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Absfract- Recently, a number of empirical studies have 
demonstrated the existence of long-range dependence 
(LRD) or self-similarity in VBR video traffic. Since previous 
LRD models cannot capture all short- and long-term corre- 
lation and rate-distribution while still retaining mathemati- 
cal tractability, there exist many doubts on the importance 
of SRD, LRD, and ratedistribution on traffic engineering. 

In this paper, we present a video traffic model based 
on the shifting-leuel (SL) process with an accurate parameter 
matching algorithm for video traffic. The  SL process cap- 
tures all those key statistics of an empirical video trace. 
Also, we devised a queueing analysis method of SL/D/l/K, 
where the system size a t  every embedded point is quantized 
into a fixed set of values, thus name quantization reduction 
method. This method is different from previous LRD queue- 
ing results in that  it provides queueing results over all range 
not just an asymptotic solution. Further, this method pro- 
vides not only the approximation but also the bounds of the 
approximation for the system states and thus guarantees the 
accuracy of the analysis. 

Especially, we found that  for most available traces their 
ACF can be accurately modeled by a compound correla- 
tion (SLCC): an exponential function in short range and a 
hyperbolic function in long range. Comparing the queue- 
ing perforamces with C-DAR(l), the  SLCC, and real video 
traces identifles the eflecta of SRD and LRD in VBR video 
trafflc on queueing performance. 

Keywords-VBR video tramc model, shifting-level process 
(SL), autocorrelation, long-range dependence (LRD), short- 
range dependence (SRD), queueing analysis. 

I. INTRODUCTION 

VBR video service is expected to be a major source of fii- 
t,ure packet-swit,ching integrated service networks. Because 
the success of traffic control relies essentially on a sound un- 
derstanding of input traffic, modeling of VBR video traffic 
has received inknse interest. Of input traffic statistics, t,he 
histogram (ratedistribution) and the autocorrelation fiinc- 
tion (ACF) are considered of first importance in estimating 
network performances [13], [14], [20], [25]. 

Recently, a number of empirical studies have demon- 
strated the existence of long-range dependence (LRD) or 
self-similarity in VBR video traffic [5], [ll], [12]. Various 
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processes have been proposed for modeling a traffic with 
LRD and analyzing its effects on network performance [5] 
and [25] pp.324-348. These include fractional Brownian 
motion [ll], [24], fractional ARIMA processes [17], chaotic 
maps [SI, and semi-Markovian processes [18]. The signif- 
icant impact of LRD on queueing behavior has been re- 
ported in their studies on data traffic. Erramilli [9] and 
Norros [24] showed that overall packet loss decreases very 
slowly, i.e., hyperbolically with increasing buffer size. This 
means that system performance may be overestimated if 
LRD in input traffic is overlooked. However, since previ- 
ous LRD models cannot capture all short- and long-term 
correlation and rate-distribution while still retaining math- 
ematical t,ractability, there exist many doubts on the im- 
portance of SRD, LRD, and rate-distribution on traffic en- 
gineering. Also, conventional Markovian models are still 
being used and developed for performance estimation and 
traffic control. Furthermore, it is argued that Markovian 
models show accurate performance estimation in many sit- 
uations in spite of a lack of LRD characteristics [6], [X]. 

In this paper, we introduce a video traffic model based 
on the shifling-level (SL) process. The SL process was first 
studied in an economics context, and called a renewal re- 
ward process by Mandelbrot [22]. An application to video 
traffic was done by Grasse e t  01. (121. Roughly speaking, 
the SL process is a traffic model for a source that changes 
its rate now and then according to two i.i.d. processes: 
Si for scene size (the arrival rate in a scene) and Ti for 
scene duration. As we will describe, because in the SL 
process, the histogram and ACF can be matched indepen- 
dent,ly, the effects of each statistic on queueing performance 
can be investigated separately. With t,he assumption of a 
negative binomial distribution on the histogram, obtained 
from previous studies [GI, [ll], (151, we focus on the effect 
of antocorre1at)ion on queueing behavior. 

We observe that the ACF of an empirical t,race is accu- 
rately captured by the shifting-level process with a com- 
pound correlation of Ohe exponential and the hyperbolic, 
which we will refer to as the shifting-level process with 
compound correkztion (SLCC). Especially, we present an 
efficient and accurate parameter matching algorithm for 
the SLCC model from a measured video traffic. The 
continuous-time analog (C-DAR( 1)) of DAR(1) model [15], 
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1291, which is a widely used SRD video traffic model, can 
be considered a kind of SL process but with only an expo- 
nential correlation. Therefore, by comparing the queueing 
performances of the C-DAR( 1) model and SLCC with that 
of a real video trace, we will identify the effects of SRD and 
LRD correlation in VBR video traffic on queueing perfor- 
mance. 

We present an approximating method named the quan- 
t i za t ion  reduction method, where the system sizes at em- 
bedded points, i.e., the rate transition epochs of the SL 
process, are approximated into a space with a finite num- 
ber of quantization points. This method is different from 
previous LRD queueing results in that it provides queueing 
result,s over all range not just an asymptotic solution. Since 
we provide also the upper and lower bounds of the approx- 
imation for the system size distribution, we can efficiently 
use the memory size and computation time by adjusting 
the quantizat,ion st,ep. 

As an important final note, due to space limitations, we 
do not provide all detailed equations and extensive results 
obtained with various traces. However, we applied our 
modeling and alogorithm to various traces, JPEG-coded 
Star  Wars [ll], VIC traces [28], and GOP smoothed MPEG 
[18], [26]. Interested readers for more numerical results are 
refered to the refernce [2]. 

The rest of the paper is structured as follows. In Sec- 
tion 11, we introduce the SL process and find its autocor- 
relation. In Section 111, we propose a parameter matching 
method of the SLCC for ACF with exponential and hyper- 
bolic form. In Section IV, we offer an analysis method for 
the SL/D/l/I< queueing system. The numerical results on 
queueing experiments are presented in Section V. Finally 
we conclude the work in Section VI. 

11. THE SHIFTING-LEVEL PROCESS 
A .  T h e  Shifting-Level Process and its ACF 

Let {S, : n = 0, 1,2,3} be i.i.d. discrete random vari- 
ables with a state space {0,1,2, . . ., i, . . , M ) .  We denote 
the probability m a s  function, mean, and variance of S, by 
fs (.), /AS, and U:, respectively. Consider a delayed renewal 
process 0 = t o  < tl < t 2  < + . $  with inter-renewal times 
T, = t n - t n - 1 , n = 1 , 2 , 3 . . . , w h e r e { T , : n = 2 , 3 , 4 - . . }  
are i.i.d. with distribution FT(.), density f~(.), and mean 
m, and 7‘1 follows F‘(t), the distribution for a residual life 
trime of T [27]: 

I r t  

Then t,he shifting-level process { X ( t ) }  is a fluid model 
whose arrival rate at t is given by i if S N ( ~ )  = i; 

00 

~ ( t )  = Snl{t,<t<trr+l)- (2) 
n=0 

Obviously, { X ( t ) }  is a stationary process with mean px = 
,LLS and variance CT; = C T ~ .  

,XlO‘ 
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Fig. 1. A sample path for the SLCC with the same A C F  and the 
marginal distribution as the intra-coded Star Wars trace 

Now we find the relationship between the ACF p ( t )  = 
E [ ( X ( T )  - p x ) ( X ( ~  + t )  - p x ) ] / V a r [ X ( t ) ]  and the scene 
duration distribution FT(.). First the ACF of the SL pro- 
cess is given by 

(3) 

The derivation of equation (3) is provided in the Appendix 
A. 

Differentiation of the equation yields simple relations be- 
tween the density of T and the ACF. 

B. T h e  SL process as a Video  T r a f i c  Model  

Now we consider application of the SL process to video 
traffic modeling. In general, the traffic pattern of a coded 
video trace depends on both the inherent variation of the 
visual information and the coding algorithm used for da ta  
compression. Especially, an MPEG coder generates peri- 
odic burstiness due to its picture-dependent coding algo- 
rithm. Here we focus on the inherent characteristics in 
VBR video traffic, no considering the side-effects of video 
coding, i.e., the periodicity of MPEG traffic. Table I shows 
the basic statistics for the traces used in our experiment. 
Here we assume 48 Bytes payload in 53 Bytes ATM cell 
size. 

In our application, the scene size, i.e., the source rate 
in a scene, corresponds to Si and the scene duration cor- 
responds to Ti. In general, the scene size process might 
not be i.i.d.; the real correlation depends on the definition 
of scene. In [18], the correlation is modeled by a discrete 
Markov chain. However, the large number of parameters 
in the transit,ion matrix of semi-Markovian processes makes 

0-7803-5880-5/00/$10.00 (c) 2000 IEEE 10 37 IEEE INFOCOM 2000 



trace 
intra-coded Star Wars 

VIC D a c e  A 
VIC Trace B 

MPEG-GOP smoothed 

the matching procedure difficult. Furthermore, the perfor- 
mance estimation is very sensitive to its state definition 
[HI. This is because semi-Markovian models cannot cap- 
ture the rate-distribution (first-order statistics) of the em- 
pirical traces with a limited number of states. 

On the other hand, in the SL process assuming that the 
scene size process is also a renewal process, the SL pro- 
cess has the property that the marginal distribution and 
the ACF are determined solely by Si and Ti, respectively. 
Thus, we can easily match the rate-distribution and ACF 
of the model to those of the empirical traces. Furthermore, 
as we mill show, our modeling of ACF based on the SL pro- 
cess requires only five parameters for VBR video traffic. 

C. The SLCC and the C-DAR(1) model 

Fig. 2 shows that the empirical ACF of video traffic is 
close to an exponential function (SRD) in the small lag 
region, and a hyperbolic function (LRD) in the large lag 
region. Thus, we consider the shifting-level process with a 
compound correlation (SL CC) of the exponential and the 
hyperbolic as follows. 

mean std. coef. of var. peak peak/mean 
578.9 130.2 0.23 1,634.6 2.82 
85.2 61.3 0.72 433.5 5.09 
71.9 39.0 0.82 544.3 7.57 

589.1 331.6 0.56 3,796.7 6.44 

First, we obtain p k ( t )  = - e - ' I r / r ,  and p i ( t )  = -cop (t+ 
t l ) - (P+l ) .  Then from (5) we find that T must also follow 
the exponential and hyperbolic distribution. Fig. 1 show 
a sample trace of the SLCC process whose model param- 
eters are matched with a Star Wars trace [ll] using the 
parameter matching algorithm in Section 111. 

Here we consider the relationship between the SLCC pro- 
cess and t,he well-known DAR(1) model [15]. The DAR(1) 
model is a Markov chain with transition matrix 

where p is the autocorrelation coefficient and Q is a state 
t-ransition matrix with identical rows equal to the marginal 
distribution fs(.). 

To compare the DAR(1) model with the SL pro- 
cess, which is a continuous-time model, we consider the 
continuous-time analog (C-DAR( 1)) of the DAR( 1) model, 
which was named and studied in [29]. The motivation of 
the DAR(1) model is not, discrete-time modeling but accu- 
rate modeling of the marginal distribution in an empirical 

1.4, I 

__ original trace - 

- . - exponential 
...____._ hyperbolic 

1.2: 

+ shiltlnglevel 

0 .- .,- .- ._ . -. . -.-._ -_ -... '.. 

100 200 300 400 500 
Lags n(frames) 

Fig. 2. ACFs for original, exponential, hyperbolic and SLCC 

trace [15], [29]; the original AR(1) model follows a Gaussian 
distribution. Furthermore, the exact match of DAR(1) and 
C-DAR(1) has been verified in [29]. The C-DAR(1) model 
is a kind of SLCC process with exponential autocorrelation 
only in the SLCC, i.e., p( t )  = 

The C-DAR(1) model is a SRD process ( C p ( t )  < oo), 
and cannot capture the heavy-tail properties in ACF of 
real video t,raffics. On the other hand, the SLCC is a LRD 
process ( C p ( t )  = CO). Since the SLCC and the C-DAR(1) 
model have the same rate-distribution and short-term cor- 
relation structure except the hyperbolic tail, comparing the 
queueing performances of them will reveal the effects of 
long-range dependence in video traffic. 

111. PARAMETER MATCHING OF THE SL PROCESS 

A .  The Proposed Parameter Matching Algorithm 

Now we consider an algorithm which matches the param- 
eters of the SLCC to the shtistics of a real video traffic. In 
the SL process, the hist,ogram is determined by the scene 
size Si, and the ACF is determined by the scene duration 
Ti. 

First,, we propose the matching procedure for the ACF 
of the SLCC process. To approximate t,he ACF of a real 
video sequence by p( t )  given in (6), we have t,o determine 
the values of 5 parameters r ,  p, t o ,  t l ,  and CO. We obtain 
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the exponential decaying rate r using 

7- = -t/ ln(p(t)), (8 )  

where we use t = 10 frames, and the hyperbolic decaying 
rate 

@ = 2 - 2 H  (9) 
by the Hurst parameter estimation [5]. For parameters 
CO and t o ,  we further assume that the ACF p ( t )  and the 
distrihut,ion function FT ( t )  are continuous, especially at, t o .  
Then, we obtain the t ~ v o  relations: 

Pe ( t o )  = Ph ( t o )  and ( t o )  = pfr ( t o ) .  (10) 

That is, e-t0/‘ = co(to+tl)-@ and -$e-t 0 / 7  = co(-P)(to+ 
tl)-(P+l), 

Solving the system of equations above, we finally obtain 

The fifth paramter tl is introduced in order to model the 
ACF of a real video traffic with preserving the continuity 
properties of p ( t )  and FT(t). Because t o  and CO are func- 
tions of t l ,  we use a least square fitting to determine the 
parameter tl. We use the method of Hooke and Jeeves with 
discrete steps [4], to find tl that minimizes the square-error 
of the autocorrelation function 

nm.= 

LSE(t1) = [ f ( n )  - f R ( 4 I 2  7 (13) 
n = O  

where p~(n) and n,,, denote the ACF for a real trace 
and the summation range of calculation, respectively. The 
search range of tl is (O,pr], because t o  > 0 and eqiia- 
tion (11). For numerical calculation, we use a value of 
500 frames for nmax. Furthermore, from the relation 
f T ( t )  = pj-p”(t ) ,  and 

For the random number generation, we here obtain the 
distribution function for the compound ACF model. 

fT( t )d t  = 1, me obtain pj- = r. 

and the inverse of FT(.)  is given by 

(15) 
The probability mass function for 

frame size (fs (O), fs (l), . . . , fs ( M  - l), f s ( M ) )  is modeled 
by t,he negative binomial distribution from the observations 
in [l l] ,  [15]. 

( i = O I 1 , 2 , . . . , M - l )  andf s (M)  = l - x i < M f ~ ( i ) , w h e r e  
M is the peak rate in cells per frame. 

The mean and variance of this distribution are 

E [ X ( t ) ]  = - and V a r [ X ( t ) ]  = - r ( l - p ) ,  (17) 
P P2 

respectively. Here, 0 < p < 1, q = 1 - p ,  and T > 0. Thus, 
the parameters are obtained by 

Here we summarize the parameter matching procedure: 

Obtain r by equation (8),  and /3 by equation (9). 
Obtain t o ,  CO and t l  from the least square fitting and 

For FT, 

the relationship (11) and (12). 

Obtain p ,  r by equations (18). 
For fs, 

B .  Numerical Reszllts with Empirical Traces 

The parameters of the SLCC is obtained as follows. 
First, since the derivations in Section 3 are continuous- 
time versions, we round off scene durations into integer 
numbers. First, for the JPEG coded Star Wars traces: 
for the ACF, r = 82.83 frames, p = 0.39, t o  = 30.13 
frames, tl = 3.0 frames, and CO = 2.82, and for the his- 
togram, M = 1,634 cells, E[X(C)] = 578.9 cells/frame, 
and d m  = 130.2 and thus p = 0.0341 and r = 
20.44 N 20 are obtained. In the same way, we obtained 
the parameters for varioiis traces, vic trace A ,  vie trace 
B, and GOP-smoothed MPEG the same way, and verified 
the performance of our modeling (Fig. 3): For the vic 
trace A ,  t o  = 12.4361 frames, tl = 1 frames, p = 0.63, 
CO = 2.8679, a = 0.9542, and r = 21.3272 frames. For the 
vic trace B, t o  = 3.2950 frames, tl = 10 frames, p = 0.3500, 
CO = 2.2679, a = 0.9740, and r = 37.9856 frames. For the 
GOP smoothed MPEG, t o  = 1.33 GOPs, tl = 1 GOPs, 

= 0.26, CO = 1.0741, a = 0.8944 GOPs, and r = 8.9615 
GOPs (with a GOP size of 12  frames). For the correspond- 
ing C-DAR(1) models, we use the same value of T (for the 
exponential decay rate), and p and T (for the histogram) 
as for the SLCC process. For more detailed results, see [2]. 

Now we examine how accurately the SLCC model emu- 
lates the ACF of the empirical traces. Figs. 2 and 3 shows 
four ACFs: (a) original, (b) exponential, (c) hyperbolic, 
and (d) the SLCC. The SLCC from the proposed parani- 
eter matching algorithm provides a very good fit at both 
the small and large lags, while the exponential curve of 
the C-DAR( 1) underestimates in the region of large lags. 
Therefore, with the assumption that negative binomial dis- 
t~ribut.ion accurately matches the frame size distribution, we 
can conclude that the statistical characterist,ics of t,he SL 
process are quite close to those of the original video trace 
up to second-order statistics. 
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cess. Then {(X,, L,) E ( X ( t i ) ,  L ( t , f ) ) }  is an embedded 
Markov chain. However, the exact analysis of this system is 
very difficult, because L, takes a continuous value in [0, K ]  
and the sojourn times of states in a SL process do not follow 
an exponential distribution. Therefore, we present an ap- 
proximation method, which we call quantization reduction 
method, to approximate the system behaviors. The idea of 
the state space quantization method is to reduce the state 
space of a continuous queue size L,, [0, K] to a finite set 
of quantization points (0, h, 2h,. . , D h  = K ) ,  where h is 
the quantization step and D + 1 is t,he number of the queue 
states. 

First, we define 3 auxiliary processes L'(t), L a ( t )  and 
L'(t)  for L( t ) .  The superscripts U,Q, and I mean upper 
bound, approximation, and lower bound, respectively. At 
every transition epoch of input, t,, the processes, LU(t), 
L"(t ) ,  and L'( t )  are approximated by their respective quan- 
tizers: LU, L'(t,+) = F ( L " ( t ; ) ) ,  Lz E L"(t,+) = 
F"(L"(t;)), and Lf, E L ' ( t i )  = F'(L'(t;)). These quan- 
tization functions are all staircase functions (Fig. 4) and 
given as follows. 

, 
__ vic-trace-A 

exponential 

hypefbolic o.JL + shilling-level 

- i 
'\. 

\ 

- \\.\ ---2y-+--l++-+-++.*i -.-.-___-c--__ 
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$.6 

0.4 

0.2 
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Lags n ( GOPs) 

Fig. 3. ACFs for original, exponential, hyperbolic and SLCC (VIC 
Trace A, VIC trace B, GOP smoothed MPEG) 

IV. AN EFFICIENT ANALYSIS OF THE S L / D / l / K  
QUEUEING SYSTEM 

A .  The Quantization Reduction Method 

In this section, we present an efhcient analysis method 
for the SL/D/l/K queueing system. We consider a single 
server fluid queueing system with a buffer of size K cells 
and a det,erministic service rate of C cells per frame. In- 
put arrives at rate i, when the SLCC process X ( t )  is state 
i at time t. Let L ( t )  be the number of cells in the sys- 
tem at time t .  We are interested in the stochastic process 
{ X ( t ) ,  L ( t ) ,  t 2 0}, which characterizes the dynamics of the 
syst)em. Let t, is the state transition epoch of the SL pro- 

1 = 0, 
Fa := { P ? < I : +  4) -+ Ih, I = 1 , 2 , - . . D  - 1, 

D h - $ , K ] - + D h  Z=D. 
(19) 

(20) 
1 = 0, 

( ( I  - l ) h ,  Zh] -i lh, 1 = 1 , 2 , .  * . D. 

( 2 1 )  
[Ih, ( 1  + 1)h) -+ Zh, I = 0,1, 2,. . . D - 1, 
D h  -+ Dh, 1 = D. 

3 . 1  := 

Fig. 5 illustrates a sample path for each stochastic pro- 
cess, Lz, L;, Lk, and L,, and L;( t ) ,Lz ( t ) ,  Lf,(t), and 
L,( t ) ,  to show the relationship among them. Since Lb 5 
Lg - LO 5 LE and 4 systems are loaded by the same SL 
input, it is clear that LL <_ LE N L, 5 L$i  = 1,2,3, .* . .  
And, it is also clear that L' ( t )  5 L"(t) N L( t )  _< LU(t). 

The processes {X,, L z } ,  (X,, Lx}, and {X,, Lf,} are all 
irreducible and positive recurrent embedded Markov chains 
and thus the queuing analysis is based on the transition 
matrix of the embedded processes. Let P",P", and P' be 
the one-step transition probability matrix of {(X,, LE)}, 
{(X,, Lz)}, and {(X,, Lz)}, respectively. The elements of 
the transition matrices (c  = U ,  a, 2) are defined by 

~ F ; , q , ( j , k l  J'p{(Xn+l, G+i) = (j, kh)l(Xn,  = ( i i  2h))i 
( 2 2 )  

Noting that during [tal &+I), input arrives at uniform 
rate of i cells per frame, the elements of each transition 
matrix is obtained as Appendix B. 

We define the limiting probabilities 

T C  = lim Pr[(XA = i, Lk = Zh)],c = U , U ,  1. 
'1'  ,400 
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Fig. 4. The quantization functions: Fa, T ,  and F' (when D = 5 ) .  +"Pc = ir" and +"eT = 1, c = U ,  a,  I, (25) 

. . . . . a  

where e is a unitary vector of dimension D + 1. Finally, 
the steady-state probability is obtained by prodiicting 
the probability of rates, 

A:,~ = fs(i) - +?f, c = U ,  a,  2. (26) 

This observation reduces the dimension of the matrix from 
(D + 1) (M + 1) x (D + 1)(M + 1) into (D + 1) x (D + 1). 

We now obtain the survival function, i.e., the comple- 
mentary queue distribution a t  arbitrary times, and cell 
loss probability as performance measures. Since L z ( t )  5 
La( t )  - L ( t )  2 L"( t ) ,  it is also clear that P T [ L ~ ( ~ )  < z] 5 
P T [ L ' " ( ~ )  > z] - P r [ L ( t )  > z] 5 Pr[L"(t)  > z] for 1s 2 O 
and CLP' i C L P a  - C L P  5 CLP". The survival func- 
tion Pr[L( t )  > z] is obtained by calculating Tu the fraction 
of time when the L ( t )  stays above system size 3: between 
two successive embedded points, t ,  and tn+l: 

! 
! 
! -.-. 

merical methods for solving system of equations. However, 
substantial saving in computation can be obtained if the 

where the conditional expectation p(z) = E(Tu(z)l(i, I ) )  is 
obtained by 

for i 1 C ,  lh 2 2: 
E((T  - s ) + ( ( i ,  1 ) )  for i 2 C ,  Ih < z 
E ( ( e - T ) + I ( i , I ) )  f o r i < C , I h > z  

for i < C, Zh 5 z r (28) 

T ( x )  = 

The cell loss probabilities CAP", c = U, a, I are defined 
by the fraction of overflow data  among the total arrivals. 
Noting that overflow occurs only when the input rate is 
larger than C, we obtain 

K-hl  + ci>c cz ..i:*(i - C P ( ( T  - m) I ( i 9  I)) 
l ( 2 9 )  

E(T)E(S)  
CLP' 

(c = U ,  a, I ) .  

..... I 

_.__..... i ............................ .................................. i ............................. ; ................................... 
i U :  I."@) i e:L(t) a:L'(t) i I :  L'(t) 

d 

I ,I 1. I "+I I ntl 

! 
! I tain a new transition matrix P", c = U, a, 1 by merging the 

elements of the original transition matrix P', 

Fig. 5.  Sample pathes for the L ( t ) ,  La( t ) ;  LU(t), and L'(t) (when 
D = 5 .  

B .  The Eficiency of the Quantization Reduction Method 

We present the numerical results verfying the acuracy 
and efficiency of the quantization reduction method. How- 
ever, we provide only cell loss ratio with JPEG coded Star 
War5 trace (for more results, see [2]). 

The accuracy of the quantization reduction analysis de- 
pends on the input, traffic: roughly speaking, as the product, 
of its mean sojourn time and mean arrival rate increases, 
the accuracy also increnses for the fixed quantization value. 
To verify the accuracy in video traffic application, we show 
numerical results for queue occupancy distributions and 
cell loss probabilities, varying the traffic intensity U = 0.8 
(heavy load), U = 0.6 (moderate load), and U = 0.4 (light 
load). 

We show the cell loss ratio for U = 0.8,0.6,0.4 and 
two quantization values hl = 5000, hz = 500 cells, in Ta- 
bles 11, 111, and IV. The error bounds of cell lass ratio, 
e = CLP" - CLP' ,  are tighter than those for queue occu- 
pancy. I t  was expected from that quantization reduction 
method estimates more accurately a t  large queue sizes [2]. 
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From these results, we conclude that the quantization re- 
duction method is efficient and accurate in the queueing 
performances for VBR video traffic. Therefore, in the next 
section, although we show only the result of La with quan- 
tization value hZ, for simplicity, the results are obtained 
within accuracy of 1%. 

Our quantization reduction method has the important 
advantage that the range of error of the approximation 
La( t )  from L ( t )  is given by providing the the upper and 
lower bounds from the auxiliary processes L" (t)  and L' (t). 
And thus we can efficiently use the memory size and com- 
putation time for performance measures by adjusting the 
quantization step. Furthermore, in the SL process we do 
not suffer from computational $ad since the dimension of 
the one-step transition matrix P', c = U, a, 1 does not de- 
pend on the size of the state space for input process. Thus 
we can accurately match the histogram (first-order statis- 
tics) of an input process without a significant increase in 
the computational load. 

V. QUEUEING PERFORMANCE RESULTS 
Now we conduct, several queueing experiments: for a sin- 

gle stream, and for statistically multiplexed streams. The 
purpose of these experiments is to compare the queueing 
behaviors of the SLCC and the C-DAR(1) model with that 
of an empirical trace, so that we determine under what 
condition LRD is crucial for queueing behavior. 

First, we examine the queueing behavior for a single 
source varying the input traffic load. The queueing perfor- 
mances loaded with the SLCC and the C-DAR(1) model 
are obtained by t,he quantization reduction method (ha). 
For simulation with the original trace, we start the trace at 
a random number of frames, and upon reaching the end of 
the trace, wrap each source around to the beginning, so all 
171,000 frames are used. We conduct simulation using the 
iterat,ive equation L,+1 = min(max(L, + X ,  - C, 0), K ) .  

A summary of queue size distribiit,ions and cell loss prob- 
abilities with a single source for traffic load (U) 0.8 (heavy 
load), 0.6 (moderate load), and 0.4 (light load) is shown in 
Figs. 6 and 7 ,  respectively. Note that in the region where 
the C-DAR( 1) provides accurate prediction, the merit of 
SLCC process, i.e., the effects of LRD could not be ob- 
served. For the queue distribution, we use a buffer size 
of 50,000 cells. Detailed investigation of the figures shows 
that both the C-DAR(1) model and the SLCC provide ac- 
ceptable prediction (in order of magnitude) in the small 
buffer region. Interestingly, the C-DAR( 1) model signifi- 
cantly iinderestimates in the region of U = 0.8 and a large 
queue size, whereas the SL process provides accurate pre- 
diction consistently. 

We now consider the effects of multiplexing independent 
sources. In the SL model, the parameter matching and 
queueing analysis for the superposed stream are straight- 
forward from the fact that the aiitocovariance fiinction of 
the superposed stream with N independent, sources is the 
same as that, of single sources (271 (thus the same T, as 

in single sources). And we obtain the distribution of S, 
by N times convolution of the distribution of the single 
source. In Table V, cell loss probabilities for the number of 
sources 5 and 10 are investigated with traffic load U = 0.8. 
To clearly show the changes of effect of LRD in multiple- 
scale buffer sizes, we divide the table into three sections: 
small ( K  5 1,000 cells), medium (1,000 < K 5 10,000 
cells), and large (10,000 < K 5 100,000 cells) sizes. We 
use h = 100,1000, and 2000 cells for the small, medium, 
large buffer sizes, respectively. Because of the smoothness 
due t,o multiplexing, the effects of hyperbolic correlation 
(LRD) in the SLCC does not appear clearly in small and 
medium size region. On the other hand, at large buffer 
sizes we again find significant difference in cell loss proba- 
bilities of the SLCC and the C-DAR( 1). However, we defer 
a definite conclusion for real traffic, since we cannot obtain 
stable values for the cell loss probability of the empirical 
trace in less than 1.OE-5. 

Major conclusions that can be drawn from the numerical 
results in this section are as follows: The SLCC provides ac- 
curate and consistent estimation for queueing performance 
measures, and thus histogram and ACF play a key role in 
queueing behavior. And the C-DAR(1) model, which does 
not capture the long-term correlation (LRD) structure of 
video traffic, also estimates fairly well in light and moderate 
traffic load and even heavy traffic load with multiplexing 
video sources. The difference in the queueing results at 
heavy and light traffic loads can be explained as follows. 
The queueing system buffers the input arrival stream and 
thus memorizes its correlation. At a heavy traffic load, the 
busy period is long enough for the queueing system to be 
effected by LRD of the input traffic. However, whenever 
the queue size hits the bottom, i.e., L ( t )  = 0, the queue 
state is reset and forgets the past correlation of the input 
stream. In contrast, The resetting event occurs more fre- 
quently as the traffic load decreases. Thus, at light traffic 
load long term correlation in input traffic does not have a 
significant impact on the queuing behavior. A similar ar- 
gument can be found in [16], [7]. More specifically, in [l] 
we develpoed a new concept, named cutofl interval. We 
showed that the cutoff interval is the upper bound of time 
scales of input correlation that affects queue buildup and it 
is a monot,onically increasing function of traffic load. Fur- 
t,her, we exmained the practical ranges of cutoff interval for 
real video traces. 

VI. CONCLUSIONS 
In this work we investigated the effects of SRD and LRD 

components in VBR video traffic on queueing performance. 
We observed that the ACF of an empirical trace is ac- 
curately captured by a compound function of the expo- 
nential and hyperbolic. To differentiate the effects of the 
exponential (SRD) and hyperbolic correlation (LRD), we 
constructed the shifting-level process with compound cor- 
relation (SLCC) and presented an efficient and accurate 
parameter matching algorithm. Especially, the C-DAR( 1) 
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TABLE I1 
CELL LOSS PROBABILITIES FOR LU(t), L"(t), AND L'(t) (UzO.8) 

(Kcells) 
0 
10 
20 
30 
40 
50 

X II CLP LU ( t )  I CLP for La( t )  I CLP for L'(t )  
\ I  \ I  \ I  

hl h2 hl ha hl ha 
1.92873-2 1.92873-2 1.92873-2 1.92873-2 1.92873-2 1.92873-2 
1.04273-2 9.29103-3 9.29103-3 9.24203-3 9.02343-3 9.20163-3 
7.68143-3 7.06173-3 7.05553-3 7.03543-3 6.90853-3 7.01333-3 
6.36263-3 5.9833E3 5.97753-3 5.96643-3 5.88163-3 5.95223-3 
5.57593-3 5.31693-3 5.31213-3 5.30483-3 5.24233-3 5.29463-3 
5.04283-3 4.85163-3 4.84763-3 4.84233-3 4.79333-3 4.83443-3 

r 
X CLPL"(t) 

(Kcells) hi ha 
0 1.31633-3 1.31633-3 
10 6.63593-4 6.62053-4 
20 5.09843-4 5.09183-4 
30 4.35273-4 4.34903-4 
40 3.88743-4 3.88503-4 
50 3.55983-4 3.55803-4 

CLP for La( t )  CLP for ~ ' ( t )  
hi ha hi ha 

1.31633-3 1.31633-3 1.31633-3 1.31633-3 
6.61993-4 6.61963-4 6.61423-4 6.61873-4 
5.09153-4 5.09143-4 5.08863-4 5.09 10E-4 
4.34883-4 4.34883-4 4.347OE-4 4.34853-4 
3.88483-4 3.88483-4 3.88363-4 3.88463-4 
3.55783-4 3.55783-4 3.55693-4 3.55773-4 

X CLPL"(t) CLP for La( t )  
(Kcells) hl ha hl ha 

0 1.17043-5 1.17043-5 1.17043-5 1.17043-5 
10 5.06323-6 5.06313-6 5.06313-6 5.06313-6 
20 3.86513-6 3.86513-6 3.86513-6 3.86513-6 
30 3.29453-6 3.29453-6 3.29453-6 3.29453-6 
40 2.9400E-6 2.94003-6 2.94003-6 2.94003-6 
50 2.69093-6 2.6909E-6 2.69093-6 2.69093-6 

Buffer SlZB (KCBUS) Queue 6119 x (Kcells) 

Fig. 6. Queue occupancies for the empirical, SLCC, and C-DAR(1) Fig. 7. Cell lossprobabilitiesfor the empirical,SLCC, and C-DAR(1) 
inputs inputs 

CLP for L'( t )  
hl ha 

1.17043-5 1.17043-5 
5.06313-6 5.06313-6 
3.86513-6 3.86513-6 
3.29453-6 3.29453-6 
2.940034 2.94003-6 
2.6909E-6 2.69093-6 
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TABLE V 
CELL LOSS PROBABILITIES FOR SUPERPOSED SOURCES ( 5 ,  10) AT U = 0.8 (JPEG-CODED Star Wars) 

I Queue Size I I  CLPS for 5 siiDerDosed sources II CLPs for 10 suDerDosed sources 
SLkc'  

3.19573-3 
6.1515E-4 
7.11413-5 
3.08013-5 
2.04803-5 
1.90383-5 
1.67803-5 
1.5 1283-5 
1.38703-5 
1.28823-5 
1.00063-5 
7.65953-6 
6.53473-6 
5.83433-6 
5.34 163-6 

I (cells) 11 Real 
2.74783-3 
7.68703-4 
5.24543-4 
4.10483-4 

C-DAR( 1) 
3.19573-3 
6.15033-4 
7.10873-5 
3.07043-5 
2.03473-5 
1.88203-5 
1.64133-5 
1.44603-5 
1.28253-5 
1.14393-5 
6.89863-6 
3.04203-6 
1.53133-6 
8.33453-7 
4.78923- 7 

4000 
6000 
8000 
10000 
20000 
40000 
60000 
80000 
100000 

sic6 

2.17453-4 
1.62883-4 
1.1068E-4 
9.41433-5 
7.88483-5 
5.62343-5 

0 
0 
0 

3.48783-3 
8.38033-4 
5.27673-4 
5.17663-4 
5.08003-4 
4.67203-4 
4.07873-4 
3.65603-4 
3.3398E-4 
3.09483-4 
2.39393-4 
1.82873-4 
1.5 5893-4 
1.39 123-4 
1.27343-4 

I, 

C-DAR(1) 11 Real 

3.94673-4 
3.41503-4 
2.99243-4 
2.64613-4 
1.5486E-4 
6.45273-5 
3.09643-5 
1.61593-5 
8.93303-6 

1.05613-5 
0 
0 
0 
0 
0 
0 
0 
0 

model 1151 (a SRD video traffic model) is just a kind of SL 
process with only exponential tail in the SLCC. 

We devised a queiieing analysis algorithm named the 
quantization reduction method for the SL/D/l/I< queueing 
system. The application to video traffic showed that the 
qiiantizat,ion reduction method provides efficient and accu- 
rate approximation and the upper and lower bounds of the 
approximation as well. Especially in the SL process input, 
the algorithm does not, suffer from the computational load 
because in t,he SL process the dimension of the one-step 
t:ransition matrix does not depend on the st,ate size of t.he 
input process. 

Simulation results showed that the SLCC with the pro- 
posed parameter matching algorithm consistently provides 
accnrat,e prediction of the actnal qiieiieing performance. 
In contrast,, the C-DAR( 1) model, while showing accept.- 
able prediction nnder n o s t  conditions, underestimates the 
qneiie occupancy a t  large queue sizes under a heavy t,raffic 
load. The hyperbolic tail at large lags (LRD) st,rongly af- 
fects the probability in large qiieiie sizes, but only slightly 
in small buffer sizes. This is why we can find many seem- 
ingly contradictory argiinients on the importance in the 
literatme. 

In this paper. me did not give a clear expression for di- 
viding the LRD-dominant region and the SRD-dominant 
region. It hhoiild be noted that the region under which a 
SRD model works successfully depends on the type of video 
traffic, especially the video coding algorithm. U'e will con- 
sider this in our future work, where real-time parameter 
estimation of the SL process and on-line admission control 
based on the SL process will be studied. 
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APPENDIX A: PROOF OF EQUATION (3) 
We give a simple and useful derivation of equation (3) 

different from that in [12], [22]. Mandelbrot [22] gave an ex- 
pression for the ACF for the discretely distributed duration 
of Ti. First, we obtain the autocovariance of t,he stationary 
process X ( t ) ,  C O V ( X ( T ) , X ( T  + t ) )  = Cov(X(O), X ( t ) )  as 
follows. 

W e  give detailed formulas for the transition matrices of 
the queueing system. First, noting that during [tn,  tn+ l ) ,  
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input arrives a t  uniform rate of i cells per frame, the ele- IEEE/ACM Trans. Networking, vol. 4, no. 2, pp. 209-223 Apr. 

% w , k )  = { 

, .. 
ments of each transition matrix is obtained as follows, re- 
spectively, we can obtain the following transition matrices. 

1996. 

generated by VBR coders for 
[lo] hl. R. Frater and J. F. Anold, “A new statisticalmodelfor traffic 

IEEE Trans. Circuits Syst. Video Technol., vol. 4, no. 6 ,  pp. 521- 
on the broadband 

.. ’ 0, f o r i 2 C , l > k ,  526 Dec. 1994. 
[11] M. W. Garrett and W. Willinger, “Analysis, modeling and gen- 

eration of self-similar VBR video traffic,” in  Proc. ACM SIG- 
COM‘94, London, England, Aug. 1994, pp. 269-280. 

[12] M. Grasse, M. R. Frater, and J. F. Arnold, “Origins of long-range 
dependence in variable bit rate video traffic,” in Proc. ITC-15, 
LVashington DC, USA, 23- 27, June, 1997, pp. 1379-1388. 

[I31 B. Hajek and L. He, “On variations of queue responses for in- 
puts with identical means and autocorrelationfunctions,” in  Proc. 
CISS’96, Princeton University, Princeton, NJ, Mar. 1996, pp. 

( k - l + ’ ) h )  - FT (( ( i -c)  fSS( j ) (FT ( (i-;) 

(I-k+’)h 
fS(j)(FT (e) - FT (( (c-i”, 

( k - l - ’ ) h ) + )  

( l - k - ’ ) h ) + ) ) ,  

for i 2 C , l s  k, 

for i > C, 1 2 k, 
, 0, for i < C,I > k. 1195-1201. 

0, for i 2 C , I 2  k, I 
for i < C, I 2 k I 0, for i < C, 1 < k. 

0, for i 2 C,I > k, 
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