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Abstract The aperture angle a(x, Q) of a point x ¢ Q in the plane with respect to
a convex polygon Q is the angle of the smallest cone with apex x that contains Q.
The aperture angle approximation error of a compact convex set C in the plane with
respect to an inscribed convex polygon Q C C is the minimum aperture angle of any
x € C\ Q with respect to Q. We show that for any compact convex set C in the
plane and any k > 2, there is an inscribed convex k-gon Q C C with aperture angle
approximation error (1 — k_%l)n. This bound is optimal, and settles a conjecture by
Fekete from the early 1990s.

The same proof technique can be used to prove a conjecture by Brass: If a polygon
P admits no approximation by a sub-k-gon (the convex hull of k vertices of P) with
Hausdorff distance o, but all subpolygons of P (the convex hull of some vertices
of P) admit such an approximation, then P is a (k 4 1)-gon. This implies the follow-
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ing result: For any k > 2 and any convex polygon P of perimeter at most 1 there is a
sub-k-gon Q of P such that the Hausdorff-distance of P and Q is at most k+r1 sin kﬂ?

Keywords Hausdorff approximation - Aperture angle - Convex figure - Subpolygon

1 Introduction

Let Q be a compact set in the plane, and let x be
a point outside Q. The aperture angle a(x, Q) of x
with respect to Q is the angle of the smallest cone with
apex x that contains Q (that is, its boundary consists
of two rays emanating from x tangent to Q). The aper-
ture angle plays a role in various applications related to
sensing, and has been studied in a number of papers.

Bose et al. [1], for instance, consider two disjoint con- ‘
vex polygons P and Q in the plane, and give algorithms oz(x, Q) T
to compute the maximum aperture angle and the mini-

mum aperture angle with respect to Q when x is allowed to vary in P. Hoffmann
et al. [7] introduce the angle hull of a connected region Q inside a simple polygon P,
consisting of all those points x € P with a(x, Q) at least a given angle. They give
bounds on the length of the boundary of the angle hull, and apply this to the problem
of exploring an unknown environment. Cheong and van Oostrum [5] give bounds on
the complexity of the angle hull of a convex polygon in a polygonal environment, and
apply this to the problem of motion planning under directional uncertainty.

We consider the problem of placing k sensors or transmitters in a compact convex
room C. A point in C is covered perfectly if it lies inside the convex hull Q C C of
the sensors. However, if C has more than k vertices or even a smooth boundary, we
must have Q C C, and it is not possible to achieve this for all points of C. For points
x € C\ Q, we would like to maximize the coverage by the sensors, and measure this
using the aperture angle o (x, Q). For given C and Q C C, let us denote the worst
coverage as

a(C, Q) :=mina(x, Q),
xeC

where we set a(x, Q) =& for x € Q. Since C is compact and «(x, Q) is continuous,
the minimum is indeed attained in C and this is well-defined. We are looking for the
best placement of k sensors, so we seek to maximize o (C, Q) over all convex k-gons
inscribed in C. Let us denote this quantity as «(C, k), defined formally as

a(C,k):= max «a(C, Q),
QeCr(0)

where C (C) is the family of convex k-gons inscribed to C. In other words, we study
the approximation of convex sets by inscribed k-gons with respect to the “aperture-
angle distance.” This distance measure is attractive as it is naturally scale-invariant,
without needing to be normalized by some global property of C (such as its perimeter
or area). We are now interested in the following question: Given k, what aperture
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angle can we guarantee for any possible compact convex C? In other words, we ask
for the following quantity

o(k) ;= inf a(C, k) = inf max mina(x, Q),
*) ceC ( ) CeC QeC(C) xeC . Q)

where C is the family of compact convex figures in the plane. This question was first
asked by Fekete in 1990, and circulated at several open problem sessions in the early
1990s [6]. An upper bound for « (k) is given by the regular convex (k + 1)-gon Py .
Since any k-gon Q inscribed in Py must “miss” a vertex of Pri1, we have
o (Prt+1, Q) < (1 —2/(k + 1))m (the interior angle at each vertex of Pyy1). For a
lower bound, we can walk around the boundary of a given C and place a vertex of
QO whenever the tangent direction has changed by 2 /k. It is easy to see that this
achieves «(C, Q) > (1 —2/k)m, and so we have a(k) > (1 —2/k)x.

A discrepancy between the two bounds remained, and Fekete conjectured that the
upper bound is correct:

Conjecture 1 For any k > 2, the smallest value of a(k) is achieved by the regular
(k + 1)-gon, and we therefore have

k)y=11 2
o )—( —m>7f

Fekete already showed that his conjecture holds for k = 2 and k = 3, and exper-
iments in Jenkner’s Master thesis [8] indicate that it should hold for general k. The
problem was also published by Brass and Lassak [3], and it appears again as Prob-
lem 5 in Sect. 11.3 of Brass et al.’s encyclopedic collection of research problems in
discrete geometry [4], with a short proof of the case k € {2, 3}.

If P is a convex polygon, then it is known that «(P, k) can be attained by an
inscribed subpolygon. Here, a subpolygon of P is the convex hull of a subset of P’s
vertices. This provides for an interesting similarity between Conjecture 1 and the
following conjecture by Brass on Hausdorff approximation by subpolygons:

Conjecture 2 Let P be a family of convex polygons in R? that is closed under taking
subpolygons. If P has an element that is hardest to approximate by its k-vertex sub-
polygons with respect to the Hausdorff metric, then one can also find a (k + 1)-gon
in ‘P with this property.

Conjecture 2 appears as Conjecture 5 in Sect. 11.5 of Brass et al. [4]. It was first
suggested by Brass in 2000 [2].

In this paper, we prove both Conjecture 1 and 2. Our proof relies on a combi-
natorial analysis of worst-approximable polygons in Sect. 3. Here, a polygon P is
worst-approximable if every proper subpolygon R of P admits a better approxima-
tion by k-vertex subpolygons than P does. Our analysis in Sect. 3 makes no use of the
geometry of the problem, and applies to any approximation measure that is monotone
in the sense that “growing” Q C P cannot increase the approximation error (a formal
definition of monotonicity is in Sect. 2).
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In Sect. 4 we bring back in the geometry of the aperture angle problem, and prove
that a convex polygon that is worst-approximable under aperture-angle approxima-
tion is in fact a (k + 1)-gon. This implies a positive answer to Conjecture 1 for the
case of polygons. The case of arbitrary compact convex sets is then proven using a
limit argument.

Similarly, we study the geometry of the Hausdorff problem in Sect. 5 and prove
that any polygon that is worst-approximable under Hausdorff approximation is again
a (k+ 1)-gon.

As an application of this result, we finally consider the family P of convex poly-
gons with unit perimeter. We show that the (k 4 1)-gon P in P that admits the worst
approximation by a k-vertex subpolygon is the regular (k + 1)-gon. Together with our
result on Conjecture 2, this implies that for every convex polygon P with unit perime-
ter and every k > 2 there is a k-vertex subpolygon Q of P such that the Hausdorff
distance between P and Q is at most ﬁ sin k”? This result is the “subpolygon ver-
sion” of a result by Popov, who had proven that any convex figure C of perimeter one
admits an inscribed k-gon Q with Hausdorff-distance at most ﬁ sin % [10]. Popov’s
result is not known to be tight. Popov conjectured that the regular (k 4+ 1)-gon is the
worst case [9, 10]. Our result shows that the equivalent statement is true for approxi-
mation by subpolygons.

2 Preliminaries

Let P be a convex n-gon and let V be the set of its vertices. For three vertices
p,u,q €V, we say that u lies between p and q and write p < u < g if a counter-
clockwise traversal of P starting at p encounters u before ¢ (and u is allowed to
coincide with p or ¢). If we do not allow u to coincide with p, we write p < u < g,
see Fig. la.

For any subset V' C V, the convex hull of V' is a subpolygon of P. A subpoly-
gon Q is proper if Q # P. We are interested in subpolygons Q of P that closely
approximate P. Let (P, Q) > 0 denote the approximation error of P with respect
to a subpolygon Q of P. We will consider two different error functions: the aperture-
angle and the Hausdorff-distance (to be defined below). Let Cx (P) denote the set of
convex subpolygons of P with at most k vertices and let ¢ (P) denote the smallest
error that can be achieved by a polygon in Ci(P), that is,

or(P):= min ¢(P, Q).
QeCi(P)

Q

t
m— (v, s,t)

v

Fig. 1 a u lies between p and g, that is, p < u < g. b Illustrating the Hausdorff distance, and ¢ the
aperture-angle
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Clearly ¢x(P) = 0 if P has at most k vertices. We require that ¢ (P, Q) can be ex-
pressed as

o(P, Q) =131€a&c<p(v, 0),

where ¢ (v, Q) is zero if v is a vertex of Q, and is otherwise of the form

o, Q) =Y (v,s,1),

where s and ¢ are the two consecutive vertices of Q with s < v < ¢. Furthermore,
we require the function ¥ to be monorone, that is, if s < s’ < v <t <t, then
Vv, s, t) <P (v,s,1).

If we set ¥ (v, 5, t) to be the distance of v from the segment st, then (P, Q) is
the Hausdorff-distance between P and Q, as shown in Fig. 1b.

If we set ¢ (v, s,t) =m — Zsvt, then 1 — (P, Q) is the smallest aperture angle
of any vertex of P with respect to Q, see Fig. 1c. Since it is easy to see that «(x, Q)
is minimized within P at the vertices of P, this implies ¢(P, Q) =7 — a (P, Q).
Note that we use the complement of the angle since we want to minimize the error,
but maximize the angle.

3 Properties of Worst-Approximable Polygons

Let us call a convex polygon P worst-approximable if for every proper subpoly-
gon Q of P we have ¢r(Q) < @i (P). In this section we study the nature of worst-
approximable polygons. Our arguments are purely combinatorial, using only the
monotonicity of .

We start by introducing some basic concepts. A pair (p, g) € V? is called a diag-
onal. For a given approximation error ¢ > 0, a diagonal (p, ¢) is called feasible if
for every v € V with p < v < g we have ¥ (v, p, g) < o. By monotonicity of ¥, if
(p, q) is feasible, then so is any (p’, ¢’) with p < p’ < ¢’ < q. A feasible diagonal
(p, q) is called a chord if it is the feasible diagonal starting at p of largest combina-
torial length, where the combinatorial length of a diagonal (p, q) is the number of
edges on the polygon boundary from p to ¢ (in counter-clockwise direction). In other
words, (p, q) is a chord if ¢ is the last vertex on P (starting from p) such that (p, q)
is feasible.

The chord graph G is a directed graph with vertex set V, such that (p, ¢g) is an
edge of G if (p, q) is a chord. Clearly, every vertex of G has out-degree one.

Let k > 2 and o > 0 be fixed, and assume that P is a convex n-gon with
¢k (P) > o, but such that for every proper subpolygon R of P we have ¢ (R) <o.
As before, let V be the set of P’s vertices, and let G be the chord graph of P for
the approximation error o. For u € V, let P, be the convex hull of V \ {u}, see
Fig. 2a. By assumption, P, has a k-gon approximation Q, with error < ¢. Without
loss of generality, we can assume that Q,, consists of k — 1 chords and of an edge st,
where s < u < t, as illustrated in Fig. 2b. For all x € V \ {u} with s < x <t we have
Y(x,s,t) <o,but y(u,s,t)>o.

We call st the base of Q,, and note that Q,, is completely determined by ¢, since
the other k — 1 vertices can be found by following k — 1 arcs from ¢ in the chord
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(a) P (b) p

Fig. 2 alllustrating P and P,, and b Q,, with base st

graph. Let s : V= V and t : V = V be functions mapping u to the clockwise (s)
and counter-clockwise (#) endpoints of the base of Q,,.

Lemma 1 The function t is a bijection.

Proof Assume that there exist two subpolygons Q, and Q,, u # v, of P that both
have base s¢. Since st is the base of O, and s < v < ¢, we have ¥ (u, s, t) > o and
¥ (v,s,t) < o. This, however, contradicts ¥ (v, s,t) > o due to st being the base
of Q,. Thus, the base of each Q, is distinct. Since Q, is completely determined by
t(u), the function ¢ is an injection, and therefore a bijection. O

For a base st, let the witness w(st) of st be the unique vertex with s < w(st) <t
with ¥ (w(st), s, t) > o. The witness of the base of Q, is of course u. There are thus
n bases in total, and their witnesses are all distinct.

Lemma 2 [t is impossible for two bases st and s't' to be nested, that is, to realize
the order

s=<s' <t <t.

Proof Assume the opposite, that is, s < s’ <’ <t. Since w(s't") # w(st) we have
Y (w(s't), s, t) < o.By monotonicity of ¥ this implies ¥ (w(s't"), s’,t") < o, a con-
tradiction. O

Next we study the nature of the chord graph and prove that it is surprisingly sym-
metric. We denote the vertices V of P as vg, vy, ..., v,—1 in counter-clockwise order.
Throughout the paper, arithmetic on indices of v will be modulo 7.

Lemma 3 Every vertex in the chord graph has in-degree and out-degree one. There
is an integer m > 1 such that every chord is of the form (v, Vi4+m)-

Proof From the definition of chord graphs it immediately follows that the out-degree
of each vertex is one. Since the number of arcs in the chord graph is n, it suffices to
show that no vertex has in-degree greater than one. Assume that g is a vertex with
in-degree at least two, that is, there are chords (p, g) and (p’, q), with p < p’ < gq.
Let u=t""(p) and u’ = t~1(p’), and so t(u) = p and r(u’) = p’. Since we can
find s(u) from ¢ (u) by following k — 1 arcs in the chord graph, ¢ (1) = ¢ (u") implies
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Vj+m+1

v;

Fig. 3 aIllustrating the proof of Lemma 3, and b the proof of Lemma 5

s(u) =s(u’). Now we have s (u’) < s(u) <t(u) < t(u'), a contradiction to Lemma 2.
It follows that no vertex of the chord graph has in-degree greater than one.

Next we consider two chords (v;,v;) and (v;41,q), as shown in Fig. 3a. If
q # vj41 then there has to be a chord (p, vjy1) withv; < p <vi11 <vj <vj11 <gq,
a contradiction. This implies that two consecutive chords must have the same combi-
natorial length, and so all chords do. O

We will use m to denote the combinatorial length of all chords. For every
0<i <n, (vj, Vi) is the chord starting at v;, and (vj_,,, v;) is the chord ending
at v;.

Recall that every O, has k — 1 chords and a base. Since the combinatorial length
of every chord is m by Lemma 3, it follows immediately that every base must have
length n — (k — )m:

Corollary 1 Every base is of the form (v;, Vi4n—k—1ym)-
It turns out that we can prove even stronger properties about the bases.
Lemma 4 All bases have combinatorial length m + 1, and son = km + 1.

Proof By Corollary 1 all bases have combinatorial length b :=n — (k — 1)m. Assume
that b # m 4+ 1. Since a base must have larger combinatorial length than a chord, it
suffices to consider the case when b > m + 1. Consider two consecutive bases (vg, vp)
and (v1, vp+1). Consider the diagonal (vy, vp). Since b > m + 1, this diagonal is not
feasible, and so there is a vertex w € V with v < w < v, with ¥ (w, v1, vp) > 0.
By monotonicity, this implies ¥ (w, vo, vp) > o, and ¥ (w, v1, Vp+1) > o. How-
ever, w(vovp) is the only vertex in the range vy < x < vp with ¥ (x, vo, vp) > 0,
and so w = w(vovp). Similarly, w(vivp41) is the only vertex in the range vy < x <
Vp+1 With ¥ (x, vy, vpy1) > o, and so w = w(vivp41). It follows that w(vovp) =
w(v1vp+1), a contradiction since all witnesses are distinct. Il

Lemma 5 Let v; € V, and consider the two witnesses w(vi_,—1v;) and
Wi Vitm+1)- If n > k + 1 then at least one of the two witnesses lies in the range
s(vj) <x <t(vp).
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Proof Set v; := s(v;) and note that v; ;1 < Vj < Vi < Vjim+1 < Vigmyl, aS
shown in Fig. 3b. Consider the k witnesses w, := W(VjtamVi+am+m+1), where
0 <a <k — 1. Note that wg = w(V;Viym+1), and wig_1 = w(Vj_,—1v;) since
Vi—m—1 = Vi+(k—1)m-

The proof is done by contradiction, thus assume v;_p,—1 < wg—1 < v; and
Vjtm+1 =< Wo < Viymyt1. Now consider the subpolygon R with the k + 1 vertices
{vi, wo, wi, ..., wg—1}. We will show that ¢ (R) > o, which is a contradiction to the
definition of P.

First, we observe that v;1am < Ws = Vit(@+1)m and that wi_; < v; < wo. This
implies that the vertices of R are v;, wo, w1, ..., wig—1 in this order. It remains to
verify the approximation error.

From the definition of a witness we have ¥ (wg, Vitam, Vi+am+m+1) > o and
Wa—1 = Vigtam < Wg < Vitam4m+1 = Wg+1, for 1 < a <k — 2. Putting these two
observations together implies that ¥ (wg, ws—1, We+1) > 0, since ¥ is a monotone
function.

Similarly, since v (wq, Vi, Vigm+1) > o and wy < Viym+1 < wi, we have
Y (wo, v, wy) > 0.

Since Y (Wr—1, Vi—m—1,0i) > o and wig_2 <X Vi_u—1 < Wk—1, we also have
Y (Wg—1, Wk—2,V;) > 0.

Finally, since v; = w(vjv4m+1), we have ¥ (v;, v}, vjime1) > 0. Since w1 <
Vj <V < Vjymi1 < wo, we also have ¢ (v;, wi—1, wo) > 0.

Hence, for any subpolygon Q of R with k vertices, the vertex v of R notin Q has
approximation error ¢ (v, Q) > o, implying ¢(R, Q) > 0. |

4 Aperture-Angle Approximation

In order to proceed with our arguments, we need to get back into the geometry of the
problem. In this section we consider the case of aperture angle approximation, that
is, our error function is ¥ (v, s,t) =& — Zsvt as illustrated in Fig. lc.

For two points p, ¢ in the plane, let H*(p, ¢) be the half-plane to the right of the
oriented line from p to g. For any 0 < o0 < 7 we define

Ds(p,q):={x e H (p,q) | Lpxq > 7 —0}.

The region D, (p, q) is the intersection of a disk containing p and g on its boundary
with HT(p, q), see Fig. 4a. Its boundary consists of a circular arc with endpoints p
and g and of the segment pq. For fixed o, the regions D, (p, g) for any pair p, g
are affinely similar—that is, one can be obtained from the other by a rigid motion
and a scaling—and, in particular, the radius of the circular arc is proportional to the
distance d(p, g). If 0 < 0 < /2, then the center of the circular arc lies to the left
of the oriented line pg, and so the circular arc spans less than a semi-circle. We
observe that ¥ (v, s,t) < o if and only if v € D, (s, ) (note that s < v < ¢ implies
that v e H*(s,1)).

We will need a simple geometric fact, which can be proven using elementary cal-
culations, see Fig. 4b.
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Fig. 4 a The region Dy (p,q). b The radius of D’ is smaller than that of D. ¢ D and D’ fulfill the
assumptions of Lemma 6

Lemma 6 Consider two disks D and D', whose centers lie to the left of an oriented
line £. If D' N L is contained in D N £, but there is a point p € D'\ D to the right of ¢,
then the radius of D' is smaller than the radius of D.

Lemma 7 If P is a convex n-gon that is worst-approximable with respect to the
aperture angle and k > 2 then n =k + 1.

Proof Let P be a worst-approximable convex n-gon with respect to the aperture
angle, and assume that the statement of the lemma is false, thatis,n > k+ 1. Let o :=
maxpg ¢ (R), where the maximum is taken over all proper subpolygons R of P. Since
P is worst-approximable, we have ¢y (P) > o, and since for every proper subpolygon
R of P we have ¢;(R) < o, the results of Sect. 3 apply. Since «(3) = /2 [4], we
have o < @r(P) <m/2.

Let now v be a vertex of V that maximizes the Euclidean distance d(s(v), t(v)).
According to Lemma 5 there is an incident base, say uv, such that u < s(v) <
w(uv) < v (the other case being symmetric). We let w := w(uv), s :=s(v), t :=1(v),
and consider the sequence of five vertices u < s < w < v <t.

Let D be the disk supporting D, (1, v), and let D’ be the disk supporting D, (s, t),
see Fig. 4c. By our observation above, the only vertex in the range ¥ < x < v not in
D is w, and the only vertex in the range s < x < not in D’ is v. In particular, we
have s € D, w ¢ D, w € D', and v & D', see Fig. 4c.

Let £ be the directed line from s to v. Since o < 7 /2, the center of D lies to the
left of the oriented line uv, and therefore to the left of £. Similarly, the center of D’
lies to the left of sz, and therefore to the left of £. Since s € D and v ¢ D', we have
D' N ¢ C DN {. Furthermore, since s < w < v, the point w lies to the right of £, and
in D'\ D.
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By Lemma 6 the radius of D’ is therefore less than the radius of D. Since Dy (u, v)
and D, (s, t) are affinely similar, this implies that d (s, t) < d(u, v). This, however, is
a contradiction to our choice of v, and our assumption n > k + 1 is false. O

A limit argument now gives the following theorem:

Theorem 1 For any compact convex set C C R? and any integer k > 2 there is a con-
vex k-gon Q contained in C such that «(C, Q) > o, where o, = (1 —2/(k+ 1))m.
This bound is best possible.

Proof We start by proving the theorem for the special case when C is a convex poly-
gon. Among all subpolygons R of C with ¢x(R) > ¢ (C), let P be one with the min-
imal number of vertices. This implies that for every proper subpolygon R of P we
have ¢r(R) < ¢x(C) < ¢r(P), and so P is worst-approximable. By Lemma 7, P is a
(k + 1)-gon. It follows that P has at least one interior angle that is at least ox. Choos-
ing Q to be the convex hull of the remaining k vertices gives ¢ (P, Q) < m — ok, and
$0 x(C) < i (P) < — ag, proving the theorem.

Next we consider a general compact convex figure C in the plane. We choose a
sequence P; of convex polygons inscribed within C that converges to C with respect
to the Hausdorff-distance. For each P; there is a subpolygon Q; C P; with k vertices
and a(P;, Q;) > ay.

We interpret the k vertices of Q; as a point ¢; € R*. Since Q; C C, this sequence
is bounded, and so the Bolzano—Weierstrass theorem guarantees the existence of a
subsequence that converges to a point ¢ € R?*. We interpret ¢ again as a k-vertex
polygon Q. It is easy to see that Q is a convex polygon with at most k vertices.

It remains to show that «(C, Q) > a. Let p € C \ Q. There is a sequence of
points p; € P; with lim;_, p; = p. Since a(P;, Q;) > ok, that implies that there
are vertices x;, y; of Q; such that Zx; p;y; > a;. We consider the sequence (x;, y;)
in R* and apply again the Bolzano—Weierstrass theorem. We pass to a subsequence
where x :=lim;_, o x; and y :=lim;_,» y; exist. The points x and y are necessarily
vertices of Q. The angle Zxpy is a continuous function in (x, y, p) as long as the
three points remain distinct. Since p ¢ Q, this implies Zxpy > oy, and the theorem
follows.

The regular (k 4 1)-gon shows that the bound is indeed best possible. U

Theorem 1 implies that o(k) = ak, positively answering Conjecture 1 (the case
k = 2 was already known to be true).

5 Hausdorff-Approximation

In this section we consider the case of Hausdorff approximation, and our error func-
tion ¥ is the distance between v and the segment sz, as illustrated in Fig. 1b. We
continue with the analysis of worst-approximable polygons of Sect. 3: k > 2 and
o > 0 are fixed, and we consider a convex n-gon P with ¢x(P) > o, but such that
for every proper subpolygon R of P we have ¢;(R) <o.

We need a small geometric result similar to Lemma 2:
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Fig. 5 Proof of Lemma 8

Lemma 8 With respect to the Hausdorff-approximation, it is impossible for two
bases st and s't’ to realize the order s < s’ < w(s't) < w(st) <t <t'.

Proof Suppose that there exist two bases sz and s't’ such that s < 5" < w(s't") <
w(st) <t <t'. Letw := w(st), let w' := w(st’), let g be the point on the segment s¢
minimizing the distance d(w’, ¢), and let ¢" be the point on s'¢’ minimizing d(w, ¢’).

The bases st and s'¢’ must intersect in a point p lying in P. We first assume that
g lies on the segment sp, see Fig. 5a. Since ss’w’z is a convex quadrilateral, so is
pgs’w’. Its diagonals s'p and w'q intersect, implying d(w’, s't") <d(w’,q) <o, a
contradiction to w’ = w(s’t"). It follows that ¢ must lie on the segment pz, and by
symmetry g’ lies on s’ p.

Since ps’w’wr is a convex pentagon (the intersection of the two subpolygons
ss’w'wt and s'w'wit’ of P), g lies on its edge pt, and ¢’ lies on its edge s'p, the
chain ¢’w'wgq is a convex quadrilateral, see Fig. 5b. The sum of the lengths of its
diagonals ¢’w and gw’ must be larger than the sum of the lengths of the opposite
sides g’w’ and gw. This, however, is a contradiction to d(w, g') <o < d(w, g) and
d(w',q) <o <d(w’,q’), and the lemma follows. O

Lemma 9 There is an integer O < r < m such that for every v; we have s(v;) = vi_,.

Proof Let r be the smallest integer > 0 such that there is a vertex v; with s(v;) =
vi—r. We will show that then s(vj4+1) = vi—,+1, and by induction this implies the
lemma. Assume the opposite, that is, s(v;j4+1) # Vi—r+1. By definition of », we can-
not have vj_,41; < s(vj4+1) < vi+1, and therefore s(v;j4+1) < s(v;) < v; < V41 <
t(vi+1) < t(v;), which is a contradiction to Lemma 8. O

Note that the above lemma also implies # (v;) = Vi —y4m+1. From now on, let r be
as in Lemma 9. We may assume r < m/2, otherwise we can work with the mirror
image of P.

The rest of the proof is similar in spirit to Lemma 7, but is technically more com-
plicated.

Lemma 10 We have 3r > m + 1.
@ Springer
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Proof Assume 3r <m + 1, and let v; be a vertex minimizing the Euclidean distance
d(v;, vi—,). We concentrate on the vertices

§1 =Vi-2r, $2 =Vi—r, §3 =V, $4 = Vi+r,
I =Vi—2r4m+1, 0 =Vi—r4m+l, 13 =Vitm+1-

Since 3r <m + 1, we have s1 < 50 < 53 <854 < 1] < 1. We have sp = w(st1),
s3 = w(s2t2), and s4 = w(s3t3). By our choice of v;, we have d(s2, s3) < d(s1, 52)
and d(s2, s3) < d(s3, s4). We will show that this is impossible, implying that the as-
sumption 3r < m + 1 is false.

By rotating P, we can assume that the line sy#; is horizontal. Let S; be the hori-
zontal strip of width o bounded from above by s17, and let S, be the strip of width o
to the right of the oriented line from s; to #. The intersection R = S1 N 3 is a rhom-
bus. Its top-left corner p; is the intersection point of the segments s1#; and s2t>. We
denote the remaining corners counter-clockwise as p», p3, and p4, see Fig. 6. Since
S1 < 83 < 84 < 11, we have s3, 54,11 € S;. Since we also have s4, ] € S, it follows
that 54,1 € R.

We now first show that s4 must lie strictly right of s3. If #; lies right of s3, this
follows from the fact that s4 lies strictly to the right of the oriented line s3¢; and
to the left of the oriented line s1s3. If #1 lies left of s3, then d(s3, s1#1) < o implies
d(s3, t1) < o.If s4 lies not strictly right of s3, then the angle Zs3s41; is right or obtuse,
and so d(s3, s4) <d(s3,11) < 0, a contradiction to s4 = w(s3#3).

We will now first consider the case that the angle Zsyp1#; is at least 90°, so R
has obtuse angles at p; and p3 and acute angles at p> and p4, see Fig. 6a. Let z
be the point on the segment p;p; at distance o from p;. Since sp = w(s1t1), $2
must lie below z, and so the segment zp; is a subset of s2#,. Since s3 lies in S but
d(s3, s2t2) > o, s3 must lie strictly to the right of p3. Since s4 € R and strictly right
of s3, this implies that s3 lies strictly left of p4. Since s3 lies strictly in between the
vertical lines through p3 and py4, and s4 lies in between the vertical lines through s3
and p4, we have d(s3, s4) < d(p3, pa).

Consider now the point s. We argue that it must lie strictly below p». Indeed, oth-
erwise it lies inside S on the segment p; py. Since d(s2, s1t1) > o, this implies that

(a) " (b) < &\

Fig. 6 Proof of Lemma 10

@ Springer



426 Discrete Comput Geom (2008) 40: 414429

s1 lies right of s>. Then the angle Zsys| p; is obtuse, implying d(s2, s1) < d(s2, p1)-
But since s3 lies strictly right of p3, we have d(s2, s3) > d(s2, p1) > d(s2, 51), a con-
tradiction to our choice of s3 = v;.

Since s, lies strictly below p, on the line pjp; and s3 lies in Sy right of p3,
we have d(s2, s3) > d(p2, p3) = d(p3, ps) > d(s3, s4), again a contradiction to our
choice of s3 = v;.

It remains to consider the case that the angle Zs; p1f; is less than 90°, so R has
acute angles at p; and p3 and obtuse angles at py and ps, see Fig. 6b. If s3 does
not lie in R, we immediately have a contradiction: Since s4 must lie to the left of the
oriented line #1s3 and right of s3, it cannot lie in R. If 53 lies in R, the nearest point
to s3 on the segment s2¢2 must be s», as otherwise d(s3, s2f2) < o. This implies that
s3 lies below the line £ through s, orthogonal to p; p2, and outside the circle T with
radius o around s;.

Since the segments sps4 and s3f3 intersect and s4 = w(s3f3), we must have
d(s, s4) > o. This implies that the nearest point to s4 on s>t must be different from
52, and so s4 must lie above the line £.

Now we observe that if s3 lies above s, then it lies strictly right of the intersection
point of £ and the line p4p3. Since s4 lies right of s3, this implies that s4 cannot lie
in R above £, a contradiction, and so s3 must lie below s5. Since s3 € R, this implies
s2 € R. Therefore, the point nearest to s on sy#; must be #{, and #; must lie left of s,.
This implies that the angle Z#1s,s3 is obtuse, and so d(t1, s3) > d(t1, s2) > o. Since
s3 lies right of 71, this implies d(s3, s1¢1) > o, a contradiction. O

Theorem 2 If P is a convex n-gon that is worst-approximable with respect to the
Hausdorff-distance and k > 2 thenn =k + 1.

Proof We assume n > k41 andset p:=m + 1 —r. Since r <m/2, we have 2p >
m + 1. Let R be the subpolygon of P formed by the vertices vg, vy, v2p, ..., Vep,
where £ is an integer such that (£ + 1)p <km + 1 < (£ 4+ 2)p. Since p > 1, R is
a proper subpolygon of P. We will show that ¢x(R) > o, a contradiction to the as-
sumption that P is worst-approximable.

We first show that £ > k. We assume the contrary, that is £ < k. This implies
£+2<k+1.Sincekm+1< (£ +2)p,wehave km+2 < (£ +2)p. By Lemma 10
we have 3r > m + 1, which implies 3r > m + 2, and therefore p < %m + % This
gives

2 1
3km+6=3(km+2)53(E+2)p§3(k+1)<§m+§) =2km+2m +k + 1.

Rearranging the terms gives km —2m —k +5 <0or (k —2)(n — 1) < —3, a contra-
diction with k > 2 and m > 1. It follows that our claim holds, that is £ > k.

It remains to prove that ¢ (R) > o. Note that R has at least k + 1 vertices, and so
a k-vertex subpolygon Q of R must exclude at least one vertex of R. We have three
cases (recall that arithmetic on the indices of v is modulo n):

e v;, is excluded, for 0 <i < £.
By Lemma 9, v;, is the witness of the base (V(i4+1)p—@m+1), V(i+1)p)- Since 2p >
m-+1, Vi—1)p < V(i+Dp—(m+1) < Vip < V(i+1)p> and so monotonicity of i implies
that I/I(Uip, Vi—1)p> U(i+1)p) > 0.
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e g is excluded.
vg is the witness of the base (v,_(u+1), vp). Since (€+1)p <km+1=nand 2p >
m+ 1, we have {p <n — p <n+ p — (m+ 1), which implies v, < vp—_(m41) <
Vg < Vp, and so ¥ (vg, vep, Vp) > 0.

® vy, is excluded.
vy, is the witness of the base (V(¢+1)p—(m+1)V(e+1)p)- Since 2p > m + 1 and (£ +
1)p <n, we have v_1)p < V(t4+1)p—(m+1) = Vo, and 50 ¥ (vep, Ve—1)p, Vo) > 0.

In all cases, ¢(R, Q) > o, and so ¢ (R) > 0. O
The following approximation result is a direct application of Theorem 2.

Theorem 3 For any convex polygon P of perimeter at most one and any k > 2 there
exists a subpolygon Q of P with k vertices such that ¢(P, Q) < ﬁ sin k”? with
respect to the Hausdorff-distance. If P is a regular (k 4+ 1)-gon, this bound is best
possible.

Proof Let R be a subpolygon of P with the smallest number of vertices such that
ok (R) > ¢x(P). Then R is worst-approximable and, by Theorem 2, R is a (k + 1)-
gon. The following lemma now implies the theorem. g

Lemma 11 Let k > 2 and let P be a convex (k + 1)-gon with gy (P) = 1 with respect
to the Hausdorff-distance. Then the perimeter of P is at least (k+1)/sin(zw/(k+ 1)),
and this bound is tight for the regular (k + 1)-gon.

Proof We set n =k + 1, and let P be a convex n-gon with ¢;(P) = 1 of minimal
perimeter (the existence of such a P follows from a compactness argument). Let
vi,..., v, denote the vertices of P in counter-clockwise order, and let Q; be the
subpolygon excluding the vertex v;. We first argue that ¢ (P, Q;) = 1 for all i. Indeed,
if there is a vertex v; such that ¢ (P, Q;) > 1, then we can move v; slightly along the
directed line from v; to v; 7. This decreases the perimeter while keeping ¢ (P) =1,
a contradiction to the choice of P.

Let y; be the angle made by the oriented diagonals v; 1 v;41 and v;v;42. Since the
direction of the diagonal v;_jv;4 is a tangent direction at v;, we have

n
Zy,- =2m.
i=1

The distance of v; from the line v;_jv;+; and the distance of v;4; from the line
v;vi42 is one. This implies that the length of the edge v;v;41 is 1/sin(y;/2), see
Fig. 7. We set x; = y; /2, and define f(x) = 1/sinx. We then have

n
g Xi =T,
i=1

peri(R) = > f(xi).

i=1
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Fig. 7 Proof of Lemma 11 Vit2

Since f”(x) > 0 for 0 < x < 7/2, the function f(x) is convex on the interval
(0, /2). Since 0 < x; < 7 /2, we can thus apply Jensen’s inequality to give us

f<Z, xi) < Zif(xi) _ peri(R).
n

n n

Multiplying by n gives peri(R) > nf (7 /n) = n/sin(sw/n), completing the proof. [

6 Conclusions

We showed that worst-approximable polygons are (k + 1)-gons for both the
Hausdorff-distance and the aperture-angle distance. A large part of the argument
is purely combinatorial, using only the monotonicity of the distance function . To
finish the argument, however, we needed to make use of some geometric properties
of the two distance functions we considered; in Lemma 7 for the aperture angle, and
in Lemmas 8 and 10 for the Hausdorff distance. We must ask: are we just blinded by
the geometry to overlook an entirely combinatorial proof that would apply for any
monotone distance function?

We gave one application of Theorem 2, but it’s worth pointing out that the theo-
rem is really far more general, and applies to many families P of convex polygons.
In many cases the regular (k + 1)-gon appears to be the worst case, but this is not
always the case, for instance, because the family P does not contain it. (Consider, for
instance, the family of all convex polygons with vertices on a given ellipse.)
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