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THE CLASSIFICATION OF REAL PROJECTIVE STRUCTURES

ON COMPACT SURFACES

SUHYOUNG CHOI AND WILLIAM M. GOLDMAN

Abstract. Real projective structures (RP2-structures) on compact surfaces
are classified. The space of projective equivalence classes of real projective
structures on a closed orientable surface of genus g > 1 is a countable disjoint
union of open cells of dimension 16g − 16. A key idea is Choi’s admissi-
ble decomposition of a real projective structure into convex subsurfaces along
closed geodesics. The deformation space of convex structures forms a con-
nected component in the moduli space of representations of the fundamental
group in PGL(3,R), establishing a conjecture of Hitchin.

1. Real projective structures

Projective differential geometry began in the early twentieth and late nineteenth
century as an attempt to apply infinitesimal methods on manifolds to concepts from
projective geometry. Most of the work, culminating in the 1930’s, concentrated
on local questions. Global questions became more prominent with Chern’s work
on the Gauss-Bonnet theorem and characteristic classes. Thurston’s work [43]
in the late 1970’s on geometrization of 3-manifolds underscored the importance
of geometric structures in low-dimensional topology, renewing interest in global
projective differential geometry. In this note we summarize some recent advances
in two-dimensional projective differential geometry. Although many of these ideas
can be expressed in terms of affine connections and projective connections, we prefer
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the setting of geometric structures defined by local coordinate systems modelled on
projective space, as initiated by Ehresmann [15] (compare also [43] and [25]).

1.1. Generalities on geometric structures. Let RP2 be the real projective
plane and PGL(3,R) the group of projective transformations RP2 −→ RP2 and M
a compact surface. A real projective structure (RP2-structure) on M is a maximal

atlas of coordinate charts locally modeled on RP2 with coordinate changes lying
in PGL(3,R). An RP2-manifold is a manifold together with an RP2-structure. If
M is an RP2-manifold, then a geodesic on M is a curve which in local coordinates
maps to a projective line in RP2.

An RP2-manifold M can be developed into RP2 as follows. The coordinate atlas
globalizes to define a local diffeomorphism of the universal covering M̃ −→ RP2,
called the developing map. The developing map restricts to projective charts on
coordinate patches in M̃ . The deck transformations of M̃ define automorphisms of
M̃ . The resulting holonomy homomorphism π1(M) −→ PGL(3,R) corresponds to
the coordinate changes in the atlas for the RP2-structure. The pair consisting of the
developing map and the holonomy homomorphism is unique up to the PGL(3,R)-
action by composition and conjugation respectively.

1.2. Convexity. The most important RP2-structures are the convex structures.
An RP2-manifold M is convex if its universal covering surface is equivalent to a
convex domain Ω in an affine patch of RP2. In that case the fundamental group
Γ ⊂ PGL(3,R) is represented as a discrete group of projective transformations
acting properly and freely on Ω. Equivalently an RP2-manifold is convex if its
developing map is a diffeomorphism with convex image. In that case the holonomy
homomorphism is an isomorphism of π1(M) onto a discrete subgroup of PGL(3,R)
which acts properly on this convex set.

The basic results on convex RP2-structures on a closed surface S are due to
Kuiper, Benzécri [2],[3], with subsequent work by Koszul [33],[34], Kuiper [36],
Vey [44],[45], and Kobayashi [30],[31],[32]. It follows from this work that if M is a

convex RP2-manifold with χ(M) < 0, then the universal covering space of M is a
strictly convex domain Ω ⊂ RP2; the boundary ∂Ω is a C1 curve which is either
a conic (in which case the convex RP2-structure on M arises from a hyperbolic
structure on M) or is nowhere C1+ε for some ε > 0. The first example of such a
convex RP2-manifold whose universal covering has non-smooth boundary is due to
Kac-Vinberg [29] (see also [19]).

1.3. Gluing. When S has boundary, we assume that the boundary is represented
by closed geodesics each having a geodesically convex collar neighborhood and
whose holonomy has distinct positive eigenvalues. We call such a boundary com-
ponent principal.

One obtains new RP2-manifolds from old ones by gluing structures on surfaces
along principal boundary components. Suppose M0 is a (possibly disconnected)
compact RP2-manifold. Suppose that

b1, b2 ⊂ ∂M0

are boundary components with collar neighborhoods bi ⊂ N(bi) ⊂M0 (i = 1, 2).
Let f : N(b1) −→ N(b2) be a projective isomorphism. Let M be the manifold

obtained by identifying N(b1) with N(b2) by f .
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Lemma 1. Then M inherits an RP2-structure such that the quotient map M −→
M0 is an RP2-map.

This lemma follows immediately from the definitions in terms of local coordi-
nates. When M0 consists of convex surfaces, then in many important cases, the
glued surface M is convex (compare Goldman [23]):

Lemma 2. Suppose that each component of M0 has negative Euler characteristic.
If M0 is convex with all boundary components principal, then M is convex.

1.4. Example: Convex annuli and π-annuli. Here is a simple example of a con-
vex RP2-structure with principal boundary. Let 4 ⊂ RP2 be a triangle bounded
by three lines in general position; in an appropriate system of homogeneous coor-
dinates, 4 consists of all [x, y, z] ∈ RP2 such that

x > 0, y > 0, z > 0.

The stabilizer of 4 in PGL(3,R) corresponds to diagonal matrices with positive
entries. Suppose that T ∈ PGL(3,R) is represented by a matrix

T̃ =

a 0 0
0 b 0
0 0 c


where a > b > c > 0. Then T has an attracting fixed point at the point p1

corresponding to the first coordinate line, a fixed point of saddle type at the point
p2 corresponding to the second coordinate line, and a repelling fixed point at the
point p3 corresponding to the third coordinate line. Two fixed points pi, pj span

T -invariant lines, denoted lij , corresponding to the T̃ -invariant planes in R3. For
1 ≤ i < j ≤ 3, let sij denote the component of lij − {pi, pj} meeting 4̄ and s′ij the

other component of lij − {pi, pj}. Thus RP2 decomposes as the disjoint union of:

• four T -invariant open triangular regions (one of which is 4);
• six T -invariant open line segments s12, s13, s23, s

′
12, s

′
13, s

′
23;

• three fixed points p1, p2, p3.

(Compare Figure 1.)
The cyclic group 〈T 〉 generated by T is discrete and acts properly and freely on

4, with quotient space an open annulus. There are two natural compactifications
of 4/〈T 〉:

A1 = 41/〈T 〉, A3 = 43/〈T 〉
where

41 = 4∪ s12 ∪ s13

and

43 = 4∪ s13 ∪ s23.

Both A1 and A3 are convex RP2-manifolds with principal boundary, whose interiors
are projectively isomorphic. However, unless ac = b2, the projective isomorphism
between the interiors does not extend to one between A1 and A3.

Projectively isomorphic to A1 is the annulus

A′1 = 4′
1〈T 〉
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Figure 1. Dynamics of a projective transformation

where

4′
1 = 4′ ∪ s′12 ∪ s13

and 4′ consists of all [x, y, z] with x > 0, z > 0, y < 0 and s′12 is the component of
l12 − {p1, p2} disjoint from 4̄. Then the result of gluing A1 to A′1 is an annulus A
with RP2-structure obtained as a quotient of

H = s12 ∪4 ∪ s13 ∪4′ ∪ s′12

by 〈T 〉. In inhomogeneous coordinates

Y = y/x, Z = z/x

on the affine plane RP2 − l23 ≈ R2 the interior of H is the half-plane defined by
Z > 0 and the boundary of H is the two components of the Z-axis. In contrast to
Lemma 2, the annulus A is not convex. Since the interior of the universal covering
of A spans π radians, such an annulus is called a π-annulus in [6]. Figure 2 depicts
schematically how the two convex annuli are glued to form a π-annulus.

These manifolds can be embedded in closed RP2-manifolds. For example, A1

and A are both subsurfaces of the Hopf torus

M = (RP2 − ({p1} ∪ l23))/〈T 〉.
In the above coordinates (Y, Z) on the affine plane RP2 − l23, the origin is p1 and
T is the linear contraction [

Y
Z

]
7→
[
(b/a) Y
(c/a) Z

]
.

The cyclic group 〈T 〉 acts properly and freely on the complement with quotient M .
A fundamental domain for this action is depicted in Figure 3.
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Figure 2. How to build a π-annulus

Figure 3. Fundamental domain of a Hopf torus

More bizarre closed RP2-manifolds — for example, ones whose developing maps
are not covering maps onto their image — can be obtained by gluing copies of
A1 and A3. The first examples are due to Smillie [40] and Sullivan-Thurston [42],
independently in 1976; see also [19],[21],[12],[13],[37].

1.5. Example: Hyperbolic structures on surfaces. An important class of
convex RP2-manifolds consists of hyperbolic manifolds. Let Ω ⊂ RP2 be the interior
of a conic; then the subgroup G of projective transformations of RP2 stabilizing Ω
leaves invariant a Riemannian metric g of constant negative curvature. Furthermore
every isometry of g is realized by a unique projective transformation preserving Ω.
For example, if Ω is the domain in RP2 defined by

Ω = {[x1, x2, x3] | x2
1 + x2

2 − x2
3 < 0},
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then G corresponds to the orthogonal group O(2, 1). Let M be a surface with a

hyperbolic structure; composing a developing map M̃ −→ H2 with an isometry
H2 −→ Ω realizes M as a convex RP2-surface Ω/Γ where Γ ⊂ G is a discrete
cocompact subgroup.

2. Deformation spaces

The classification of convex RP2-manifolds with nonnegative Euler characteristic
is due to Kuiper ([35],[36]) in the early 1950’s, and RP2-manifolds with zero Euler
characteristic were classified in [19] following the classification of affine structures
on closed 2-manifolds ([1],[2],[38]).

2.1. The space of all RP2-structures. The deformation space RP2(S) of RP2-
structures on S consists of diffeomorphisms f : S −→ M to an RP2-manifold M
modulo the action of the identity component Diff(S)0 given by

φ : f 7→ f ◦ φ
where φ ∈ Diff(S)0. Give RP2(S) the quotient topology induced from the C∞

topology on the space of diffeomorphisms f .
RP2(S) is closely related to the space Hom(π1(S),PGL(3,R)) of homomor-

phisms π1(S) −→ PGL(3,R), which has a natural topology as the set of R-points
of an affine algebraic variety defined over Z. The group PGL(3,R) acts on this
space by conjugation. Its orbit space

X(S) = Hom(π1(S),PGL(3,R))/PGL(3,R)

corresponds most closely to the deformation space. However the representation va-
riety is singular and the action of PGL(3,R) is neither proper nor free. Fortunately
these pathologies can be avoided for RP2-structures on closed surfaces of negative
Euler characteristic.

Taking the holonomy homomorphism of a projective structure defines a map

hol : RP2(S) −→ X(S)

which is essentially a local homeomorphism (see [22] and [28] for an exposition).
The following theorem is proved in [23]:

Theorem 3. Let S be a closed surface with χ(S) < 0. Then the deformation space
RP2(S) is a Hausdorff real analytic manifold of dimension −8χ(S).

An alternate construction of RP2(S) as a symplectic quotient of the space of
affine connections on S is given in [24]. In this construction there are two moment
maps, one corresponding to the torsion of a connection, and the other the projective
curvature tensor. The corresponding transformation groups are the vector space of
1-forms on S and the diffeomorphism group, respectively.

2.2. Deformations of convex structures. The subset of RP2(S) consisting of
convex structures is open in RP2(S) and will be denoted by P(S). The restriction
of hol to P(S) is an embedding onto an open subset of X(S). (When S has
boundary, we assume that the boundary is represented by closed geodesics each
having a geodesically convex collar neighborhood and whose holonomy has distinct
positive eigenvalues. We call such a boundary component principal.) The global
topology of P(S) was determined by Goldman in [23]:
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Theorem 4. Let S be a compact surface having n boundary components such that
χ(S) < 0. Then P(S) is diffeomorphic to a cell of dimension −8χ(S). The map
which associates to a convex RP2-manifold M the germ of the RP2-structure near
∂M is a fibration of P(S) over an open 2n-cell. Its fiber is an open cell of dimension
−8χ(S)− 2n.

Corollary 5. Let S be a closed orientable surface of genus g > 1. Then the defor-
mation space P(S) of convex RP2-structures on S is diffeomorphic to an open cell
of dimension 16(g − 1).

The deformation space P(S) is an analogue of the Teichmüller space T(S) of S,
which is classically known (Fricke-Klein [17]) to be an open cell of dimension 6(g−1).

As in 1.5, every hyperbolic structure on S defines a convex RP2-structure; thus
T(S) embeds in P(S). The mapping class group of S acts properly discontinuously
on P(S) as well as on T(S); indeed P(S) admits an equivariant retraction onto
T(S). Furthermore projective duality defines a natural involution P(S) −→ P(S)
whose stationary set equals T(S). A Riemannian metric on P(S) similar to the
Weil-Petersson metric on T(S) is constructed in Darvishzadeh-Goldman [14]. (A
possibly related construction may be derived from Cheng-Yau [5].)

3. The admissible decomposition theorem

Recently, Choi ([6]) has proved the following “admissible decomposition theo-
rem” (compare also [8] and [9]), which answered a question raised by Thurston and
Goldman in 1977 (see [19],[42]):

Theorem 6. Let M be a compact RP2-manifold with χ(M) < 0. Then there is
a unique collection of disjoint simple closed geodesics Ci on M such that each
component of the complement M −⋃

i Ci is one of the following:

• an annulus covered by an affine half-space;
• the interior of a compact convex RP2-manifold of negative Euler characteris-

tic.

Furthermore each Ci bounds either one or two annuli.

Convexity is equivalent to an extension property, which has been used in several
other contexts (Fried [18], Carrière [4], Shima-Yagi [41]).

Let ∆̄ denote the closed 2-simplex

{[x, y, z] ∈ RP2 | x ≥ 0, y ≥ 0, z ≥ 0}
with the induced RP2-structure. Let q ∈ ∂∆̄ denote the point [0, 1, 1] which is an
interior point of the edge defined by x = 0. Then ∆ = ∆̄ − {q} is an open subset
of ∆̄.

Let M be an RP2-manifold. Then M is convex if and only if every projective
map ∆ −→ M extends to a projective map ∆̄ −→ M . Thus non-convexity is
expressed by the existence of a special kind of projective map.

For example, a π-annulus is not convex. Let M denote the π-annulus above,
described in inhomogeneous coordinates on the affine plane R2 as H/〈T 〉 where H
is the right half-space

H = {(Y, Z) ∈ R2 | Z ≥ 0, (Y, Z) 6= (0, 0)}.
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Figure 4. Nonconvexity of a π-annulus

Then the composition of the map

∆ −→ H

[x, y, z] 7−→ (x/(x+ y + z), (y − z)/(x+ y + z))

with the quotient projection H −→M = H/〈T 〉 is a projective mapping ∆ −→M
which does not extend to ∆̄. Compare Figure 4.

The idea of the admissible deformation theorem is that every inextendible pro-
jective map ∆ −→M can be replaced by one which is of the above type. Thus M
is either convex or contains a π-annulus. After removing a π-annulus, one obtains a
surface to which one applies the above argument inductively. After a finite number
of steps, M is represented as a union of π-annuli and convex RP2-manifolds. The
uniqueness of this decomposition is proved in Choi [8],[9].

4. Representations of the fundamental group

The powerful theory developed by Hitchin ([27],[26]) gives precise topological
information concerning the deformation space X(S). In particular Hitchin [27]
shows that X(S) has exactly three connected components:

1. C0, the component containing the class of the trivial representation;
2. C1, the component consisting of classes of representations which do not lift to

the double covering of PGL(3,R);
3. C2, the component containing discrete faithful representations into SO(2, 1).

In particular the component C2 contains the Teichmüller space T(S) of S. By §2.2
the holonomy map hol maps P(S) bijectively onto an open subset in C2 ([22],[23]).
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Furthermore, Hitchin shows that C2 is homeomorphic to R16g−16. This naturally
led Hitchin to conjecture in [27] that C2 = P(S):

Theorem 7 (Choi-Goldman [11]). P(S) is closed in C2. Thus hol is a diffeomor-
phism of P(S) onto a connected component of X(S).

The proof is geometric and involves Hausdorff limits of the metric spaces associ-
ated to convex RP2-structures defined by the Hilbert metric. (See Kobayashi [31]
for a discussion of intrinsic metrics and Choi [10] for another proof of Theorem

7.) RP2-structures whose holonomy lies in other components of X(S) are given in
Goldman [21]. (For example the holonomy representation may be a non-Fuchsian
representation in SO(2, 1).) Curiously, all invariants derived from characteristic
classes [20] of associated bundles fail to distinguish the components C0 and C2.

Acknowledgment

We thank W. Thurston for introducing us to this subject.

References

1. Arrowsmith, D. and Furness, P., Affine locally symmetric spaces, J. London Math. Soc. 10
(1975), 487-499. MR 57:7454

2. Benzécri, J. P., Variétés localement affines, Sem. Topologie et Géom. Diff., Ch. Ehresmann
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