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A rational and mechanics-based equation is proposed for the prediction of

shear strength of reinforced concrete beams without web reinforcement.

This prediction is based on basic shear transfer mechanisms, a modified

Bazant's size effect law, and numerous published experimental data,

including high-strength concrete beams with compressive strengths of con-

crete up to 100 MPa (14,500 psi). Comparisons with experimental data

indicate that the proposed equation estimates properly the effects of pri-

mary factors, such as concrete strength, longitudinal steel ratio, shear

span-to-depth ratio, and effective depth. It is shown that the proposed

equation is considered to be better than the other equations compared in

this study with respect to accuracy and estimation of primary factors. A

simplified design equation is also derived within the limited range of effec-

tive depth for practical purposes.

Keywords: aggregate interlock; beams; dowel action; failure mode; shear

strength; size effect.

According to the shear span-to-depth ratio (a/d), shear
failure of a reinforced concrete beam without web reinforce-
ment is divided into two modes, as shown in Fig. 1. For a/d
greater than 2.0 ~ 3.0, the inclined cracking load exceeds the
shear compression failure load. With the formation of the in-
clined crack, a beam without web reinforcement becomes
unstable and fails. This type of failure is usually called “di-
agonal tension failure.” For a/d less than 2.0 ~ 3.0, however,
the failure load exceeds the inclined cracking load. If suffi-
cient anchorage length is provided, after the inclined crack
develops, failure may occur by concrete crushing in the
upper end, and this type of failure is called “shear com-
pression failure.”

Shear force in reinforced concrete member is transferred
in various ways. For slender beams where a/d is greater than
2.0 ~ 3.0, shear force is carried by the shear resistance of un-
cracked concrete in the compression zone, the interlocking
action of aggregates along the rough concrete surfaces on
each side of the crack, and the dowel action of the longitudinal
reinforcement. For relatively short beams, however, after the
breakdown of beam action, shear force is resisted mainly by
arch action.

Test results have shown that shear strength of reinforced
concrete beams without web reinforcement depends mainly
on concrete strength, longitudinal steel ratio, shear span-to-
depth ratio, and effective depth. Of course, factors such as
maximum aggregate size, diameter of the bars, and spacing
of the flexural cracks show some minor contribution. A part
or all of these primary factors are included in the existing
shear strength prediction models, but the effects of these fac-
tors are estimated differently according to the models.

Recently, high-strength concrete has been increasingly
used in practice. With the development of concrete technol-
ogy and the introduction of superplasticizers and silica fume,
the compressive strength of concrete in the field of ready-
mixed concrete reached 100 MPa (14,300 psi) and higher.
Since the mechanical properties of concrete are changed in
high-strength concrete, a reevaluation of the prediction model
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Fig. 1—Effect of a/d on shear failure mode
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is necessary to reliably estimate the shear strength of beams
made with high-strength concrete. Moreover, because of the
wider range of concrete strength used, more accurate predic-
tions of shear strength of reinforced concrete members are
required.

The shear failure of reinforced concrete beams without
web reinforcement has been known to be a typical case of
brittle failure and indicates significant size effect. In 1981,
Reinhardt1 introduced fracture mechanics in the prediction
of shear strength. He analyzed limited test data for shear fail-
ure based on linear elastic fracture mechanics. Subsequently,
it was established that the size effect implied by linear elastic
fracture mechanics is too strong in the case of concrete, and
that brittle failures of concrete structures are better described
by nonlinear fracture mechanics. Meanwhile, a simple and
approximate size effect law on the basis of nonlinear fracture
mechanics was proposed by Bazant.2 Several studies3-6 have
shown that Bazant’s size effect law is in good agreement
with test results. However, there is some discrepancy be-
tween the prediction by Bazant’s law and the test data, par-
ticularly for large-sized specimens. Recently, Kim and Eo7

proposed a modified Bazant’s size effect law to reduce the
discrepancy.

In the present study, a simple and accurate equation pre-
dicting the shear strength of reinforced concrete beams with-
out web reinforcement is proposed based on basic
mechanisms of shear transfer and a modified Bazant’s size
effect law deduced by Kim and Eo, and it was verified by the
published test data. In addition, a simplified equation is also
proposed for practical design purposes. These equations that
include the effects of all the factors previously mentioned are
supported by test results and are compared with other pre-
diction equations for the shear strength of beams without
web reinforcement.

RESEARCH SIGNIFICANCE
Research reported in this paper provides a rational and ac-

curate equation for the prediction of shear strength of reinforced
concrete beams without web reinforcement. The results
show that the proposed equation predicts the existing exper-
imental data more accurately than the other equations in this
study. A simplified design equation is also proposed for
practical purposes without a significant accuracy reduction
compared with the original equation.

BASIC SHEAR TRANSFER MECHANISMS
For slender beams where a/d is greater than 2.0 ~ 3.0, the

shear force in a cracked section of a reinforced concrete
beam is mainly resisted by the shear resistance of com-
pression zone, interlocking action of aggregates, and dowel
action, as shown in Fig. 2. For rectangular beams, after an in-
clined crack has formed, the proportion of the shear force
transferred by the various mechanisms is as follows:8 20 to
40 percent by the uncracked concrete of compression zone;
33 to 50 percent by interlocking action of aggregates; and 15
to 25 percent by dowel action. Meanwhile, in a relatively
short beam, the load is transferred directly from the loading
points to supports owing to arch action.

Shear resistance of uncracked concrete
In a reinforced concrete beam, after the development of

flexural cracks, a certain amount of shear is carried by the
concrete in the compression zone. It is clear that the shear
failure in the uncracked concrete is recognized as the failure
under combined compression and shear9 and the area of un-
cracked zone. The position of the neutral axis in a beam after
flexural cracking is mainly dependent on the elastic modulus
of concrete and the longitudinal steel ratio because elastic
modulus of steel is nearly constant. Therefore, the shear
force carried by the uncracked concrete in the compression
zone can be represented by the compressive strength of con-
crete and the longitudinal steel ratio, since the concrete
strength in the biaxial state and elastic modulus of concrete
is the function of the compressive strength of concrete.

Interlocking action of aggregates
Previous experimental studies8-10 have shown that a large

portion of the total shear force on the beam without web re-
inforcement is carried across the cracks by aggregate inter-
locking. Among many variables, the width of the crack and
the concrete strength are likely to be the most important factors.

Since the flexural crack width is approximately propor-
tional to the strain of tension reinforcement, the crack width
at failure becomes smaller as the longitudinal steel ratio is in-
creased. Also, with increasing a/d, the strain of tension rein-
forcement at failure is increased. Meanwhile, it is naturally
expected that the interlocking force will be increased when
the strength of concrete is high.

Dowel action
When shear displacement occurs along the cracks, a cer-

tain amount of shear force is transferred by means of dowel
action of the longitudinal bars. Although there is some con-
tribution in dowel action by the number and arrangement of
longitudinal bars, spacing of flexural cracks, and the amount
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Fig. 2—Shear transfer mechanisms of slender beams
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of concrete cover, etc., the main factors influencing this
action are flexural rigidity of longitudinal bars and the
strength of the surrounding concrete.

Arch action
In relatively short beams, applied loads are transferred di-

rectly to the supports by arch action. The main factors influ-
encing this action are the span-to-height ratio of the
analogous arch and the strength of the compression strut.
The span-to-height ratio of the analogous arch is approxi-
mately equal to the shear span-to-depth ratio. The strength of
the compression strut is closely related to the compressive
strength of concrete and the area of tension reinforcement.

DEVELOPMENT OF EQUATION
As previously discussed, shear resistance of uncracked

concrete in the compression zone can be expressed as

(1)

in which f ′c is the compressive strength of concrete, b is the
width of the beam, kd is the neutral axis depth, and c1 and l
are empirical constants. The constant l depends on the ratio
of shear stress to compressive stress in an uncracked zone,
and it is in the range of 0.5 to 1.0. According to the classical
bending theory of reinforced concrete beams with only ten-
sile reinforcement and a negligible tensile capacity of con-
crete, we would have

(2)

in which n = Es/Ec = ratio of elastic moduli of steel and con-
crete. Eq. (2) is, however, unnecessarily complicated and
may be replaced by the following simpler expression

(3)

in which c2 and m are certain constants. Within the practical
range, i.e., 5 ≤ n ≤ 10 and 0.005 ≤ ρ ≤ 0.05; consequently,
0.025 ≤ nρ ≤ 0.5. These constants can be chosen so that the
values given by Eq. (2) and (3) are almost undistinguishable.
Fig. 3 shows the optimum values of c2 and m.

The elastic modulus of normal-weight concrete can be rep-
resented as

(4)

in which f ′c  is the compressive strength of concrete and c3 is
a certain constant. Therefore, substituting with Eq. (3),
where c2 and m are the values shown in Fig. 3, and Eq. (4)
into Eq. (1), we obtain

(5)

in which c5 is a constant.

Vc c1 f ′c( )l b k d( )=

k n2 ρ2 2nρ+( )
1 2⁄

nρ–=

k c2 nρ( ) m=

Ec c3 f ′c( )0.5=

Vc c5 f ′c( ) l 0.18–( ) ρ0.36= bd

According to Reineck,11 the maximum value of shear
stress along the crack surface due to aggregate interlock de-
pends on the tensile strength of concrete and is decreased lin-
early with increasing crack width ∆n as follows

(6)

Crack width is resolved as ∆n = 0.71εs scr, in which εs is the
strain of the longitudinal reinforcement and scr is the spacing
of the primary cracks. From theoretical considerations and
experimental comparisons, the spacing of the primary cracks
was also derived by Reineck as scr = 0.7(d - kd). Substituting
the values of ∆n and scr into Eq. (6) and assuming that k = 0.3
for the usual simplification and d = 500 mm as a reference size

(7)

Eq. (7) can be replaced approximately by the following sim-
pler expression within the practical range of εs, i.e., 0.0008 ≤
εs ≤ 0.003.

τfu 0.45f ′t= 1 ∆n
∆nu

---------– 
  with ∆nu 0.9mm=

τfu 0.45f ′t= 1 193.3εs–( )

Fig. 3—Comparison of two equations on neutral axis 

Fig. 4—Comparison of two equations on aggregate inter-
locking stress
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(8)

The comparison of Eq. (7) and Eq. (8) is shown in Fig. 4. In
reinforced concrete beams, as long as the tension reinforcement
has not yielded, the strain of the longitudinal reinforcement
at the ultimate state can be approximately expressed as

(9)

in which Vu is ultimate shear force and aeff is effective length
of shear span. Substituting Eq. (9) into Eq. (8) and tenta-
tively assuming that shear strength of reinforced concrete
beams is approximately proportional to 1/3 power of (f ′c ×
ρ × d/a) suggested by Zsutty, the shear force carried by the
aggregate interlock [= τfub(d - kd)] is expressed as

(10)

in which c8 is some constant.
According to Vintzeleou and Tassios,12 the dowel force is

represented as

(11)

in which c9 is a certain constant, db is diameter of the bar, and
bct is net width of the section (= b - qdb, q being the number
of bars). Eq. (11) can only be used when the number and di-
ameter of the bar are known. Assuming the number of the bar
is not changed, the dowel force can be expressed approxi-
mately by more general terms ρ as follows

(12)

in which c10 is some constant and r, varying from 0.3 to 0.5
in a practical range, is a parameter that is dependent on spac-
ing of the reinforcement.

τ f u 0.012f ′t εs⁄=

εs
Vua eff

E sA sj d
--------------------=

Va c8
f ′c ρd a⁄( )= 1 3⁄ bd

Vd c9bc tdb f ′
t

=

Vd c10 f ′c( )0.5ρrb d=

As previously discussed, the shear capacity of slender
beams may be represented as Eq. (13), although the primary
shear transfer mechanisms are coupled 

(13)

Substituting Eq. (5), (10), and (12) into Eq. (13), we obtain

(14)

It is noticed in Eq. (14) that the powers of f ′c have similar
values. In practice, uncracked parts of reinforced concrete
beams are stresed in two directions (biaxal stress condition).
The power of f ′c in the first term of Eq. (14), therefore, may
be varied in some range. Considering this fact and the minor
contribution of dowel action (approximately 20 percent of
total shear resistance), it can be assumed for simplicity that
the power of f ′c is identical for all three terms in Eq. (14). In
addition, the values of power of ρ in all three terms of Eq. (14)
are very similar to each other. Consequently, Eq. (14) is then
expressed as

(15)

in which c11, c12 , s, and t are certain constants. Because the
term [c12  + (d/a)1/3] can be replaced by [c13 + c14(d/a)] with-
out a large difference (in which c13  and c14 are certain con-
stants), as shown in Fig. 5, the shear capacity of reinforced
concrete beams with constant effective depth can be ex-
pressed as

(16)

in which c15 and c16  are certain constants.
To reduce the discrepancy between the prediction by

Bazant’s size effect law and the experimental data, especial-
ly for very large-sized specimens, Kim and Eo7 recently sug-
gested a modified Bazant's size effect law based on the
concept of dissimilar initial cracks. The formula is as follows

(17)

in which σN  is the nominal strength of a specimen at failure,
σr is the nominal strength of the specimen with reference
size, and k1, k2, and k3 are empirical constants. β is brittleness
number, expressed as

(18)

in which f ′t  is tensile strength, Ec is modulus of elasticity, Gf

is fracture energy, and D is the characteristic size of the

Vu Vc Va+= Vd+

          Vu c5 f ′c( )
l 0.18–( )

ρ
0.36

c8
f ′c ρd a⁄( )

0.33
c10 f ′c( )

0.5
ρ

r
++

[

]b d

=

Vu c11 f ′c( )s ρ t= c12
d a⁄( )1 3⁄+[ ]bd

Vu c15 f ′c( )s ρ t= c16
d a⁄+( )bd

σN

k1 σr

1 k3 β+( )1 2⁄
------------------------------ k2 σr+=

β
f ′t( )2D

EcGf

----------------=

Fig. 5—Comparison of two equations on ξ
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structure. f ′t  and Ec  are mainly dependent on compressive
strength, and Gf is dependent on maximum aggregate size

(da) and compressive strength. Gf is increased with da and
compressive strength, although the increase is minimal in the
higher strength range. For reinforced concrete beams, D is
effective depth. Consequently, β can be expressed as a

function of f 'c , da, and d. If stirrups are used, Gf is increased
because crack localization is prevented, to some extent, by
stirrups. Thus, the effect of stirrups in the size effect of rein-

forced concrete beams in shear can be considered. Mean-
while, since the effects of factors influencing Gf are not clear
and the ranges of f 'c  and da are limited in the construction

field, experimenal data have shown that the capacity of
beams is not significantly influenced by da; therefore, it is ra-
tional to assume that (f′t)

2/EcGf is a constant. Therefore, Eq. (17)
can be expressed as

(19)

in which k4 is an empirical constant. Eq. (16) does not take

into account the size effect. According to Eq. (19), we fi-
nally obtain

(20)

in which c17 = c15k1 and k5 = k2/k1. Eq. (20) has been com-
pared to all other important experimental data, with regard to
not only the effects of concrete strength, longitudinal steel
ratio, and shear span-to-depth ratio, but also to the effect of
effective depth.

From the statistical analysis of existing experimental
data,13-44 the values of all six parameters in Eq. (20) have
been determined. The experimental data used in the analysis
are only three or four point test results of simple beams with
rectangular sections except for Shioya’s test results,37 which
applied uniform load. Moreover, test results of beams with
small d [less than 100 mm (3.94 in.)] or small maximum ag-
gregate size [less than 5 mm (0.2 in.)] were excluded for
practical purposes. Cubic compressive strength of concrete
reported in some tests was converted to the cylindrical com-
pressive strength according to Neville’s empirical relation.45

Finally, the following equation is proposed for the mean
nominal shear strength of reinforced concrete beams with
a/d equal to or greater than 3.0

(21)

in which

f ′c  and vu are in MPa and d is in mm. Fig. 6 shows the ratio
of shear strength tested to predicted with a/d ≥ 3.0 for each

σN

k1 σr

1 k4 d+( )1 2⁄
----------------------------- k2σ r+=

νu c17 f ′c( )
s

= ρ
t

d a⁄ c16+( ) 1

1 k4 d+( )
1 2⁄

----------------------------- k5+ 
 

νu 3.5f ′c= 1 3⁄ ρ3 8⁄ 0.4 d a⁄+( ) λ d( )

λ d( ) 1

1 0.008d+
------------------------------ 0.18+=

Fig. 6—Ratio of shear strength for each primary factor
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factor by the proposed equation. As shown in the figure, it
can be concluded that the proposed equation estimates prop-
erly the effects of primary factors.

For relatively short beams, the failure mode is changed
gradually from diagonal tension to extreme shear compression.
Consequently, the effect of concrete strength on the shear
strength is also gradually increased with decreasing a/d. Previ-
ous experimental work32 has shown that the effect of concrete
strength on the shear strength of reinforced concrete beams be-
comes more significant with decreasing a/d. If we roughly as-
sume that the effects of ρ and d are not changed with a change of
failure mode, the shear strength of relatively short beams can be
expressed as

(22)

where α is the failure mode index that is dependent on the a/d ra-
tio. From the compatibility condition, which is α = 1 at a/d = 3.0,
and the statistical analysis of existing experimental data, α is de-
termined as

(23)

EVALUATION OF PROPOSED EQUATION
Many equations have already been proposed to estimate

the shear strength of reinforced concrete beams. To eval-
uate the proposed model, three well-known equations are
selected for comparison: 1) Zsutty’s equation46 deduced
by multiple regression analysis; 2) Bazant's equation5 derived
based on Bazant’s size effect law; and 3) the ACI Code
equation.47 These equations are as follows:

ACI Code equation

(24)

(25)

Zsutty's equation

(26)

(27)

Bazant's equation

(28)

The ratios of shear strength (tested to predicted) with
the bulk of existing experimental data determined by three
other equations and the proposed equation are shown in
Fig. 7. For the ACI Code equation, the scatter is much
larger than those of the other equations. It is shown that the
ratio of shear strength obtained by Zsutty’s equation increases
gradually with increasing shear strength. This phenome-
non is mainly due to the fact that Zsutty’s equation ignores
size effect and slightly underestimates the effect of a/d when
a/d is less than 2.5. Bazant’s equation predicts the shear
strength of experimental data comparatively well, although
the scatter is somewhat larger than that of the proposed equa-
tion. As shown in the figure, the proposed equation, which has
a standard deviation of 0.162 with respect to average ratio of
shear strength and a correlation coefficient of 0.926, predicts
more accurately than the other equations.

Fig. 8 shows the ratios of tested-to-calculated shear
strength of existing test data failed by diagonal tension (a/d ≥
3.0) with variation of d. The ratios of shear strength obtained
from the ACI Code equation and Zsutty’s equation are de-
creased with increasing d due to the disregard of size effect,
whereas Bazant’s equation and the proposed equation have
nearly constant value. Although Bazant’s equation reflects
not only the effect of d but also the effect of maximum ag-
gregate size, the scatter is somewhat larger than that of the
proposed equation. 

For relatively short beams failing in shear compression,
the scatter of test data is larger than that of slender beams
failing in diagonal tension. As shown in Fig. 9, the standard
deviation of the ratio of shear strength for the ACI Code
equation is more than twice that of the proposed equation.
Although scatters of the ratio of shear strength for Zsutty’s
equation and Bazant’s equation are lower than that of the
ACI Code equation, they are larger than that of the proposed
equation, to some extent. Similar to the case of slender
beams, the proposed equation with a standard deviation of
0.230 and a correlation coefficient of 0.901 is considered to
be better than the other equations in terms of accuracy and
estimation of primary factors.

PROPOSED SIMPLE DESIGN EQUATION
From a practical point of view, design equations should be

as simple as possible within a range of acceptable accuracy.
Although the proposed equation is relatively simple and
accurate, and estimates the effects of the primary factors
well, it is somewhat complicated to use in practical design,
especially regarding the size factor λ(d). The effective depth
of reinforced concrete beams in construction is usually lim-
ited within the range of d ≥ 250 mm (9.84 in.). Since small-
sized structures that conform to the strength criterion are not
presented, the term λ(d), which indicates size effect, can be
approximately represented using a simpler expression as follows

(29)

in which k6 and k7 are some constants. From the regression
analysis of existing experimental data, the values of k6 and k7

have been determined. As a result, the simplified size factor

νu 3.5f ′=
c

α 3⁄ ρ3 8⁄ 0.4 d a⁄+( )λ d( )

α 2 a d⁄
3

---------- for 1 a d 3<⁄≤–=

νc 0.1578 f ′c= 17.25ρw+
Vud

Mu

--------- MPa( ) a d⁄ 2.5≥( )

ν c 3.5 2.5–
Mu

Vud
--------- 

  Eq. 24( )[ ]×     a d⁄ 2.5<( )=

νu 2.1746 f ′c ρ d
a
--- 

 =
1 3⁄

    (MPa)    a d⁄ 2.5≥( )

νu 2.5d
a
--- 

  Eq. 26( )[ ]×       a d⁄ 2.5<( )=

νu 0.54 ρ3= f′c 249 ρ

a d⁄ 5
------------+ 

  1 5.08 da⁄+

1 d+ 25da( )⁄
-------------------------------------

                                   (MPa)

×

λ d( )
k6

d
------- k7+=
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Fig. 8—Comparison of various equations with increasing d (a/d ≥ 3.0)

Fig. 7—Comparison of various equations with bulk of existing data
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is nearly identical with the one in the CEB-FIP model code.48

Consequently, the following simplified equation is derived
for the mean nominal shear strength

(30)

in which α = 1 for a/d ≥ 3.0 and 2 - (a/d)/3 for 1.0 ≤ a/d < 3.0.
Fig. 10 shows the comparison of results obtained from

the original equation and the simplified equation. As
shown in the figure, the simplified equation has nearly

identical accuracy compared with the original equation,
although some approximation has been made. 

Assuming a normal distribution of the ratios of shear
strength, the design equation for the shear strength of reinforced
concrete beams with 90 percent reliability is represented as

(31)

This equation is shown by the straight line in Fig. 11. As
shown, only a few data points lie below the equation, and
no data points fall significantly below this equation.

νu 19.4f ′=
c

α 3⁄ ρ
3 8⁄

0.4 d a⁄+( ) 1

d
------- 0.07+ 

 

              for  d 250 mm (9.84 in.)≥ νu d, 15.5f ′=
c
α 3⁄ ρ3 8⁄ 0.4 d a⁄+( ) 1

d
------- 0.07+ 

 

Fig. 9—Comparison of various equations with increasing a/d (a/d  < 3.0)

Fig. 10—Comparison between original equation and simplified equation
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CONCLUSIONS
On the basis of the results obtained in this study, the fol-

lowing conclusions may be drawn.
1. Based on shear transfer mechanisms, modified size ef-

fect law, and numerous published experimental data, the
following equation is derived for the nominal shear strength
of reinforced concrete beams without web reinforcement

in which α = 1 for a/d ≥ 3, 2 - (a/d)/3 for 1 ≤ a/d < 3.
2. Comparison with published experimental data indicates

that the proposed equation estimates properly the effects of
primary factors, such as concrete strength, longitudinal steel
ratio, shear span-to-depth ratio, and effective depth.

3. As a result of the comparison with the ACI Code equation,
Zsutty’s equation, and Bazant’s equation, the accuracy of the
proposed equation is better than that of any other equation.

4. For practical design, a simple and accurate equation
deduced from the simplification of the originally pro-
posed equation is derived as

The accuracy of the simplified equation is nearly identical
compared with the original equation and is considered to be
better than those of the other equations compared in this study.

5. The effect of concrete strength on the shear strength of
beams with a/d < 3.0 is estimated well by introducing failure
mode index α.
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NOTATION
aeff = effective length of shear span
As = area of tension reinforcement
a/d = shear span-to-depth ratio
b = width of beam
bct = net width of beam section
c1 , c2, ..., c1 7 = constants
D = characteristic size of structure
d = effective depth of beam
da = maximum aggregate size
db = diameter of reinforcing bar
Ec = elastic modulus of concrete
Es = elastic modulus of steel
f ′c = compressive strength of concrete
f ′t = tensile strength of concrete
G f = fracture energy
jd = internal lever arm
k1, k2, ..., k7 = constants 
kd      = neutral axis depth
l, m , p , s, t = constants
Mu = ultimate moment
n = ratio of elastic moduli of steel and concrete
scr = spacing of primary cracks
Va = shear force carried by aggregate interlock

νu 3.5f ′= c
α 3⁄

ρ
3 8⁄

0.4 d a⁄+( ) 1

1 0.008d+
------------------------------ 0.18+ 

 

νu d, 15.5f ′=
c
α 3⁄ ρ3 8⁄ 0.4 d a⁄+( ) 1

d
------- 0.07+ 

 

                   for  d 250 mm (9.84 in.)≥

Vc = shear resistance of compression zone
Vd = dowel force
Vu = shear capacity of beams
vu = shear strength of beams
α = failure mode index
β = brittleness number
∆n = crack width
∆nu  = ultimate crack width
εs = strain of tension reinforcement
λ(d ) = size factor
ρ, ρw  = longitudinal steel ratio
σN = nominal strength of specimen at failure
σr = nominal strength of specimen with reference size
τfu = maximum shear stress along crack surface
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