled Sj .

This step is repeated until no transition can be
triggered. Then go to Step (3) unless no expan-
sion is possible.

Figure 7: A test tree for class QUEUE

Conider the CSM in Figure 5. A test tree for this
CSM is shown in Figure 7. From the test tree, we
can select sequences of member functions which serve
as preambles to a member function satisfying a given
testing criterion according to the rules in Figure 8.

Let S = i(P, I 2 = 1, .., T} be a set of all paths from the
initial state to the required states in the test tree. Each
P, is reprtesented by (S O , M O , S ~ , M ~ , . . . , M k - i , S k) where
So is the initial state, s k is one of the required states, and
MJ is a member function that is involved with a transition
from SJ-l to S,. Then, for each P,, generate a sequence
of menber functions T, such that

(Rl) each M, (3 = 0, .., k - 1) must participate in T, at least

(R2) execution of T, must reveal the states so, ..,sk at least
once and the order of state occurrences must be pre-
served.

once and

Figure 8: Rules for selecting preambles

In the case of ADDQ, there are five paths from the
initial state to the required states (SII , szi), (~ 1 2 , sza):

PI . ((S O , ~ o) , Q U E U E , (J : I , 921))

Pz ((9 0 , s o) , Q U E U E , (s l 1 , s 2 i) . A D D Q , (s l z , s2z) ,DELQ,
(S l l . S Z I))

P3 (($ 0 , s o) , Q U E U E , (s l l , s Z l) , A D D Q , (s l z I “22))

P4 (($ 0 , s o) , Q U E U E , (s l : , sZ l)zADDQ,(* lz s z z) , A D D Q ,
(~ 1 2 ~ 5 2 2))

(s 1 2 , “ 2 2))
Ps (($ 0 , E O) , Q U E U E , (S ~ I , s 2 1) A D D Q , (S i z , s zz) .DELQ,

Using the rules (Rl) and (R2) as guidelines, the

0 (QUEUE) for p l

0 (QUEUE,ADDQ,DELQ) for p2

following set of sequences can be derived for ADDQ:

0 (QUEUE,ADDQ) for p3

(QUEUE,ADDQ,ADDQ) for p4

0 (QUEUE,ADDQ,DELQ,ADDQ) for p5

For example, consider the path p5. (Rl) re-
quires that a sequence derived for the path must con-
tain at least one occurrence for each of the mem-
ber functions QUEUE, ADDQ, and DELQ. (R2)
also requires that during execution of the derived

(~ 1 2 , s ~ ~)) must be revealed in the order appearing
in the path. We can easily observe that the se-
quence (QUEUE,ADDQ,DELQ,ADDQ) satisfies (Rl)
and (R2) because:

(Rl) : It contains the occurences required for the
memebr functions QUEUE(),ADDQ(),DELQ().

(R2): By executing QUEUE(), we can change the
state (so, so) to (~ 1 1 , sal) and by executing
(QUEUE,ADDQ) we can form (s12,s22) and by
executing (QUEUE,ADDQ,DELQ,ADDQ), we
can form (~ 1 2 , ~ 2 2) .

Finally, test cases are generated by using the above
sequences as the preambles of ADDQ. The resulting
test sequences are:

sequence, the states ((so, S O) , (~ 1 1 , sal), (~ 1 2 , S Z Z) ,

o (QUEUE,ADDQ)
0 (QUEUE,ADDQ,DELQ,ADDQ)
0 (QUEUE,ADDQ,ADDQ)
a (QUEUE, ADD Q, ADDQ ,AD DQ)

(QUEUE, ADDQ , DELQ , ADDQ , ADDQ)

5 Related Works

Recently, a FSM-based class testing technique has
been proposed by Turner and Robson[ll]. Their tech-
nique determines input states and output states for
each member function from the design of the class
and they also proposed test selection guidelines based
on FSMs. However, this technique is based on FSMs
derived from design specifications and so can not gu-
rantee coverage of particular code components.

453

Kung et a1.[7] proposed a class testing technique
based on object state model (OSD) which is similar
to statecharts[4]. They extract OSD from source code
and generate test cases by constructing a spanning
tree from OSD which is similar to our approach. In
contrast, our technique constructs FSMs from specifi-
cations for generating sequences of member functions
that serve as preambles for certain coverage of a mem-
ber function being tested.

Parrish et a1.[8] proposed a testing strategy using a
flow graph that is constructed from source codes. A
node of a flow graph is a member function and there
exists an edge between nodes N and M if it is per-
missible to invoke N followed by M. A node is said to
contain a definition of type T if the node contains a
formal parameter of type T. A def-use edge is defined
as a triple involving a type T , a node in which T is de-
fined, and a node T is used. By incoporating a def-use
edges into a flow graph, dataflow-like coverage criteria
can be applied.

However, this technique only considers the param-
eters of member functions, ignoring data members.
In addition, this technique does not ensure t8hat we
will test from each definition of a varaible to each use
of the variable because the technique considers types
rather than varaibles. In order to address these prob-
lems, Harrold and Rotherme1151 proposed three lev-
els of class testing:intra-method testing, inter-method
testing, and intra-class testing. To support each data
flow in the three levels, they construct a flow graph
which represents every possible sequences of member
functions from the class’s code. Then they gener-
ate tests using inter-procedural data flow testing tech-
niques.

It is easy to incorporate intra-method and inter-
method testing techniques into our testing framework.
After random testing of a class to be tested, we per-
form Steps 3-6 presented in Section 4 for the paths
to contain uncovered intra-method (or inter-method)
def-use pairs. However, our testing technique may
miss some intra-class def-use pairs because we consider
a member function as a basic testing unit. That is,
there may be some intra-class def-use pairs which are
not limited within single member functions or within
the calling context of a single member function.

6 Future Works

Our work presented in this paper does not con-
sider inter-class relationships. In general, there are
three types of relationships between classes: associa-
tion, aggregation and inheritance[9]. We can incopo-
rate these inter-class relationships into construction
of CSMs. By constructing BSMs firstly we are en-
able to derive the CSM incrementally. For example,
consider the case in which a class has as its parts

other classes. In that case, we can reuse the BSMs
for the component classes, if they were already con-
structed, in order to derive the CSM for the enclosing
class. Also, we have an advantage of deriving CSMs
for subclasses from a CSM for its base class in certain
circumstances. Consequently, we believe that the ex-
tension of the proposed testing technique to the inter-
class level would not requre much time. In addition,
Further research needs the empirical validation of our
testing technique.

References

[l] G. Booch, Object Orzented Deszgn with Applica-
tions, Benjamin Cummings, 1991.

[a] T. Chow, “Testing Software Design Modeled by
Finite-State Machines,” IEEE Trans. on Soft.
Eng., Vol. SE-4, No. 3, May 1978, pp. 178-187.

[3] R. Doong and P.G Frankl, “Case Studies on
Testing Object-Oriented Programs,” in Proc. of
the 4th Symposium on Software Testing, Analysis
and Verification, 1991, pp. 165-177.

[4] D. Harel, “Statecharts: A Visual Formalism for
Complex Systems,” Science of Computer Pro-
gramming, 8, 1987, pp. 231-274.

[5] M.J. Harrold and G. Rothermel, “Peforming
Data Flow Testing on Classes,” in Proc. of the
second ACM SIGSOFT Symp. on Foundations of
Software Engineering, Dec. 1994, pp. 154-163.

[6] P. Jalote and M. G. Caballero, “Automated Test
Case Generation for Data Abstraction,” in Proc.

[7] D. Kung, N. Suchak, J . Gao, P. Hsia, Y.
Toyoshima, and C. Chen, “On Object State Test-
ing,” in Proc. of COMPSAC, 1994, pp. 222-227.

[8] A.S. Parrish, R.B. Borie, and D.W. Cordes, “Au-
tomated Flow Graph-Based Testing of Object-
Oriented Software Modules,” Journal of Systems
and Software, 23, 1993, pp. 95-109.

[9] J . Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen, Object Oriented Modeling and
Design, Prentice Hall, 1991.

[lo] S. Shlaer and S.J. Mellor, Object Lifecycles: Mod-
eling the World in States, Prentice Hall, 1992.

[ll] C.D. Turner and D.J. Robson, “The State-based
Testing of Object-Oriented Programs,” in Proc.
of Conf. on Software Maintenance, 1993, pp. 302-
310.

[la] S. Zweben, W. Heym, and J . Kimich, “Systematic
Testing of Data Abstractions Based on Software
Specifications,” Journal of Software Testing, Ver-
ification, and Reliability, 1, 1992, pp. 39-55.

of COMPSAC, 1988, pp. 205-210.

454

