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Abstract 

This paper discusses how conventional testing cri- 
teria such as branch coverage can be applied fo r  the 
testing of member functions inside a class. To sup- 
port such testing techniques we employ symbolic ex- 
ecution techniques and finite state machines(FSMs). 
Symbolic execution is performed on the code of a mem- 
ber functzon to  identify states that are required t o  ful- 
fill a given criterion. We use FSMs to generate a 
sequence of member functions leading to the identi- 
f i e d  states. Our technique is a mixture of code-based 
and speci.fication-based testing techniques in the sense 
that it uses information derived from codes using sym- 
bolic execution together with information from specifi- 
cations using FSMs for  testing activitaes. 

Keywords: software testing, object-oriented pro- 
grams, classes, finite state machines, symbolic execu- 
tion 

1 1nti:oduction 

Recently there has been much research on testing 
techniques for a class which is often considered as the 
basic unit in an object-oriented program[3, 5, 8, 11, 
la].  Morjt exsiting work in conducting class testing 
has focused on specification-based testing techniques 
which involve selecting sequences of member functions 
to test for defects in their interactions. One reason 
why test cases are made of sequences of member func- 
tions is that execution paths of each member function 

*This work was supported in part by the Korea Science & 
Engineering Foundation under contract number 951-0908-022-2. 

are determined by states of the object to be consid- 
ered as well as its input parameter values. Usually, the 
values of data members that define the current state 
of an object depend on some other member functions 
within the class. 

Suppose that a class STACK has public member 
functions PUSH(), POP()  and a data member Top 
which is assumed to  be accessible only by PUSH() and 
POP(). Then, for example, determination of which 
paths in the POP method are executed depends on 
the values of data member Top which are affected by 
mernber functions PUSH() and POP() itself. From 
this fact we can find that it is difficult to isolate a 
member function as the basic testing unit from its 
class. 

In contrast, conventional (unit) testing techniques 
deal with the procedure, or the function, as its basic 
testing unit and involve selecting a collection of in- 
put data values as test cases. This is one important 
reason why it is difficult to apply conventional test- 
ing techniques to object-oriented programs directly. 
Moreover, since most existing techniques on class test- 
ing select test cases on the basis of specifications, they 
do not require coverage of particular code components. 
In order to obtain confidence, the notion of coverage 
which is analogous to that used in conventional code- 
based unit testing should be introduced into class test- 
ing as well. 

In this paper, we present a testing method that 
combines specification-based testing and code-based 
testing for class testing. The testing method adapts 
conventional code-based unit testing techniques to test 
member functions of a given class. In order to apply 
the notion of coverage provided by conventional test- 
ing we consider each member function inside a class 
as the basic testing unit. Because the testing of mem- 
ber functions requires states of the object as discussed 
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above, it is necessary to identify the states and then 
build up the identified states. 

We use symbolic execution techniques to  identify 
states which are required by each member function 
for satisfing a given coverage criterion. By performing 
symbolic execution on the paths of the member func- 
tion that are not yet exercised, we can obtain expres- 
sions in terms of data members. The resultant expres- 
sions indicate the states to  be required for the testing 
of member functions. The testing method proposed in 
this paper is also based on finite state machines(FSMs) 
in order to  generate a sequence of member functions 
that leads to  the identified states. 

The remainder of this paper is organized as follows: 
Section 2 discusses how to employ conventional test- 
ing techniques for class testing. Section 3 describes a 
state model needed for generating test sequences. Sec- 
tion 4 presents our testing technique with an example. 
Section 5 describes related works to  class testing and 
compares our work with them. Conclusion and future 
works are given in Section 6. 

2 Adequate Testing of Member Func- 
tions in a Class 

When building a test set for testing a member func- 
tion inside a class it is not sufficient to  consider only 
its input parameter values. We should consider one 
additional factor, states which the objects of the class 
may be in. A state of an object is defined in terms 
of data  members of the object. For example, con- 
sider a stack object with its data  member Top of type 
unsigned integer. Then, the stack object may be re- 
garded as having two states, an initial state Empty 
characterized by Top=O and a state NotEmpty char- 
acterized by Top>O. It is evident that the dynamics 
of a member function such as POP() depends on the 
current state of the object. Therefore, we must take 
into account the state of the object as well as the val- 
ues of the input parameters of the member function. 
Consequently, we can represent a test case of a mem- 
ber function m as a pair t ,  = ( v , s ) ,  where U is an 
input value vector corresponding to  the input param- 
eters of m and s is a state of the object which m is 
applicable to. 

Definition 2.1 Let T, = { t h l k  = 1 , 2 ,  ..., n}  be a 
test set of a member function m ,  where tk = (d, s k ) .  
Let A be a conventional test criterion. We say that  
T, is A-adequate for m and write A(m,T,) if T, 
contains test cases to  satisfy the criterion A .  

This form of a test case of a member function re- 
quires some means to  identify the states as well as 
input value vectors in order to  perform the adequate 

testing of the member function, thereby compound- 
ing the difficulty of test case selection. Furthermore, 
even though we can identify the desired states, testing 
a member function requires building up the states in 
such a way that the member function can be tested 
isolated from its surrounding class. 

One way to  resolve these problems is to  remove all 
other code fragments except the member function un- 
der testing and then write test drivers and test stubs. 
The role of these driver and stubs is to  adjust the val- 
ues of data  members to  make the desired state and 
replaces the code removed. However, this approach 
has some difficulties in being applicable in practice. 
Especially, it is difficult to  write test drivers and stubs 
when the majority of code in the member function is 
already provided in the form of other member func- 
tions in the class. Furthermore, the test drivers must 
supply to  the member function the states which are 
required to  fulfill a given test criterion. In general, 
test drivers with such facilities are likey to  require as 
much testing effort as when testing all the member 
functions of the class. 

Another approach is to  use the member functions 
in the class to make the intended states without re- 
moving them. Suppose, for example, that we want to  
test member function POP() in the (bounded) STACK 
class of size n according to  some test criterion. If 
POP() requires the bounded stack object being full 
to  satisfy the criterion, then we can construct the re- 
quired state by using a sequence of member functions, 

e.g., < PUSH, . . . , PUSH >. After selecting a possible 
sequence of member functions, we can apply POP() 
to  the state resulting from execution of the selected 
sequence. Of course, there is no gurantee that such a 
sequence reaches the intended state because the mem- 
ber functions associated with the sequence may have 
defects. However, we know that testing is the process 
of finding defects rather than certifying correctness, in 
this sense, this approach is of value. 

n - 

3 The State Model 

We employ a state model to  generate a sequence of 
member functions leading to  the required state. State 
models such as finite state machines(FSMs) can be 
used in representing a set of states and the transitions 
between those states to  capture the dynamic behavior 
of class instances, i.e., objects[l, 9, lo]. 

There are many candidates for representing the 
state model, including the model proposed by Rum- 
baugh et a1[9] and that of Shaler and Mellor[lO]. 
Such representations provide enough highly expressive 
power to  use them as analysis and design tools. How- 
ever, the state model needed for testing activities does 
not necessarily have to encompass all the features pro- 
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vided by the existing models. In this paper, we will 
use a very simple state model based on finite state 
machines. 

Constructing the state model involves two steps: 
1) building a basic state machine(BSM) for each data  
member which has the significant effect on the be- 
havior of an object and 2) building a composite state 
machine(CSM) from the constructed BSMs. In the 
following subsections, we describe these steps in de- 
tail. 

3.1 Constructing Basic State Machines 

When constructing BSMs it is not likely to be use- 
ful to  consider all data members; some data members 
may exist, only for housekeeping and, therefore, they 
do not pahc ipa te  in the definition of the object's state 
because state changes of an object are independent of 
them. Tlhis leads to the reduction of the number of 
data members that need to be considered. A second 
consideration to build the (sub)state space for a data  
member is that the state space must be partitioned to 
equivalent classes each of which shares the properties 
of interest. For example, in an array-based implemen- 
tation of a stack of size n,  there may be from 0 to 
n elements on the stack as indicated by data mern- 
ber Top and, therefore, the state space for Top can 
be partitioned to n+1 states. From a modeling or 
testing perspective, we are usually only interested in 
the stateis characterized by Top=O, 0 <Top< n ,  and 
Top = n .  Rather than considering n states we need 
only to caonsider three. The formal definition of BSM 
is as follows. 

Definitilon 3.1 A basic state machine(BSM) of a 
class C is a tuple (d,  F,  S, T) where 

0 d is an element in the set of data  members, D, of 

0 F is a finite subset of member functions of C that 

0 S is afinite set of states, i.e., S = { s  I s = ( d e f ) }  

0 T is a finite set of transitions, i.e., T = { ( s i , t , s j )  

C i.e., d E D. 

can modify d. 

where de f is a predicate on data  member d.  

~ s i ~ ~ s j , s ~ , s j E S a n d t E F }  

Figure 1 shows a class specification for an 
unbounded integer queue, QUEUE, using C++ 
notations. Class QUEUE has member func- 
tions QUEUE(), -QUEUE(), ADD&(), DEL&(), 
FRONT(:), ISEMPTY() and data members f r o n t ,  
rear of type NodePtr. QUEUE(), called a construc- 
tor, creates a new queue, -QUEUE(), called a de- 
structor, destroys a queue object. We will not describe 
the functionalities of the other member functions and 
the role 'of data members because the QUEUE speci- 
fication is well-known. 

class QUEUE { 
public: 

QUEUEO; 
-QUEUE(); 
Boolean ISEMPTY() const; 
int FRONT() const; 
void ADDQ(int newItem); 
void DELQO; 

NodePtr* front; 
NodePtr* rear; 

private: 

1 
Figure 1: A class specification for unbounded queue, 
QUEUE 

In order to  construct BSMs for class QUEUE, we 
firstly must consider which data members of QUEUE 
influence the definition of queue objects. Because, in 
this example, both data members f ront ,  and rear af- 
fects the class behavior, it is required to construct one 
BSM for each of the data members. 

Figure 2: A BSM for data member front  

Figure 2 shows a BSM for data  member front  of 
QUEUE. As can be seen in Figure 2, the domain of 
data  member front  is partitioned into two equivalent 
classes sll, s12. The states are associated with the 
values of front  as follows: 

s l l . d e f :  f ront  = N U L L  
s l2 .de f :  f r o n t  f N U L L  

Also, there are two specially designated states in 
BSM, SO and s f :  

0 so is an initial state representing the period be- 
fore an object is created, i.e., a constructor of an 
object is called. so.def is undefined because the 
data  member being considered have not yet been 
created. 
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e sf is a final state representing the period after an 
object is destroyed, i.e., a destructor of an object 
is called. s f . d e f  is undefined because the data 
member being considered are killed in sf. 

The transitions between the states of a data mem- 
ber v consists of pre-state, post-state, and a member 
function. A data  member changes its state if its value 
is changed by execution of a, member function. Thus, 
a state transition from a pre-state to  a post-state can 
occur if the pre-condition of the member function can 
be satisfied by the pre-state. The final value expres- 
sion of the data  member can be satisfied by the post- 
state. For example, the transition, tagged with mem- 
ber function ADD&(), from sll to  512 can occur if 
the precodition of ADD&() can satisfied by state s11, 
i.e., front  = N U L L .  When the transition occurs, 
the state is changed into s12 that  represents the state, 
f r o n t # N U L L .  Similarily, we can construct a BSM 
for data  member rear.  Figure 3 shows a BSM that 
partitions the domain of data member into two states, 
s21 and s22; s21 represents the state rear=NULL and 
5 2 2  represents the state r e a r f N U L L .  

(Sp, t ,sq)  

Figure 3:  A BSM for data  member rear 

1 if q = q’, Ap 5 p‘ E Ti, 
or p = p’,Aq 5 q’ E T 2 ,  

3.2 Constructing Composite State Ma- 
chines 

After constructing BSMs for each data member of 
a class, we are able to  derive a composite state ma- 
chine(CSM) for the class. In this section, we describe 
how to construct a CSM from BSMs. We only con- 
sider the case in which a CSM is constructed from two 
given BSMs because it is straightforward to construct 
a CSM for more general cases. Suppose that  a class 
contains data members, d l ,  d2. Then, let us denote 
BSMs for the data members by BSM1 and BSM2,  
where BSMi( i  = 1 , 2 )  is a tuple ( d i ,  F;, Si, T i ) .  Then, 
the definition of CSM is as follows: 

Definition 3.2 A CSM of a class C is a tuple (D, F, 
S, T) such that:  

D = { d l }  U { d a } .  

Let’s consider a CSM for class QUEUE. We have al- 
ready constructed the BSMs for data  members f ront  
and rear.  Because the BSMs, shown in Figure 2 and 
Figure 3 contain four states respectively, there may 
exist 16 composite states in the CSM. However, from 
the above assumptions, we only consider six states, 
i.e., ( S O ,  SO) ,  ( S J ,  s f ) ,  (~11,s21), ( ~ 1 1 ,  s 2 2 ) ,  (512, sal), 
( ~ 1 2 ,   sa^), as valid. By eliminating the other ten states 
and their associated transitions, we can obtain the 
CSM for QUEUE as depicted in Figure 4. 

However, the CSM in Figure 4 is not the final 
version because it still contains so-called contrudzc- 
tory states. A composite state is contradictory if the 
predicates associated with some of its substates are 
inconsistent with the specification of a given class. 
The contradictory states in Figure 4 are ( ~ 1 2 ,  s21)  and 
(s11,s22) that  are enclosed in the dotted region. The 
predicates of these states are as follows: 

( s l z , s 2 l ) . d e f  = (front # N U L L A r e a r  = N U L L )  
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Figure 4: A CSM for QUEUE before eliminating con- 
tradictory states 

(sii,szz).def = (front = N U L L    rear # N U L L )  

The predicate of ( 5 1 2 ,  sal) implies that at  least one 
item exists in the queue, but the rear of queue does not 
have an item. Obviously, this is contradictory to the 
QUEUE: class specification because rear is required 
to point to the rear item (i.e., f ront  = rear A rear # 
N U L L ) ,  if it exists, in the queue. Likewise, we can re- 
gard ( ~ 1 1 ,  s22) as a contradictory state. Figure 5 shows 
the CSM for the QUEUE class after eliminating the 
contradictory states and their associated transitions. 

b' 
Figure 5: A CSM for class QUEUE 

4 Testing Process 

The testing technique proposed in this paper con- 
sists of the following steps: 

1. Establish a test criterion and instrument each 
member function inside a class module under test 
in accordance with the criterion. 

2.  Perform random testing on the class module. 

3. For each member function, investigate the unex- 
ercised blocks for test cases generated in Step 2 
and determine the paths to be required for satis- 
fying the given criterion. 

4. Perform symbolic execution on the paths pro- 
duced in the previous step and produce the path 
constraints in terms of data members. 

5. Generate test cases from CSM with respect to the 
path constraints. 

6. Execute the generated test cases on each member 
function that has the paths produced in Step 3. 

The following subsections describe theses steps in 
detail. 

4.1 Symbolic execution on member func- 
tions 

This subsection is mainly devoted to illustratining 
Steps 3 and 4. Before proceeding, we briefly mention 
Steps 1 and 2. 

A class module under test is instrumented in Step 1 
for the purpose of collecting coverage information for 
the generated test cases and evaluating if more test- 
ing effort is needed for the chosen criterion. In Step 2 ,  
we generate sequences of member functions arbitrarily 
and use them as test cases for the class. In fact, we can 
employ the existing techniques for this purpose. One 
of the techniques that we can consider in this step is 
the technique proposed by Jalote et al[6]. Their tech- 
nique uses the syntactic information of each member 
function to generate sequences of member functions. 
The reason why we firstly perform random testing on 
a class is that it can reduce the computational effort 
required to develop new test cases for satisfying the 
testing criterion. 

The coverage statistics after random testing is used 
to determine whether or not additional test cases 
are necessary. If the intendend coverage level is not 
achieved, we produce path constraints for the paths 
required for satisfying the criterion through symbolic 
execution. This task is carried out in Steps 3 and 4. 
For example, consider member function ADD$() in 
the QUEUE class. Figure 6 shows the code fragment 
of ADDQ() that contains numbered statements. 
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void QUEUE::ADDQ(int newItem) { 
1: 
2: newPtr-data = newItem; 
3: newPtr+link = NULL;  
4: if (front == NULL) 
5: front=rear=newPtr; 

6: rearilink = newPtr; 
7 :  rear = newPtr; 

NodePtr newPtr = new NodeType; 

else { 

1 
1 

Cbll I NULL 1 don’t care 
Cbzl I not NULL I don’t care 

Figure 6: The member function ADD&() in the 
QUEUE class 

1 

don’t care. 
don’t care. 

There are two execution paths in ADDQ(); one 
is (1,2,3,4,5), denoted by pl, and the other is 
(1,2,3,4,6,7), denoted by p z .  Suppose that testing of 
member function ADD&() requires branch coverage. 
We should develop test cases t o  exercise these two 
paths if the paths have not been traversed by test cases 
generated during random testing. In order to develop 
test cases for the paths, we use symbolic execution 
techniques to  find the path contraints. The following 
table shows the resulting path constraints for p1 and 
Pz : 

data member I parameter 
rear I newltem 

We use these path constraints to  check if there exist 
states in CSM to satisfy them. In this example, we 
can find that  the following implications between the 
path constraints and the states in the CSM given in 
Figure 5 holds: 

( S l l ,  m ) . d e f  * Cbll, (s12, szz).def * Cb21. 

From this, we know that (SII, SZI)  and (512, S Z Z )  are 
the states required to  achieve branch coverage of the 
ADD&() member function. 

We must also consider the case where there exists 
a path constraint, C[pk], such that Cbk] cannot be 
satisfied by any states in a given CSM. In this case, it 
is necessary to transform the CSM into the one that 
contains the states to satisfy the path constraint. If 
we assume that the path constraint is legal(i.e, there 
exist sequences of member functions leading to  the 
states the path constraint requires), it is possible to 
derive a CSM with such states from a given CSM as 
described below: 

Select a state Si that  intersects with Cbk]. 

Form states S,, S, in such a way that 
S,.def = S i .de f  - (S;.defnC/&]) and 
S, .de f = Si .de f n C[pk]. 

Replace Si by S, and S,. 
Repeat the above steps until no intersecting states 
exist in the CSM. 

Following the above procedure, the resulting CSM 
contains a t  least one state S, holding 

S, =+ Cbkl. 

We can show the existence of S, by proving that there 
exists a state intersecting with Cbk] in the original 
CSM. I t  is straightforward to  prove the fact. Be- 
cause the states of the CSM are mutually exclusive 
and Cbk] is assumed to be legal, there exists a se- 
quence of member funtions the execution of which re- 
sults in a state S such that S n C[pk] # 8. Tha t  is, 
S n C[pp,] = S,. and S,. + Cbk]. 

4.2 Test generation from CSMs 

Once the required states are identified, we must 
generate test cases the execution of which can form 
the states. For branch coverage of ADD&, we can 
form the state ( ~ 1 1 ,  s l 2 )  by executing the sequence 
(QUEUE,ADDQ,DELQ,DELQ). Also, we can observe 
that executing (QUEUE,ADDQ,DELQ,ADDQ) re- 
sults in the state ( ~ 1 2 ,  ~ 2 2 ) .  So, the testing of ADDQ() 
may involve executing the following sequences: 

e (QUEUE,ADDQ,DELQ,DEL&,ADDQ) 

(QV EU E, ADDQ , DELQ, ADDQ , ADDQ) 

In fact, there may exist infinite number of sequences 
that  play a role as preambles t o  a member function in 
cases where CSMs have loops. Because we cannot test 
a member function for all possible sequences in prac- 
tice, it is necessary to introduce some sequence selec- 
tion rules that  specify which of all possible sequences 
can be preambles to  the member function under test. 
To this ends, we firstly generate a test tree from a 
CSM by following the steps given below: 

Starting from the initial state in CSM, the root 
of the test tree is constructed. 

We now examine the nodes in the test tree one 
by one. Let the node being examined be labeled 

If Si has already occurred at a higher level in the 
tree, then the node becomes a leaf node and will 
not be examined. Go to Step (2) and examine the 
next node; otherwise go t o  Step (4). 

by si. 
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If there exists a transition t such that Si -4, Sj 
in the CSM, then we attach a branch and a suc- 
c e s s ~ ~ ;  node to Si, the branch is labeled t and the 
successor node is labeled Sj . 

This step is repeated until no transition can be 
triggered. Then go to Step ( 3 )  unless no expan- 
sion is possible. 

Figure 7: A test tree for class QUEUE 

Conider the CSM in Figure 5. A test tree for this 
CSM is shown in Figure 7. From the test tree, we 
can select sequences of member functions which serve 
as preambles to a member function satisfying a given 
testing criterion according to the rules in Figure 8. 

Let S = i(P, I 2 = 1, .., T} be a set of all paths from the 
initial state to the required states in the test tree. Each 
P, is reprtesented by ( S O , M O , S ~ , M ~ , . . . ,  M k - i , S k )  where 
So is the initial state, s k  is one of the required states, and 
MJ is a member function that is involved with a transition 
from SJ-l to S,. Then, for each P,, generate a sequence 
of menber functions T, such that 

(Rl) each M, ( 3  = 0, .., k - 1) must participate in T, at least 

(R2) execution of T, must reveal the states so, ..,sk at least 
once and the order of state occurrences must be pre- 
served. 

once and 

Figure 8: Rules for selecting preambles 

In the case of ADDQ, there are five paths from the 
initial state to the required states (SII ,  szi), ( ~ 1 2 ,  sza): 

PI . ( ( S O ,  ~ o ) , Q U E U E , ( J : I ,  921) )  

Pz ( ( 9 0 ,  s o ) , Q U E U E , ( s l 1 ,  s 2 i ) . A D D Q , ( s l z ,  s2z ) ,DELQ,  
( S l l .  S Z I ) )  

P3 ( ( $ 0 ,  s o ) , Q U E U E , ( s l l ,  s Z l ) , A D D Q , ( s l z  I “22))  

P4 ( ( $ 0 ,  s o ) , Q U E U E , ( s l : ,  sZ l )zADDQ,(* lz  s z z ) , A D D Q ,  
( ~ 1 2 ~  5 2 2 ) )  

( s 1 2 ,  “ 2 2 ) )  
Ps ( ( $ 0 ,  E O ) , Q U E U E , ( S ~ I ,  s 2 1 ) A D D Q , ( S i z ,  s zz ) .DELQ,  

Using the rules (Rl )  and (R2) as guidelines, the 

0 (QUEUE) for p l  

0 (QUEUE,ADDQ,DELQ) for p2  

following set of sequences can be derived for ADDQ: 

0 (QUEUE,ADDQ) for p3 

(QUEUE,ADDQ,ADDQ) for p4 

0 (QUEUE,ADDQ,DELQ,ADDQ) for p5 

For example, consider the path p5.  (Rl )  re- 
quires that a sequence derived for the path must con- 
tain at least one occurrence for each of the mem- 
ber functions QUEUE, ADDQ, and DELQ. (R2) 
also requires that during execution of the derived 

( ~ 1 2 , s ~ ~ ) )  must be revealed in the order appearing 
in the path. We can easily observe that the se- 
quence (QUEUE,ADDQ,DELQ,ADDQ) satisfies (Rl )  
and (R2) because: 

(Rl ) :  It contains the occurences required for the 
memebr functions QUEUE(),ADDQ(),DELQ(). 

(R2): By executing QUEUE(), we can change the 
state (so, so) to ( ~ 1 1 ,  sal)  and by executing 
(QUEUE,ADDQ) we can form (s12,s22) and by 
executing (QUEUE,ADDQ,DELQ,ADDQ), we 
can form ( ~ 1 2 ,  ~ 2 2 ) .  

Finally, test cases are generated by using the above 
sequences as the preambles of ADDQ. The resulting 
test sequences are: 

sequence, the states ((so, S O ) ,  ( ~ 1 1 ,  sal), ( ~ 1 2 ,  S Z Z ) ,  

o (QUEUE,ADDQ) 
0 (QUEUE,ADDQ,DELQ,ADDQ) 
0 (QUEUE,ADDQ,ADDQ) 
a (QUEUE, ADD Q, ADDQ ,AD DQ) 

(QUEUE, ADDQ , DELQ , ADDQ , ADDQ) 

5 Related Works 

Recently, a FSM-based class testing technique has 
been proposed by Turner and Robson[ll]. Their tech- 
nique determines input states and output states for 
each member function from the design of the class 
and they also proposed test selection guidelines based 
on FSMs. However, this technique is based on FSMs 
derived from design specifications and so can not gu- 
rantee coverage of particular code components. 
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Kung et a1.[7] proposed a class testing technique 
based on object state model (OSD) which is similar 
to statecharts[4]. They extract OSD from source code 
and generate test cases by constructing a spanning 
tree from OSD which is similar to  our approach. In 
contrast, our technique constructs FSMs from specifi- 
cations for generating sequences of member functions 
that serve as preambles for certain coverage of a mem- 
ber function being tested. 

Parrish et a1.[8] proposed a testing strategy using a 
flow graph that is constructed from source codes. A 
node of a flow graph is a member function and there 
exists an edge between nodes N and M if it is per- 
missible to  invoke N followed by M. A node is said to  
contain a definition of type T if the node contains a 
formal parameter of type T. A def-use edge is defined 
as a triple involving a type T ,  a node in which T is de- 
fined, and a node T is used. By incoporating a def-use 
edges into a flow graph, dataflow-like coverage criteria 
can be applied. 

However, this technique only considers the param- 
eters of member functions, ignoring data members. 
In addition, this technique does not ensure t8hat we 
will test from each definition of a varaible to each use 
of the variable because the technique considers types 
rather than varaibles. In order to  address these prob- 
lems, Harrold and Rotherme1151 proposed three lev- 
els of class testing:intra-method testing, inter-method 
testing, and intra-class testing. To support each data 
flow in the three levels, they construct a flow graph 
which represents every possible sequences of member 
functions from the class’s code. Then they gener- 
ate tests using inter-procedural data  flow testing tech- 
niques. 

It is easy to  incorporate intra-method and inter- 
method testing techniques into our testing framework. 
After random testing of a class to  be tested, we per- 
form Steps 3-6 presented in Section 4 for the paths 
to  contain uncovered intra-method (or inter-method) 
def-use pairs. However, our testing technique may 
miss some intra-class def-use pairs because we consider 
a member function as a basic testing unit. That  is, 
there may be some intra-class def-use pairs which are 
not limited within single member functions or within 
the calling context of a single member function. 

6 Future Works 

Our work presented in this paper does not con- 
sider inter-class relationships. In general, there are 
three types of relationships between classes: associa- 
tion, aggregation and inheritance[9]. We can incopo- 
rate these inter-class relationships into construction 
of CSMs. By constructing BSMs firstly we are en- 
able to derive the CSM incrementally. For example, 
consider the case in which a class has as its parts 

other classes. In that case, we can reuse the BSMs 
for the component classes, if they were already con- 
structed, in order to  derive the CSM for the enclosing 
class. Also, we have an advantage of deriving CSMs 
for subclasses from a CSM for its base class in certain 
circumstances. Consequently, we believe that the ex- 
tension of the proposed testing technique to  the inter- 
class level would not requre much time. In addition, 
Further research needs the empirical validation of our 
testing technique. 
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