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ABSTRACT  
 

The pickup and delivery problem with time windows involves the construction of 
optimal routes which satisfy a set of transportation requests under pairing, precedence, 
time window, vehicle capacity, availability, location capacity, distance, duration and 
extra worker constraints. We consider three types of the objectives which are involved in 
minimizing the total travel cost, the total travel distance and the total travel duration. A 
transportation request is characterized by a pickup location, a delivery location and items 
to be delivered. Each transportation request must be served by a vehicle. A vehicle may 
serve multiple transportation requests as long as other constraints are satisfied. In this 
paper, we propose a branch and price algorithm for the problem. An enumeration 
technique is used for the column generation problem. We tested the algorithm on 
randomly generated instances and computational results are reported.  
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INTRODUCTION 
 
In the pickup and delivery problem with time windows(PDPTW), an optimal set of routes has 
to be constructed to satisfy transportation requests. A transportation request is characterized 
by a pickup location, a delivery location and items to be delivered in the single PDPTW. A 



 

transportation request is specified by several pickup and delivery locations in the general 
PDPTW(see Savelsbergh et al. (1995)). We consider the single PDPTW in this paper and the 
PDPTW refers to the single PDPTW from now on. A route should end at its starting depot 
where vehicles are stationed. We consider several types of vehicles and each vehicle is 
characterized by cost factors, capacity and a depot. All routes are restricted by pairing, 
precedence, time window, vehicle capacity, availability, location capacity, distance, duration 
and extra worker constraints. Pairing constraints ensure that a pickup location and a delivery 
location of each transportation request should be visited by one vehicle. To satisfy a 
transportation request, a vehicle collects items at a pickup location and delivers them to a 
delivery location without any transshipment at an intermediate location. Precedence 
constraints imply that a vehicle should visit the pickup location before the delivery location of 
a transportation request. Each location specifies a time window which is defined as a time 
interval between the earliest arrival time and the latest arrival time. Time window constraints 
make sure that a service at a location has to be given between the earliest arrival time and the 
latest arrival time of the location. Vehicle capacity constraints guarantee that load of items on 
a vehicle should be less than or equal to the vehicle capacity. We assume that the number of 
available vehicles for each vehicle type is limited. So availability constraints ensure that the 
number of used vehicles is less than or equal to the number of available vehicles for each 
vehicle type. We assume that location capacity for each location is given since a big vehicle 
cannot enter a small parking lot. If the capacity of a vehicle is greater than the given location 
capacity of a location, the vehicle cannot serve at the location since we consider location 
constraints. We consider distance constraints and duration constraints since there is the upper 
limit of working hours in some fields of industry. Distance constraints and duration 
constraints guarantee that the travel distance and duration of a route should be less than or 
equal to the given upper limits respectively. If an item is so heavy that a driver cannot carry it 
alone, extra workers are needed to deliver the item. Therefore, we consider extra worker 
constraints which make sure that the number of necessary extra workers of a route is greater 
than or equal to the maximum number of extra workers of items to be delivered by the route. 
In this paper, three objectives are considered. The first objective is to minimize the total travel 
cost which is the sum of the costs of all routes. The cost of a route consists of the fixed cost, 
the distance-based cost and the time-based cost. The fixed cost is determined by the vehicle 
type. The distance-based cost is directly proportional to the travel distance. The time-based 
cost are influenced by labor costs and working hours. The second objective is to minimize the 
total travel distance. The third objective is to minimize the total travel duration. The ending 
time minus the starting time of a route equals the travel duration of a route. 
 
The PDPTW is NP-hard by restriction, since the vehicle routing problem(VRP) is NP-hard 
and it is a special case of the PDPTW(see Desrosiers et al.(1995)). There exist some 
literatures of the PDPTW. Dumas et al.(1991) presented an optimization algorithm for the 



 

PDPTW which was to construct optimal routes satisfying a set of transportation requests 
under pairing, precedence, time window, vehicle capacity and availability constraints. They 
considered the minimization of the total travel cost as an objective and the total travel cost 
was determined by the load of vehicles, the travel distance and the number of necessary 
vehicles. The presented algorithm is a branch-and-price algorithm, and uses a dynamic 
programming algorithm to solve the subproblem. Sol et al. proposed a branch-and-price 
algorithm for the PDPTW which was same as the problem considered by Dumas et al.(1991) 
except the objective. The primary objective considered by Sol et al. was the minimization of 
the number of necessary vehicles to satisfy all transportation requests. The second objective 
was to minimize the total travel distance. The branch-and-price algorithm uses a heuristic 
algorithm and the dynamic programming algorithm for the column generation problem. They 
applied a new branching scheme based on assignment rather than routing decisions. In those 
papers, location capacity, distance, duration and extra worker constraints were not considered. 
In addition, the dynamic algorithm they presented fixed the starting time of a route to the 
earliest arrival time of a depot. It is sufficient to provide an optimal solution of the existing 
PDPTW because the objective they considered is not affected by the travel time. However, 
the travel cost is influenced by the travel time in this paper. Therefore we developed another 
algorithm which does not fix the starting time of a route and is compatible with all constraints.  
    
MODEL 
 
We consider several vehicle types and assume that the number of available vehicles is given 
for each type. It can happen that a vehicle arrives at a location before the earliest arrival time. 
Then the vehicle should wait until the earliest arrival time, while it should not arrive after the 
latest arrival time. We assume that the service time of a location is zero since it can be 
included into the travel time. Different travel times are considered according to the vehicle 
types.  
 
If we can find all possible routes, the PDPTW to construct an optimal route can be converted 
to the problem which is to decide whether we use a route or not for each feasible route. The 
converted problem is called as the master problem. The following notation is used to model 
the master problem: 
 

N   the set of transportation requests 

M   the set of vehicle types 

km   the number of available vehicles of type k M∈  

kΩ   the set of all feasible routes for type k M∈   
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the travel cost of a route kr∈Ω , 
 
the travel distance of a route kr∈Ω , 
 
the travel duration of a route kr∈Ω , 
 

if the objective is to minimize 
the total travel cost 
if the objective is to minimize 
the total travel distance 
if the objective is to minimize 
the total travel duration 

 
A feasible route satisfies pairing, precedence, time window, vehicle capacity, location 
capacity, distance, duration and extra worker constraints. The decision variables are as 
follows: 
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The following formulation is for the master problem: 
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The objective function is represented by (1). Constraints (2) impose that each transportation 
request must be satisfied exactly once. Constraints (3) represents availability constraints. A 
feasible route kr∈Ω  corresponds to a column vector 1 2 3( , , ,..., ) 'k k k k

r r r N rδ δ δ δ . Since there are 
generally exponential numbers of columns, it is impractical to enumerate all possible columns. 
However, we can solve the master problem without enumerating all feasible columns by the 
column generation method. And also, the linear programming(LP) relaxation of the master 
problem usually gives a good bound.    
 
ALGORITHM 
 
We developed a branch-and-price algorithm for the PDPTW in this paper. Since there are too 
many columns to enumerate, the LP relaxation of the problem should be solved with a subset 
of all possible columns. The master problem with the subset of all possible columns is the 



 

restricted master problem. Although it is not trivial to construct an initial subset of columns, 
we can initialize the restricted master problem by the two-phase method(see Sol et al.). We 
optimize the LP relaxation of the restricted master problem instead of the LP relaxation of the 
master problem. The subproblem is to find the column with the minimum reduced cost. If the 
minimum reduced cost is less than zero, there is at least one column with negative reduced 
cost. We can add the column with negative reduced cost to the LP relaxation of the restricted 
master problem and reoptimize it. Otherwise, all possible columns have nonnegative reduced 
costs and a current optimal solution of the LP relaxation of the restricted master problem can 
be an optimal solution of the LP relaxation of the master problem. Therefore, we repeat the 
procedure until no more columns with negative reduced costs are found. If an optimal 
solution of the master problem is not integral, we need to explore a branch-and-bound tree. 
We generate columns at each branch-and-bound tree node.    
 
The subproblem can be divided into several ones according to vehicle types. We can construct 
a graph for the divided problem where each location is a node and each path between two 
locations is an arc. If we duplicate the depot as the origin depot and the destination depot, the 
divided subproblem can be regarded as a constrained shortest path problem with time 
windows. We solve the problem with an enumeration technique based on the dynamic 
programming algorithm proposed by Dumas et al.(1991). Preprocessing steps such as the 
shrinking of the time windows and the elimination of the inadmissible arcs are performed 
before the enumeration starts. Location capacity constraints can be ensured by eliminating the 
inadmissible arcs. The following notation is used: 
 

0+   the origin depot 

0−   the destination depot 
q

iP   the path q from the departure of a depot to node i 
q
iS   the set of nodes visited on the path q 

( )q
iR S   the set of nodes which have to be visited by the path q from the departure of 

node i to the destination depot 
q

iT   the time of service at node i on the path q 
q
iX   the departure time of the origin depot on the path q 

q
iI   0  if the departure time of the origin depot on the path q can be postponed, 

1  o.w. 
q
iZ   the travel distance from the origin depot to node i on the path q 

lp   the pickup node of a transportation request l N∈  

ld   the delivery node of a transportation request l N∈  
k
ijt   the travel time from node i to j by a vehicle type k M∈  



 

k
ia   the earliest arrival time at node i by a vehicle type k M∈  
k
ib   the latest arrival time at node i by a vehicle type k M∈  

ijd   the travel distance from node i to j   

dU   the upper limit for the travel distance 

tU   the upper limit for the travel duration 

 

Each path q
iP  is related with label ( , ( ), , , , )q q q q q q

i i i i iS R S T X I Zi . A label contains all information 

to verify satisfaction of constraints. 

 

Enumeration technique 

Step 1. Add the path 0
0

P + with label 
0 0

({0 }, , , , 0, 0)a a+ +
+ ∅ to an empty path list. Initialize 

the minimum reduced cost as zero. Initialize the minimum reduced cost path as 

empty. 

Step 2. If the path list is empty, stop. Otherwise, choose a path from the path list. 

Step 3. Given a path q
iP  with label ( , ( ), , , , )q q q q q q

i i i i iS R S T X I Zi , go to step 4 if the last 

visited node i of the path q
iP  is not 0− . If the path does not satisfy pairing, or 

duration constraints, discard the path q
iP  and go to step 2. If the reduced cost of the 

path q
iP  is less than the current minimum reduced cost, update the minimum 

reduced cost and the minimum reduced cost path. And then, go to step 2.     

Step 4. Given a path q
iP  with label ( , ( ), , , , )q q q q q q

i i i i iS R S T X I Zi , try to extend the path q
iP  

to node j which is not an element of the set q
iS  for all existing arc (i, j). If there is no 

arc to be added, discard the path q
iP .  

 

When we try to extend the path q
iP  to node j at step 4, the new label 

' ' ' ' ' '( , ( ), , , , )q q q q q q
j j j j j jS R S T X I Z of the extended path 'q

jP  is calculated as follows: 
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Case 1. 0,q q k k
i i ij jI T t a= + <  

 ⇒ 'q k
j jT a= . Calculate back to 'q

jX  and 'q
jI  from 'q

jT . 

Case 2. 1,q q k k
i i ij jI T t a= + <  

 ⇒ ' ' ', ,q k q q q q
j j j i j iT a X X I I= = = . 

Case 3. k q k k
j i ij ja T t b≤ + ≤  

 ⇒ ' ' ', ,q q k q q q q
j i ij j i j iT T t X X I I= + = = . 

Case 4. q k k
i ij jT t b+ >  

 ⇒ The path 'q
jP  is infeasible since it violates time window constraints. 

 
We can easily verify vehicle capacity constraints using the set 'q

jS . If node j is a pickup node 
of a transportation request, the delivery node of the transportation request is added to the set 

'( )q
jR S . If node j is a delivery location which is an element of the set ( )q

iR S , it is deleted from 
the set. If node j is a delivery location which does not belong to the set ( )q

iR S , the path 'q
jP  

violates precedence constraints and the above calculating process should be stopped. And at 
step 3, if node j of the path 'q

jP  is 0−  and the set '( )q
jR S  is not empty, the path 'q

jP  
violates pairing constraints. So, we can check pairing and precedence constraints by the set 

'( )q
jR S . While calculating 'q

jZ  and 'q
jT , we can certify distance and time window constraints. 

If the path 'q
jP  satisfies ' 1q

jI = and ' 'q q
j j tT X U− > , it violates duration constraints. So, we 

can discard it. 
 
In case 1, 'q

jX  is reckoned backward from 'q
jT  since the vehicle arrive at node j before the 

earliest arrival time and the starting time of the path can be postponed. The following 
procedure is for calculating 'q

jX  and 'q
jI assuming that node i is visited just before node j and 

it is the service time at node i on the path 'q
jP .  
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j ijT t−   
k
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if 'k q k k
i j ij ia T t b≤ − ≤  

if 'q k k
j ij iT t b− >   

'q
jI  = 1  if k

i it b=  

Replace node j and i as node i and the node which is visited just before node i respectively. 

And then, repeat the above procedure until 'q
jX  can be obtained. 



 

'q k k
j ij iT t a− <  cannot be happen. Infeasible paths should be eliminated. And also, paths which 

will be inadmissible in the future can be eliminated while extending it(see Dumas et 

al.(1991)).  

 

If an optimal solution x to the LP relaxation of the master problem is fractional, we solve the 

restricted master problem using CPLEX callable mixed integer library. The integral solution 

can provide an upper bound. And then, we explore the branch-and-bound tree. Supposing that 

x is fractional, and
k

k k k
ij ir jr rk M r

y xδ δ
∈ ∈Ω

= ∑ ∑ , there must be two requests i and j N∈  

satisfying 0 1ijy< < . Then we can divide feasible region into two subsets characterized by 

0ijy =  and 1ijy = (see Sol et al.). We can generate columns at any branch-and-bound tree 

node if we use an adjusted enumeration method which is similar to the previous one.   

 
COMPUTATIONAL EXPERIMENTS 
 
We used CPLEX 8.1 callable library to solve LP and the branch-and-price algorithm was 
tested on a Pentium PC (2.4GHz). Three types of problems were tested. The objective of the 
type A is to minimize the total travel cost. The objective of type B is to minimize the total 
travel distance. The objective of type C is to minimize the total travel duration. First, we 
randomly generated thirty instances of type A. We made instances of type B and C by 
replacing the objectives of those instances. So, we tested the algorithm on ninety instances. 
The problem set A20 consists of ten instances of type A and each instance includes twenty 
service locations. The characteristics of other problem sets can be specified in the same way. 
That is, the number of service locations we considered varies from twenty to forty. 
Computational results are given in the following table.   

 
Table 1. The test result 

 ZLP ZIP A_GAP A_B&B A_COLS A_TIME 
A20 5733.328 5746.387 0.152 2.0 49.1 1.565
A30 6775.731 6940.265 2.114 78.8 3097.6 375.512
A40 12227.410 12317.520 1.580 54.6 3145.7 1107.938
B20 616.234 617.600 0.249 1.6 40.3 1.342
B30 866.889 873.665 0.758 7.0 276.6 63.406
B40 1259.957 1263.640 0.298 6.8 425.4 310.390
C20 718.660 721.609 0.413 1.8 48.0 1.490
C30 1005.972 1013.670 0.751 7.6 320.6 72.041
C40 1466.140 1471.598 0.381 6.6 382.2 275.243

 



 

Let ZLP and ZIP be the optimal values of the LP relaxation problem and the original problem 
respectively. Then the GAP(%) is calculated as (ZIP – ZLP )/ ZIP×100 and A_GAP(%) is the 
average GAP of the problem set. A_B&B is the average number of generated nodes in the 
branch-and-bound tree. A_COLS(unit) represents the average number of generated columns. 
A_TIME(sec) is the average computational time to solve the original problem optimally. 
Most GAP values were less than five percent. Forty-five instances were solved without 
branching and the maximum number of branch-and-bound nodes was six hundred five. 
A_TIME increases as the number of transportation requests increases. The number of 
generated columns in a problem which minimizes the total travel cost is usually greater than 
the number of generated columns in the other problems. Therefore, instances of type A 
usually took more time to be solved optimally than instances of other types.  
  
CONCLUSIONS 
 
In this paper, we developed a branch-and-price algorithm for the PDPTW which considered 
several realistic constraints and objectives. We used the enumeration technique to generate 
columns with preprocessing and some elimination rules. We can consider the objectives and 
constraints which are related with the travel time since postponement of the starting time at a 
depot is possible in our algorithm. We tested the algorithm on randomly generated problems 
and the results showed that this algorithm can provide an optimal solution for the PDPTW in 
a proper time.  
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