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Abs t r ac t  

In this paper we present a control-theoretic ap- 
proach to design stable rate-based Bow control for ATM 
ABR services. The flow control algorithm that we con- 
sider has the most simple form among all the queue- 
length-based flow control algorithms, and is referred to  
as Farst-order Rate-based Flow Control (FRFC) since 
the corresponding closed loop can be modeled as a first- 
order retarded differential equation. We analyze the 
equilibrium and the asymptotic stability of the closed 
loop for the case of multiple connections with diverse 
round-trip delays. We also characterize the asymptotic 
decay rate at which the stable closed loop tends to the 
equilibrium. The decay rate is shown to be a concave 
function of control gain with its maximum being the 
inverse of round-trip delay. We also consider an open 
loop control in which the queue control threshold is 
dynamically adjusted according to the changes in the 
available bandwidth and the number of connections. 
This open loop control is shown to be necessary and 
effective to prevent the closed loop from converging to 
an undesirable equilibrium point. 

1 Introduction 
Recently there has been a great interest in feedback- 

based flow control for high-speed wide-area ATM net- 
working. In particular, a rate-based approach has been 
studied extensively [2]-[11] and adopted by the ATM 
Forum as the standard for the flow control of the Avail- 
able Bit Rate (ABR) service [4, 121. 

Rate-based flow control algorithms can be classified 
into two types. The first type is the queue-length-based 
rate control that we consider in this paper. In this type 
of control the rates are computed based on a certain 
function of the difference between the observed queue 
length and a queue threshold, and a certain fairness 
in rate allocation among users is accomplished as a 
consequence of the queue-length control. Examples of 
this type can be found in [2] [5]-[8] [ll].  The other 
type of rate-based flow control [3, 101 is to compute 
directly rate allocations in a way that a certain fairness 
property i s  satisfied. Typically, in this latter approach, 
the queue length i s  not explicitly controlled. 
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There are important criteria in the design of high- 
performance ABR flow control algorithms. In the fol- 
lowing, we summarize the criteria in consideration. 

8 Maximal link utilization and small cell loss, and 
consequently maximal throughput in steady-state. 

Stability (preferably asymptotic stability) of the 
steady-state solution for the case of multiple vir- 
tual circuits (VCs) with long and diverse round- 
trip delays. 

e Fair bandwidth allocation among ABR streams; 
guarantee of standard fairness criteria such as 
MAX-MIN fazr share [la]. 

Fast and uniform convergence irrespective of num- 
ber of active VCs. 

e Adaptability to  the changes in the operational en- 
vironment, for instance, changes in available band- 
width and the number of active VCs. 

Simplicity in implementation 

We consider a control-theoretic rate-based flow con- 
trol algorithm which we first proposed in [6] and refer 
to as Farst-Order Rate-Based Flow Control (FRFC). 
The FRFC i s  a queue-length-based flow control algo- 
rithm where the rate allocated to each ABR user is 
the difference between observed network queue length 
and queue threshold, multiplied by a control gain. The 
analysis will show that this simple form of control can 
readily achieve the above performance objectives. 

2 Closed-Loop Control and Modeling 
Consider a network with a single bottleneck link as 

in Figure 1. The assumptions employed for the analysis 
of the FRFC algorithm are as follows and are fairly 
standard [2] [5]-[8]: 

A.l .  The traffic is viewed as a deterministic fluid flow 
and the network queueing process and the feed- 
back control is continuous in time. 
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Figure 1: Ketwork model with a single bottleneck link 

A.2. The round-trip-time, ri? of virtual circuit i is the 
sum of forward-path delay, T!; and the backward- 
path delay, 7;: which consists of propagation, 
queueing, transmission and processing times. We 
assume that ~i is a constant. 

A.3. The sources are persistent until the system 
reaches steady state. 

A.4. There are no arrivals and departures of virtual 
circuits until the system reaches steady sa t e .  

A.5. The available bandwidth of the bottleneck link 
is constant until the system reaches steady state. 
Also, the buffer size at the bottleneck link is as- 
sumed infinite. 

The assumptions A.4-A.5 will he removed as neces- 
sary in Section 5 and in Section 6 to deal with dynamic 
environments. 

,n, denote the rate allocation 
to virtual circuit i ,  which is computed b>- the sa:itch at 
time t .  Also, let q ( t ) ,  q(t) and p respectively denote the 
queue length, its derivative at time t ;  and the available 
bandwidth at the bottleneck link. The rate-based flow 
control algorithm that we consider in this paper is a 
switch algorithm of the following simple form: 

Ki 
r i ( t )  = ( - y( 4( t )  - 4T 1 )+, Ki > 0 (1) 

u-here Ki is the control gain, qT is the queue length 
threshold for the flow control, and the symbol ( . )+ 
denotes maz{ .> 0 }. We refer to this algorithm as 
First-Order Rate-Based Flow Control (FRFC) since as 
we will see, the behavior of the closed-loop system with 
this form of algorithm is governed by a first-order dif- 
ferential equation. In contrast: most other existing al- 
gorithms found in [Z, 5 ,  7;  8, 111 can be viewed as a 
second-order flon- cont,rol since the rate is modulated 
via its derivative and thus the behavior of the closed- 
loop system is governed by a second-order differential 
equation. For instance, the algorithm in [i, 81 has the 
following form: 

i.i(t) = -airi(t) - b,( q ( t )  - PT ) ('4 
where ai and bi are two positive control constants. A 
noticeable feature of the FRFC algorithm is the control 

gain K+ scaled by the number of VCs n. It will be 
shown later that such a scaling can yield a uniform 
convergence rate of the bottleneck queue irrespective 
of the number of VCs. 

According to the above assumptions, the queueing 
process at the bottleneck link is given as 

In the next section we investigate the equilibrium 
points and the asymptotic stability of the equation (3) 
when the control (1) is applied. 

3 Equilibrium and Asymptotic Stabil- 

Let qm and rZncl respectively denote the steady-state 
solution of q( t )  and r i ( t )  in the closed-loop system 
given by (1) and (3). By taking the limit as t + CD 
on both sides of (1) and (3) with limt,, q(t) = 0: we 
can easily get the following result on the existence of 
equilibrium [6]. 

Proposition 3.1 For the FRFC, there exist two 
steadv-state solutions (equilibrium points): 

ity 

otherwise, 

Note that q- cannot be greater than or equal to  
the control threshold qT. The network queue can he 
stabilized at  either zero or a certain value smaller than 
qT.  For given n p ,  the choice of 4~ and Ki, i = 1 , .  ", n, 
determines where for the system to converge. If qT and 
Ki,  i = 1,. . . ,n are chosen such that QT > e;, 
the system has the equilibrium in (4) where the bot- 
tleneck link is fully utilized and any desired sharing of 
the bottleneck bandwidth can be accomplished through 
a proper selection of control gains. For instance, by 
taking identical gains, one can achieve MAX-MIN fair 
bandwidth sharing. On the other hand, if qT and Ki, 
i = 1:. . . , n are chosen such that qT 5 
system has the equilibrium in (5) where the bandwidt.h 
sharing call he still fair but the available bandwidt.h 
cannot be fully utilized. 

Now we investigate the asymptotic stability of tbc 
equilibrium point (4) at which full link-utilization is 
achieved. For understanding the asymptotic stability, 

i=l 

*> the 
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we ignore the non-linearities introduced by the buffer 
floor and the control. Define 

By combining (6) and the linear parts of (3) and (l), 
we obtain the following closed-loop equation 

." 
i=l 

which is a first-order retarded differential equation 
[l, 131. The characteristic equation of the closed-loop 
equation (7) ,  denoted by D ( s ) ,  is 

which is an exponential polynomial of s. For asymp- 
totic stability of the closed-loop equation (7), all the 
root,s of the characteristic equation (8) must have neg- 
ative real parts [l, 131. 

To find the necessary and sufficient condition for 
D ( s )  = 0 to have stable roots; one can appeal t o  Pon- 
tryagin's criterion [l, 81 assuming discrete delays of ra- 
tional ratios. For more general case with continuous 
delays or discrete delays of irrat,ional ratios, St4pAn's 
criterion [I31 provides a way to  construct the neces- 
sary and sufficient condition. However, constructing 
such a condition in an explicit form is extremely com- 
plicated for the system with multiple connections of 
diverse round-trip delays. 

Instead of finding the necessary and Sufficient condi- 
tion, we have derived a useful sufficient condition based 
on StBpin's criterion, which can he found in our earlier 
work [6]. We re-state the result below for convenience. 

Proposition 3.2 
The closed-loop system (7) is asymptotically stable if cy=l &Ti < 1. 

For the case with Ki = K ,  V i, which is of our par- 
ticular interest, the above stability condition implies 
that, K < F1 where 7 is the average round-trip delay 

of all the active VCs, i.e., t = w. Note that the 
condition is easy to  use and requires only the estimate 
of average round-trip delay. 

Next we derive the necessary and Sufficient condition 
for asymptotic stability for a special case that all the 
round-trip delays are identical. Let T ~ = T ,  V i. Then, 
the closed-loop equation (7) becomes 

This equation may he normalized so that the time lag 
T is unity. Let t = r(. In terms of the new variable e ,  
f9) becomes 

where "7 

The characteristic equation of (lo), denoted by H ( z ) ,  
is 

H ( z )  = zez  + P = 0. (12) 
For asymptotic stability of the closed-loop equation 
(lo), all the roots of (12) must have negative real 
parts. To find the necessary and sufficient condition 
for N ( z )  = 0 to have such roots, one can appeal to  
Pontryagin's criterion [l, 81. 

Proposition 3.3 
The closed-loop system (9) is  asymptotically stable i f  
and only if E:='=, K, < f . 

The proof is omitted due t o  the limited space. The 
stability condition is sufficient and necessary for the 
special case with homogeneous delays, whereas the con- 
dition given in Proposition 3.2 is only a sufficient con- 
dition for the general case with heterogeneous delays. 
Consider the case that TC = T ,  Ki = K ;  V i. In this 
case, these two conditions imply that K < T-' and 
K < ;T-I respectively, i.e., the actual range of stable 
K is larger than the range given by the sufficient con- 
dition by the factor ~ / 2 .  Therefore we can argue that 
the stability condition in Proposition 3.2 is fairly tight 
in spite of being only a sufficient condition. 

4 Asymptotic Decay Rate and Depen- 
dence on Control Gain 

In this section we determine the rate at which 
the stable closed-loop system approaches steady state. 
Consider the principal root z*,  which is the root of (12) 
having the largest real part. Let (Y = -Re@') > 0. 
Then, the asymptotic solution of the closed-loop equa- 
tion (10) satisfies the following inequality: 

where C is a properly chosen positive real constant 
taking into account initial conditions. In terms of the 
original variable t(= T<), (13) can he rewritten by 

Note that is the asymptotic decay rate at which the 
system tends to the equilibrium point. Hence the in- 
verse of it, ;, is the time constant of the closed-loop 
system, i.e., the time it takes for a small perturbation 
around the equilibrium point to  decrease by a factor of 
ecl. Consider the case that T~ = T ,  V i .  The change 
of variable t = + - UT transforms the characteristic 
equation (12) to 
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If we choose U to he the supremum of positive real num- 
her for which the transformed characteristic equation 
(15) has all roots in the left half plane, then LY = UT, 

and the asymptotic dpcay rate and the time ronstant 
are U and U-' respectively. The sufficient and neces- 
sary conditions that all roots of a characteristic equa- 
tion in the form of (15) he in the left half piane were 
given by earler works in [14]. We re-state these condi- 
tions as a set of inequalities: 

ur < 1 (16) 

ure-"' < P (17) 

where u1 is the root of the equation 

U = urtanu (19) 

in the interval (0; x). We non- choose U to he the supre- 
mum of positive real numbers satisfying (16)-(18). The 
inequality (18) is equivalent to 

The right side of (20) is monotone increasing on 0 < 
u1 < x. It follows from (19) that u1 decreases when U 
increases. Thus an increase in U produces a decrease 
in the right side of (20), and the maximum a satisfying 
this inequality is ohtained by solving the corresponding 
equality. By an analogous argument, since an increase 
in a on UT < 1 produces an increase in the left side 
of (17), the maximum satisfying this inequality is also 
obtained by solving the corresponding equality. If any 
of the three equalities corresponding to  (X), (17), (20) 
has no solution for U, the the corresponding inequality 
places no restriction on a. We summarize our results 
as follows: 

Proposition 4.1 Consider the stable closed-loop sys- 
tem (9). Let al, 02 ,  u s  be the positive solutions of 

UT = 1 (21) 

~I 

respectively, with the understanding that U% = cm if 
the corresponding equation has no solution. Then, the 
asymptotic decay rate U of the closed-loop solution is 
given by 

and U 5 r-' 
U = mim{ul; U*, US} (24) 

Note that the asymptotic decay rate is a function of 
only two system paramet.ers; round-trip delay r and 
the average of control gains, I? = C%, K,. The de- 
cay rate is indenpendent of the number of active VC!;. 
which is a highly desirable property in practice since it 
guarantees an identical rate of convergence no matter 
how many VCs are active. In contrast, it can be shown 
that if the gain is not scaled by the number of VCs as in 
the control (1).  the asymptotic decay rate becomes no 
longer independent of the number of VCs. What mal;- 
ters in this type of control is that one needs to estimate 
the maximum number of possible VCs, say n,,,, and 
the gains should he selected for this extreme case such 
that K < &. As a consequence, in nominal cases 
with n much smaller than nmaz, the system would corL- 
verge unnecessarily slowly due to  the small value of the 
chosen gains. Note also that the asymptotic time COIL- 

stant, a-1 cannot he smaller than the round-trip delay, 
which means that the time it takes for a small pertur- 
bation around the equilibrium point io decrease by a 
factor of e-' is at least r. 

Next we investigate the dependence of U on I? for a 
given 7. The function in the left side of (22): ure-"', 
is monotone increasing on 0 < UT < 1 ai th  minimum 
value 0 at UT = 0 and maximum value e-' at UT = 1. 
The function in the right side of the first equation in 

(25) 
U 

(23) 
g(U) 

sinu 
is monotone increasing on 0 < u < r with g(0) = e-' ,  
lim,,,g(u) = cm. Also, the function in the second 
equation in (23), &, is monotone deceasing on 0 .< 
U < x with lim,,a = 1. For a given r ,  define 

, K = g ( - ) ~ - '  = -7-l. (26) 
K' = e - 1 7 - 1  *I 77 

2 2 

Consider the case 0 < K < K'. Since I? < K' implies 
that f K: < e-' and g(u1) > e-' for UI t ( O , T ) ,  
(23) has no solution, i.e., u3 = CO. On the other hand, 
since the function urecuT is monotone increasing on 
0 < UT < 1 with minimum value 0 at UT = 0 and max- 
imum value at UT = 1, (22) has a unique solution 
u2 which is smaller than T-'. Hence, U = u2 < T-' 

in this case. Differentiation of (22) with respect to I? 
gives 

- > 0 when UT < 1. (27) 1 - - du 
d,?? e c U r ( 1  - U T )  

Therefore; we conclude that a is monotone increasing 
with respect t o  l?. 

Consider the case K' < K < K". Since this case 
implies that, e-' < E Ki < I and the value of th.e 
function is smaller than e-' for UT < 1; (22) 
has no solution, i.e., U 2  = w. Since g(u1) is monotone 
increasing and the image of g(ul) is in (a ;  I) for UI t 
(0, ;), a unique solution u1 of the first equation in (23) 
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I stable region : unstable region 

Figure 2: Dependence of asymptotic decay rate a on 
control gain K for given round-trip delay r 

exists in the interval (0, 4) and is monotone increasing 
as I? increases. Furthermore, since the function & 
is monotone deceasing with respect to  ul and the image 
of it, UT,  is in (0 , l )  for u1 E (0, $), a unique solution 
a of the second equation in (23) exists in the interval 
( 0 , ~ ~ )  and is monotone decreasing as K increases. It 
is obvious that a = ~3 in this case. 

which implies that the 
closed-loop system is unstable (see Porposition 3.3). 
Finally, if I? = K', ; EL1 Ki = e-' and consequently 
a = 01 = a2 = a3 = 7-l. We summarize our results 
as follows: 

Proposition 4.2 Consider the stable closed-loop sys- 
tem (9). The asymptotic decay rate U is a monotone 
increasing function of K given b y  (22) with its ualue be- 
ing smaller than r-' for 0 < K < K', and a monotone 
decreasing j k c t i o n  of K given by  (23) with its value 
being smaller than r-' for K' < I? < K". Moreover, 
a has its maximum r-' at K = K*.  

II X 2 K", ; ZE, Ki 2 

Figure 2 depicts the results of Proposition 4.2. Inter- 
estingly, the asymptotic decay rate is a concave func- 
tion with respect to  the average control gain, i.e., an 
increase in K up t o  e-'r-' produces a monotone in- 
crease in a but once K exceeds a certain value, e - l r - l ,  
the increase in rather produces a monotone decrease 
in a. This is very different from the characteristics of 
an ordinary first-order system with no delay where the 
decay rate can be increased infinitely. 

The above analysis considered the case with homo- 
geneous delays. Some more analytical work is needed 
to understand the quantitative asymptotic behavior in 
the case with heterogeneous delays. 

5 Open-Loop Control: Getting to De- 

So far we have studied the equilibrium and the 
asymptotic stability of the ABR closed loop in a static 
environment where the bottleneck bandwidth p and 
the set of active VCs are assumed to be unchanged. 

sired Equilibrium 

In reality, however, these assumptions are no longer 
true. The available bandwidth at the bottleneck link is 
timevarying since it depends on the instantaneous ag- 
gregate traffic of higher-priority services such as CBR 
and VBR. Also, the set of active VCs keeps changing 
due to the frequent arrivals and departures of VCs. 
One of the major problem in such a dynamic environ- 
ment is that the quantity changes and hence, 

as shown in Proposition 3.1, the equilibrium point (i.e., 
the steady-state solution) of the system varies. More 
specifically, if rill grows and exceeds QT due to  the 

changes in p and the set of active VCs, the link would 
become under-utilized and the queue would converge to 
zero. On the other hand, if we choose YT large enough 
to to avoid such a under-utilization of link bandwidth, 
ym would grow and so the likelihood of cell loss would 
increase for given buffer budget. 

What is desirable in such a dynamic environment is 
the capability to  keep p~ - +, i.e., ym, constant 

and positive. To accomplish thii: we need an open-loop 
control in which the switch adaptively changes either 
YT or the control gains whenever the changes in p and 
the set of active VCs are detected. Considering the 
large number of VCs in a high speed link, we choose the 
former option. The dynamic queue threshold (DQT) 
algorithm that we propose in this paper is to  change 
the queue control threshold in the following manner: 

i=1 

CL, K ,  

where p(t) and I ( t )  respectively denote time-varying 
bottleneck bandwidth and the set of active VCs with 
cardinality \I(t)l, and E is the dmired value of the ABR 
queue length in the steady state. For the case with 
K, = K ,  V i ,  the above DQT algorithm is simplified to  

Consider the closed-loop system behavior with no 
buffer floor when the FRFC with DQT is applied. For 
simplicity we assume that only p is time-varying while 
the number of VCs is k e d  at n. Then, by combin- 
ing (l), (3) and (28), we get the following closed-loop 
equation for the case with DQT 

In contrast, the closed-loop equation (7) for the case 
with static gr can be rewritten as 



~ 

1791 

0 0.2 0 4 0.6 0.8 

0 0.2 0.4 0.6 0.8 
ume (Sec) 

Figure 3: Control performance in static enrTironment. 
( p  = 150 Mbps, # of VCs = 50, T~ E [lo, 401 msec, B 
= 5,000 cells): (a) two steady-state solutions with Kj 
= 10.0, V i ,  (b) effect of control gains K,. 

with time-varying p(t) .  4s  we see in (30) and (31), 
the major difference between the DQT case and the 
static queue threshold case is the third term in the 
right side of the DQT case (30). The role of this term 
is to nullify the effect of time-varying p( t )  with de- 
lays. In particular, if p(t)  varies slowly or is piece- 
wise constant with reasonably long intervals, the term 

nitude or as a superposition of impulses so that the 
effect of p(t)  becomes nearly nullified as the system ap- 
proaches steady-state. In contrast, a i t h  a static queue 
threshold, the effect of p( t )  remains governing the dy- 
namics of q ( t )  as you see in (31). This difference will 
result in superior performances of the FRFC with DQT 
in dynamic environments, as will be shown in the next 
sect,ion through simulations. 

6 Simulation Results 
In this section; we simulate the network model to  ex- 

amine the performance of the FRFC algorithm. First 
we consider a static scenario where the assumptions 
A.4 and A.5 hold. The bottleneck bandwidth p and 
the buffer size B are respectively set to 150 Mbps and 
5,000 cells, and there are 50 active \;Cs sourcing the 
traffic into the link. The round-trip delay ~i of VCs is 

-p ( t )  + Cy=l F p ( t  K - ~ i , )  remains small in mag- 
,=I K3 

chosen uniformly in the range [ lo ,  401 (msec) to r e p  
resent long propagation delays. To take into account 
the discrete-time effect of control, the FRFC is applied 
in the sample-and-hold manner with intervals defined 
by the rate of VC. We choose this interval aggressively 
long as if RM (resource management) cells [12] are is- 
sued every 128 data cells by the ABR sources. Figure 
3 a shows the two steady-state solutions, (4) and (j), 
with Ki = 10.0, V i ,  and qo = 500 cells. If we choose 
43 at 35,477 cells; the queue q ( t )  approaches 100 cells 
and the user rate ri(t)  converges to the fair allocation 
(= 3 Mbps) as time goes. For the illustration, the ra1.e 
trajectory of a VC with 40 msec round-trip delay is 
plotted in the figure. On the other hand, if we choose 
q~ at 35,277 cells, q( t )  converges to 0 and ri(t)  ap- 
proaches 2.9915 Mbps as computed in (5). Notice that 
it is not necessary for q~ to  be smaller than the buffer 
size B. 

Figure 3 b shows the effect of control gains on the 
queue and user rates with K ,  = 10.0; 15.0 and 30.0. 
In the above simulation scenario, the choice of h’i := 
10.0; 15.0 and 30.0 satisfies the stability condition in 
Proposition 3.2 since x 40. While changing the gain, 
we kept E (= q~ - e) positive and constant at 100 

cells by changing qT correspondingly. For the larger Ki, 
the system suffers from poor transient behavior such 
as overshoots at the risk of link under-utilization and 
cell loss; but still remains asymptotically stable. This 
example tells that the sufficient st.ability condition that 
we derive can serve as a practically good gain selection 
criterion. 

K 
/ = I  

Next we consider dynamic environments where p is 
piecewise constant with 1 sec intervals. For the FRFC 
with static threshold, we set q~ at 35,877 cells aiming 
at qm = 500 cells with p(0)=150 Mbps. This design 
implies that if p does not vary, q ( t )  will converge t,o 
500 cells. For the FRFC u-ith DQT in (28) ;  E was fixed 
at 500 cells. The trajectory of p(t)  is plotted in Figure 
4 a as a solid curve. Also, in Figure 4 a, the user rate 
r i ( t )  of a VC with longest round-trip delay (=40 msec) 
is compared for the two cases. With DQT ri(t)  tracks 
well p(t) with a time lag, vhereas without DQT ri(i)  
suffers from loss of bandwidth as observed during the 
time interval [l, 21 (sec). Figure 4 b explains why such 
a loss of bandu-idth occurs without DQT. As explained 
in (31), with static threshold q(t)  essent,ially tracks the 
dynamics of -p( t ) ,  consequently hitting both buffer 
floor and ceiling (see Figure 4 b). As also shown in 
Figure 4 b, the bandwidth utilization drops while q(%)  
hits buffer floor, and hence the user suffers from the 
loss of bandwidth. On the other hand, if DQT is ap- 
plied, q( t )  remains in the neighborhood of E (= 500 
cells); maintaining full utilization of bandwidth and 110 
loss. This is because the time-varying dynamics of p( t )  
does not directly affect the dynamics of q( t ) .  Rather, 
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Figure 4: Control performance when p(t) is piecewise 
constant (# ofVCs = 5 0 , ~ i  E [lo, 401 msec, B = 5,000 
cells, K, = 10.0, V i ) :  (a) trajectories of p ( t )  (solid 
curve) and ri(t)  of a VC with 40 msec round-trip delay, 
(b) trajectories of q( t )  and bandwidth utilization. 

the jumps in p ( t )  affect q( t )  as impulses so that the 
effect of jumps vanish after a certain transient period, 
as explained in (30). 

More simulation results can be found in [6] and a 
comprehensive cell-based simulation study for multi- 
hop configurations are under way and the results will 
be reported in a separate paper. 
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