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Abstract 
This pape? presents a novel approach to dynamic trans- 

mission bandwidth allocation for transport of real-time 
variable-bit-rate video in ATM networks. Describe video traf- 
fic in the frequency domain: the low frequency signal cap- 
tures the slow time-variation of consecutive scene changes; 
the high frequency signal exhibits the feature of strong frame 
autocorrelation. Our study indicates that the video transmis- 
sion bandwidth in a finite-buffer system i s  essentially char- 
acterized by the low frequency signal. Since the time scale of 
scene changes is usually in the range of a second or longer, 
the low frequency video signal i s  defined in a well-founded low 
frequency band. Hence, it is feasible to implement dynamic 
allocation of video transmission bandwidth using on-line ob- 
servation and prediction of scene changes. Two prediction 
schemes are examined: recursive least square method us. time 
delay neural network method. A time delay neural network 
with low-complexity high-order architecture, called “Pi-Sigma 
Network”, is successfully used to predict scene changes. The 
proposed dynamic bandwidth allocation scheme is shown to be 
promising and practically feasible in obtaining efficient trans- 
mission of real-time video trafic with guaranteed quality of 
services. 

1 Introduction 
ATM technology offers a great flexibility of transmis- 

sion bandwidth allocation to accommodate diverse demands 
of individual connections. One major application in ATM 
networks is to provide real-time loss-free transmission of 
variable-bit-rate (VBR) video. A key issue in video trans- 
mission design is to find an effective transmission bandwidth 
for guaranteed quality of services. For simplicity, we consider 
a single-link finite-buffer system, shown in Fig. 1. By stochas- 
tic modeling, video traffic is represented by a stationary ran- 
dom process. The notion of effective bandwidth, measured 
in cells per unit time, is equivalent to the minimum trans- 
mission bandwidth allocated to the input traffic subject to 
quality of service requirements. Limited analytical solutions 
are available on transmission bandwidth evaluation, usually 
with simplified input traffic models and under the asymp 
totic assumption of large buffer size and small loss rate [I, 21. 
Finding effective bandwidth for video is especially difficult for 
the following two reasons. First, a real VBR video signal 
exhibits highly bursty and nonstationary properties which 

The research reported here was supported by NSF under grant 
NCR-9015757 and Texas Advanced Research Program under grant 
TARP-129. 

t I . ” M O n  
bandwidth 

Figure 1: A single-link finite-buffer system 

greatly complicates the queueing analysis (if feasible). Sec- 
ond, the effective bandwidth must be designed to  handle the 
worst-case input scenario in order to avoid buffer blocking 
and excessive delay. This extreme case is difficult to  pre- 
dict due to its infrequent occurrence and its dependence on 
individual sources. 

In practice, the transmission bandwidth requirement 
needs to be assessed using on-line traffic measurement. The 
study in [3] indicates that the most important input statistics 
to measure for queueing analysis is the power spectrum. Two 
basic concepts were discovered in [4] by describing the input 
traffic in the frequency domain. First, the effective bandwidth 
in a zero-loss finite-buffer system is essentially determined by 
the input traffic characteristics in a certain low frequency 
band. Second, the low frequency traffic flow basically stays 
intact as it travels through the finitebuffer system. 

The major difference of our approach from most exist- 
ing techniques is that we introduce the concept of dynamic 
bandwidth allocation. Instead of allocating a static effective 
bandwidth, we propose to adaptively change the transmission 
bandwidth using on-line measurement of video demand. In 
experimental study, we choose a data sequence coded from 
the movie ’Star Wars” by using a JPEG-like compression 
technique [5]. Such a full-motion entertainment movie pos- 
sibly represents a class of the most difficult video services 
to support in ATM networks. Our statistical analysis shows 
that the video traffic is well separated into two frequency 
regions: the low frequency signal captures the slow time- 
variation of consecutive scene changes; the high frequency 
signal exhibits the feature of frame autocorrelation. I t  is the 
low frequency signal that essentially determines the on-line 
demand of video transmission bandwidth. In other words, 
once the transmission bandwidth is adaptively changed with 
the low frequency signal, the whole video signal can be trans- 
mitted via the finite-buffer system with no information loss 
and negligible queueing delay. 

There is a trade-off between transmission efficiency and 
processing efficiency in the design of dynamic bandwidth al- 
location. On the one hand, a higher transmission efficiency 
can always be achieved by more frequent adaptation of the 
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bandwidth to its low frequency input. On the other hand, 
since the decision of dynamic bandwidth allocation is often 
made at the network layer based on global traffic measure- 
ment, the frequency of the bandwidth adaptation is limited 
by the network protocol processing time. Our study indicates 
that the low frequency video signal typically stays in a well- 
founded region w < 2 x 2~ radians. The corresponding time 
scale of scene changes will be in the range of longer than sev- 
eral hundred milliseconds. Hence our analysis shows that the 
video transmission bandwidth only needs to be adapted at the 
interval of several hundred milliseconds, which is feasible in 
practical network design. Note that although here we choose 
to tune the transmission bandwidth for a given input traffic, 
similar effect can be achieved by tuning the input traffic for 
a given transmission bandwidth (e.g., using dynamic routing 
schemes to redirect the individual traffic streams). Recently, 
for the transmission of an MPEG video source, a technique 
of frame-by-frame dynamic bandwidth allocation has been 
studied [SI. While its on-line bandwidth estimation scheme is 
simple, its application to control of network-wide video traffic 
flow is limited by the frequent adaptation of bandwidth. 

A key question then is how to effectively predict abrupt 
scene changes in the incoming video traffic using on-line low 
frequency traffic measurement. A better prediction scheme 
allows a relatively longer lead time to predict any abrupt 
scene changes, which otherwise will cause buffer congestion 
if the bandwidth is not properly adapted. Two prediction 
schemes are proposed and compared in this paper. One is 
based on the recursive least square (RLS) method [8]. The 
other scheme takes the artificial neural network (ANN) ap- 
proach. In particular, we choose a low-complexity high-order 
architecture, called “Pi-Sigma network (PSN)”, for the con- 
struction of a time delay neural network (TDNN) [lo]. 

Each scheme has its own strength and weakness in pre- 
diction design. In contrast to the RLS method, the ANN 
approach requires a training stage with off-line computation 
time and its solution may not be generally applied. However, 
the ANN approach has the advantage of much less on-line 
computation time and no initial transient state for conver- 
gence. Also, the PSN-TDNN scheme is a high-degree poly- 
nomial prediction method whereas the RLS scheme is a linear 
prediction method. In our application we find that the PSN- 
TDNN scheme, trained in one video segment, can generally 
be applied to other video segments which are collected from 
different scenes. Furthermore, the prediction lead time of the 
PSN-TDNN scheme is found to be longer than that of the 
RLS scheme to achieve virtually identical queueing perfor- 
mance. 

Several examples of using the ANN approach for on-line 
prediction can be found in the literature, including financial 
forecasting in the stock market, electric load forecasting in 
power networks, traffic prediction in transportation networks 
and fault prediction in process control [11]-[13]. The ANN 
approach was also proposed for call admission control and link 
capacity docation in ATM communication networks [14, 151. 
This paper is the first attempt to use the ANN approach for 
bandwidth prediction in multimedia traffic communication 
environment. Our experimental study shows the efficiency 
and robustness of the PSN-TDNN scheme to predict abrupt 
scene changes in VBR video. 

One can implement the dynamic bandwidth allocation in 
two different operations. In synchronous operation, the band- 
width is adapted periodically at a fixed adaptation interval 

based on the prediction of video demand. In asynchronous 
operation, the bandwidth will be adapted if and only if the 
demand exceeds a pre-assigned level. The asynchronous op- 
eration can significantly reduce the adaptation frequency at 
the cost of increasing transmission bandwidth. 

In Section 2 we in- 
troduce the concept of dynamic bandwidth allocation and 
demonstrate its superior performance over the static allo- 
cation. Both RLS and PSN-TDNN prediction schemes are 
described and their complexities are examined in Section 3. 
Also in Section 3, we study the prediction performance of 
the two schemes in video application with emphasis on the 
PSN-TDNN scheme. The queueing performance is obtained 
in Section 4 as the two prediction schemes are used for the 
dynamic bandwidth allocation. The paper is concluded in 
Section 5. 

The paper is organized as follows. 

2 Dynamic Bandwidth Allocation 
No analytical models that are available today can ade- 

quately represent VBR video traffic. Here we choose a full- 
motion movie “Star Wars” released from Bellcore [5] as a 
testbed of our study. It is coded by 8x8  discrete cosine trans- 
form (DCT) and Huffman coding without motion compensa- 
tion. The average bit rate is 5.3 Mbps. The original data 
are recorded in bytes per slice (1.4 milliseconds) for approx- 
imately two hours. There are 16 lines per slice, 30 slices per 
frame and 24 frames per second. The entire data sequence is 
divided into 60 consecutive pages for approximate 2 minutes 
per page. In ATM network application, bytes are converted 
into cells with each cell consisting of 44 bytes of video signal 
plus 9 bytes of protocol overhead. 

Our interest here is in the dynamic behavior of the video 
cell sequence. Fig. 2a shows a typical 2-minute video traffic 
(page 56 of “Star Wars”) measured in cells per slice, denoted 
by z ( t )  at time 1. The maximum number of cells in slice 
within this segment is 52.9 and the average is 24.3 cells per 
slice. Also shown in Fig. 2b is the corresponding power spec- 
trum. Two key observations are made about the video power 
spectrum. First, the spectral spikes which appear at 2 4 x 2 ~  
radians and its harmonics represent the frame correlations. 
Second, the rest of the video power, located in a very low 
frequency band typically less than 2 x 2 r  radians, captures 
the strong correlation of scene changes. 

The recent study in [4] indicates that the effectrue band- 
width in a zero-loss finite-buffer system is essentially deter- 
mined by the input traffic characteristics in a certain low 
frequency band. Especially for video, as one will see, the ef- 
fective bandwidth must be designed to cope with the worst 
scenario of consecutive scene changes, which is difficult to 
predict when the connection is initially set up. Note that 
VBR video traffic possesses highly bursty and nonstationary 
properties. An effective approach is to dynamically allocate 
transmission bandwidth using the on-line observation of video 
scene changes. Applying the above 2-minute signal z ( t )  to a 
low-pass filter at the cutoff frequency wc = 2~ radians, Fig. 3a 
shows the filtered signal z ~ ( t )  which characterizes the scene 
changes. The average and peak input rates of z ~ ( t )  are equal 
to 24.3 and 42.0 cells per slice, respectively. While a variety 
of low-pass filters are available, here we choose a class of finite 
impulse response filters with a Kaiser window. The time unit 
in the digital filtering process is one slice. As one will see, it 
is this z ~ ( t )  that essentially captures the on-line demand of 
video transmission bandwidth. For simplicity, we first con- 
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Figure 2: (a) A typical 2-minute video traffic where the mean rate and peak rate are respectively 24.3 and 52.9 cells per 
slice (page 56) (b) the corresponding power spectrum 
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Figure 3: (a) low frequency video signal filtered at wc=271. radians where the mean rate and peak rate are respectively 24.3 
and 42.0 cells per slice (page 56) (b) ideal dynamic bandwidth allocation by low frequency signal 

sider an ideal situation where the transmission bandwidth is 
instantaneously changed with z ~ ( t ) ,  as described in Fig. 3b. 
In other words, the transmission bandwidth at time t ,  de- 
noted by p ( t ) ,  is defined as a function of z ~ ( t ) .  We further 
assume 

p ( t )  = C Z L ( t )  (1) 

where C is a control parameter. From the facts E[p( t ) ]  = 
C E [ z ~ ( t ) l  and E [ z ~ ( t ) ]  = E [ z ( t ) ] ,  one can get C = p - l  
where p denotes the average link utilization. Since the band- 
width is instantaneously adapted by the filtered signal, the 
impact of video scene changes on the queueing process it- 
self has now been removed. Note that we need C > 1 for 
E [ p ( t ) ]  > E [ z ( t ) ] ,  i.e., some extra transmission bandwidth 
is required for the finite buffer to  effectively smooth out the 
rest of the high frequency signal. 

Let us now examine the effect of low frequency video signal 
on queueing performance. Consider a queueing system with 
infinite buffer capacity to  transmit the above 2-minute video 
using the dynamic bandwidth allocation scheme at  different 
cutoff frequencies. The control parameter C is fixed at  1.25, 
which is equivalent to  the average link utilization p = 0.8. 
The simulation results are summarized in Table 1, where q, 
uq and qmaz represent the mean, standard deviation, and 
maximum of queue length in cell unit, respectively. 

Note that while the video signal was recorded in the for- 
mat of number of cells per slice, the queueing process must 
be evolved in the time unit of cell transmission slot. In con- 
verting the time unit from slice to  slot, we consider two ex- 
treme scenarios. One is for the “worst scenario” where all 
the cells which are generated in each slice are assumed to 
arrive at the beginning of the first slot in that slice. The 
other is for the “best scenario’’ where the cell arrivals in 
each slice are assumed to  be evenly distributed on all the 
slots of that slice. The queueing solutions in the two ex- 
tremes provide us the upper and lower bounds of the exact 
queueing solution. When we choose wc = 271.r-’ where r 

w ,  (radians) 1 1  ij (cells) I up (cells) I qmrz (cells) 
7-1 x 2 *  II 9.0 (01 I 8.4 101 I 52 (01 

Table 1: Effect of cutoff frequency on queueing performance 
in the worst (best) scenario by dynamic bandwidth allocation 
at C = 1.25 (page 56) 

denotes one slice interval, the bandwidth will be adaptively 
changed with C z ~ ( t )  in every slice interval. As a result, 
the queue will always be empty in the best scenario. In 
the worst scenario, we get (ijruq,qmaz) = (9.0,8.4,52) due 
to the batch cell arrival at the first slot of each slice inter- 
val. When wc is reduced to  12 x 27r, the queueing solutions 
increase to  (q, uq, qmaZ) = (10.2,10.0,129) in the worst sce- 
nario, which is contributed by the high frequency video sig- 
nal (i.e., the frame correlation). In the extreme, one can 
take w,=O to completely eliminate the dynamic bandwidth 
allocation. Then, due to  the strong impact of low frequency 
video signal, the queue is drastically increased as measured 
by (q, uq., q,,,) = (257.5,1208.5,9610) in the worst scenario. 
It is obvious that the low frequency video signal, which c a p  
tures the slow time variation of consecutive scene changes, 
dominates the queueing performance without implementing 
the bandwidth adaptation. 

In practice, the transmission bandwidth cannot be too 
frequently adapted but is limited by the network proto- 
col processing time. In our case we choose wc = 27r at 
which the queueing performance is given by (ij,uq,qmaz) = 
(11.1,13.1,224). For the average input rate of the 2-minute 
video, equal to  24.3 cells per slice, the maximum queue length 
of 224 cells at C = 1.25 (or p = 0.8) is equivalent to  the max- 
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Table 2: Queueing performance in static and dynamic band- 
width allocations in the worst (best) scenario (page 56) 

I I I a ibo 141 260 250 3do I lbo 1% 2& 250 0 

Figure 4: Queue distributions in static and dynamic band- 
width allocations (page 56); (a) worst scenario (b) best sce- 
nario 

imum delay of 10 milliseconds, which is expected to be toler- 
able in video services. Notice that the time varying scale of 
the video signal in the low frequency band w 5 27r is at least 
one second long, which makes feasible the implementation of 
dynamic bandwidth allocation in network design. 

Let us examine the performance improvement of dynamic 
bandwidth allocation over static allocation. The static allo- 
cation assigns a fixed transmission bandwidth to each con- 
nection during the entire service period. In order to prevent 
cell loss, the static bandwidth has to be designed to cope 
with the worst input scenario. The most conservative static 
allocation is to reserve bandwidth by the peak input rate, 
which would lead to the excessive use of transmission capac- 
ity with zero buffer size as in the circuit switched design. In 
our case, the video signal was originally collected at slice in- 
terval. If the bandwidth is statically assigned by the peak 
input rate of the above 2-minute video segment measured at 
slice interval, the link utilization will be as low as 0.46. The 
corresponding queueing solutions in the worst scenario are 
given by (q, mq,  qmaz) = (5.2,8.8,52) (see Table 2). 

The study in [4] indicates that the effective transmission 
bandwidth in a zero-loss finite-buffer system is essentially de- 
termined by the peak of properly filtered input rate. Consider 
the filtered video input rate z ~ ( t )  at wc = 27r. By the static 
allocation, the bandwidth will be assigned by the peak of 
z ~ ( t ) ,  which leads to the link utilization p = 0.58 and queue- 
ing performance (q, cq, q,,,) = (6.9,9.5,138). In contrast, 
when the bandwidth is dynamically adapted with z ~ ( t )  the 
link utilization can be as high as p = 0.80 with a moderate 
increase of buffer capacity. As the results are compared in Ta- 
ble 2, the dynamic bandwidth allocation, designed at wc = 27r 
for the low frequency input, can effectively improve the video 
transmission efficiency. Also compared in Fig. 4 are the queue 
distribution functions of the corresponding three bandwidth 
allocation schemes. Note that the improvement can be more 
significant by the dynamic allocation if a longer video seg- 

& sampling period 
M& bandwidth sdnptation interval 
DA p r d m l  prausing time 
NA ohsrvation interval \ 

prediction of bandwidth: 
C max(&n+l). l=D.D+l,-,D+M] 

filteAXput rate 
NA DA hfA (scenechanp) 

A --C----C 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I  

n+D n+D+M 

Figure 5: Bandwidth prediction in VBR video service 

ment is chosen. This is because the static allocation scheme 
needs to assign the bandwidth equal to the filtered peak in- 
put rate of the chosen video segment. In practice, it is always 
difficult to identify the filtered peak input rate of each indi- 
vidual video source at the call admission stage, which makes 
the static allocation scheme hardly implementable. By com- 
parison, the dynamic bandwidth allocation is designed on 
the basis of on-line trafFic measurement. Not only does it 
effectively improve the transmission efficiency, but also its 
implementation is highly feasible in practice. 

3 Bandwidth Prediction 
In the above section we have assumed that the transmis- 

sion bandwidth p ( t )  is instantaneously adapted by the fil- 
tered input rate z ~ ( t ) .  In reality, the bandwidth can only 
be adapted intermittently using on-line observation and pre- 
diction of z ~ ( t ) ;  the adaptation interval cannot be too short 
since it is limited by the protocol processing time required 
to allocate the desired bandwidth. Fig. 5 describes a realis- 
tic dynamic allocation scheme. Let the filtered input signal 
z ~ ( t )  be sampled at time unit A. Denote the sampled signal 
by z ~ ( n )  at the n-th A unit. The bandwidth is periodically 
adapted at the interval of M A .  There will be D A  lead time 
for computation of the prediction algorithm and protocol pro- 
cessing of the bandwidth allocation. That is, if the prediction 
starts at the n-th unit, the bandwidth will be adapted a t  the 
(n + D)-th unit. Consequently, the next bandwidth adap- 
tation will occur at the (n + D + M)-th unit. The predic- 
tion of the input rate at each consecutive unit of the adapta- 
tion interval, denoted by i ~ ( n  + D + I )  at 1 = 0,1, ..., M ,  
is made on the basis of ( N  + 1) consecutive observations 
collected at the n-th unit. In other words, the predictions 
{ i ~ ( n + D + O ) , i . ~ ( n +  D + 1 ) ,  ..., i . L ( n + D + M ) )  are made 
on the basis of ( z ~ ( n - N ) , z ~ ( n - N + l ) ,  ..., z ~ ( n ) } .  In order 
to cope with the worst input rate in the adaptation interval, 
the transmission bandwidth is assigned by 

C max{ i ~ ( n  + D + O), i~ (n + D + l), ..., i~ (n + D + M)} (2) 

The selection of A is dependent on the time variation of z ~ ( t ) .  
In our application, z ~ ( t )  is defined at wc = 2% to represent 
the video scene changes as indicated in Figs. 2b,3a. The cor- 
responding time varying scale of z ~ ( t )  is at least one second 
long. Here we take the over-sampling of c ~ ( 2 )  at A = 0.14 
seconds in order to capture any abrupt scene changes. This 
is because the underestimation of an abrupt scene change 
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can easily cause buffer congestion. Two prediction schemes 
are introduced in the following with comparison of prediction 
performance and computational complexity. 
3.1 RLS-based Prediction 

We first use the RLS algorithm to design an adaptive filter 
for traffic prediction [8]. The rate of convergence of the RLS 
algorithm is typically an order of magnitude faster than that 
of the least mean square (LMS) algorithm at the expense of 
increased computation. In contrast with the LMS algorithm, 
the rate of convergence of the RLS algorithm is insensitive 
to  variations in the eigenvalue spread, defined as the ratio 
of the maximum to minimum eigenvalues of the correlation 
matrix of the input vector. The RLS algorithm also has to 
some extent the capability to track statistical variations in a 
nonstationary environment by setting the exponential forget- 
ting factor less than unity [8]. As a result, here we choose the 
RLS algorithm for the on-line bandwidth prediction of video 
traffic. 

Since each bandwidth adaptation requires computation of 
the predictions { i ~ ( n  + D + 0), i ~ ( n  + D + l), ..., i ~ ( n  + 
D+ M)}, the so called indirect prediction approach is used to 
avoid redundant computation ["I. That is, instead of directly 
constructing (M + 1) RLS prediction filters, we construct a 
single RLS filter to perform parameter estimation of a given 
autoregressive (AR) model of the time series. The (M + 1) 
predictions are then obtained by converting the model into 
the required predictor format. This is further described in 
the following. 

Assume that the sampled time series of the filtered video 
is modeled by a deterministic AR process of order N ,  defined 
by 

What we need to solve j s  the estimation of the un- 
known parameter vector 0" = [ O : , O ; , . . . , O * , I T .  At the 
n-th time unit, let us define the input vector Z(n) = 
[ z ~ ( n  - l), z ~ ( n  - 2), . . . , z ~ ( n  - N)IT,  the desired output 
d ( n )  = z ~ ( n ) ,  and the estimated parameter vector e'(n) = 
[& (n), &(n), . . . , e ~ ( n ) ] ~ .  The on-line RLS estimation of e'* 
is then recursively expressed by 

+ X-IP(n - l)Z(n) 
k(n)  = 

1 + X-'ST(n)P(n - l)u'(n) (4) 

e'(n) = 6(n - 1) + i(n)(d(n) - 6 T ( n  - l)ii(n)) ( 5 )  

P(n) = X-'P(n - 1) - X-'E(n)GT(n)P(n - 1) (6) 

where X is the forgetting factor, P(n) denotes the inverse of 
the input correlation matrix, and i(n) represents the gain 
vector. From the given AR model in (3), the I-step ahead 
prediction a t  1 = D, D + 1,. . . , D + M is recursively obtained 
bY 

where F(n, 1) = [ i ~ ( n  + I - l ) ,  i ~ ( n  + I - 2), . . . , i ~ ( n  + 
l ) ,  z ~ ( n ) ,  z ~ ( n  - l ) ,  . . . , z ~ ( n  + 1 - N)IT.  Let b(n) represent 
the transmission bandwidth required during the adaptation 
interval [n + D, n + D + M). Its prediction, denoted by b(n), 
is then given by 

i L ( n  + I )  = P ( n ) F ( n ,  1) (7) 

b(n) = C max{iL(n + I ) ,  1 = D, D + 1, . . . , D + M }  (8) 

Figure 6: An Lth-degree PSN-TDNN 

Using the round-to-largestrule, the real value of b(n) IS ' quan- 
tized into an integer in cell unit. Such an adaptive bandwidth 
assignment is called synchronous dynamic allocation since it 
is adapted periodically at a fixed interval MA. For low- 
complexity network management of bandwidth adaptation, 
one can also introduce an asynchronous dynamic allocation 
scheme, defined by 

b(n) = C max(4, i ~ ( n  + I ) ,  1 = D, D + 1, . . . , D + M} (9) 

where q5 denotes a pre-assigned nominal bandwidth. Since 
the bandwidth is adapted if and only if the video prediction 
exceeds the nominal bandwidth, the asynchronous operation 
can significantly reduce the bandwidth adaptation frequency 
at the expense of increased transmission bandwidth. As an 
example, we set 4=E[z ( t ) ]  + (Var[z(t)])i in this paper. 
3.2 TDNN-based Prediction 

As an alternative approach we introduce a TDNN-based 
prediction scheme [16, 171. ANNs have adaptation capabil- 
ity that can accommodate nonstationarity. ANNs have gen- 
eralization capability which makes them flexible and robust 
when faced with new and/or noisy data patterns. Once the 
training is completed, an ANN can be computationally in- 
expensive even if it continues to adapt on-line. Recently a 
computationally efficient high-order neural network has been 
developed [lo] that approximates the input-output relation- 
ship by a high-degree polynomial while avoiding an exponen- 
tially increasing computational and memory cost that affects 
ordinary high-order nets [19]. This architecture, called the Pi- 
Sigma network (PSN), is selected as the basis of our TDNN 
prediction scheme. 

Fig. 6 shows a TDNN based on Lth-degree PSN with 
N + 1 inputs and M + 1 outputs. In conventional TDNNs, 
the architecture above tapped delay line in Fig. 6 is given 
by Multilayered Perceptron Networks (MLP) [16]-[18] which 
suffer slow training and relatively expensive on-line compu- 
tation. The PSN architecture consists of a single hidden 
layer of L x (M + 1) linear summing units ( L  summing 
units per output) and an output layer of M + 1 product 
units. These product units make it possible to incorporate 
the capabilities of high-order networks while greatly reduc- 
ing network complexity. The term "pi-sigma" comes from 
the fact that these networks use products of sums of in- 
put components, instead of sums of products in ordinary 
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high-order networks. The output from each product unit 
passes through the sigmoid activation function defined by 
U(.) = &. Unlike in MLP, the weights from the hid- 
den layer to the outputs are fixed at 1. This property con- 
tributes to reducing training time substantially. The bias 
input is also fixed at 1. The purpose of this network is to 
find an approximate Lth-degree relationship between the in- 
puts z~(n),~~(n-l),...,z~(n-N) and the desired outputs 
z ~ ( n  + D), z ~ ( n  + D + I), . .. , z ~ ( n  + D + M). For conve- 
nience, we define input vector, desired output vector and esti- 
mated output vector by {(n) = [€o(n),€l(n),...,€~+l(n)]~, 
i ( n )  = [ d o ( n ) ,  d ~ ( n ) ,  . s . ,  d 4 n ) I T  and $(n) = [YO(.), yl(n) ,  
. . . , y.4n)IT respectively. Correspondingly, 

a n )  = [ l , z ~ ( n ) , ~ ~ ( n - l ) , . . . , z ~ ( n - N N ) ] ~  
d ( n )  = [ Z L ( ~  + D ) ,  ~ ~ ( 7 2  + D + I), . . * , Z L ( ~  + D + M)]* 
y’(n) = [ ? ~ ( n +  D),i~(n+D+l),...,i.~(n+D+M)l~ 

Note that {(n)  is augmented by a bias input and y’(n) is 
from the array of sigmoid functions. By training, the re- 
lationship will be stored through the network in the form 
of strength of connectivity, namely, weights. Let 6: = 
[ w ~ ~ , w ~ ~ , . . . , w ~ ? ~ + ~ , ] ~  be the weight vector for the j t h  hid- 
den unit of the lth output where l = O,l,. . . , M and j = 
0,1 , .  . . , L - 1. The Z f h  output yr (n )  a t  time n is then ex- 
pressed by 

(10) 

L-1 L-1 N+1 

3=0 j = O  k = l  

It is noted that this regression model of the PSN-TDNN is 
more general than AR model in that it realizes an Lth-degree 
polynomial mapping from input to output. Furthermore, un- 
like in ordinary high-order nets, the high-degree approxima- 
tion in a factorized form as in (11) greatly reduces the com- 
putational complexity. 

The learning algorithm for the PSN is based on gradient 
descent on the estimated mean square error (MSE) surface 
in weight space. The MSE objective of lfh output is given by 

where p denotes number of training patterns. By taking LMS- 
type approach, the weight update rule is given by for l = 
O,l,. . .  , M ,  

3 f s  

where [y~(n)]’ is the first derivative of the sigmoid function 
and r] is the learning rate. Here we have adopted an asyn- 
chronous update rule, which updates only a partial set of 
weights at a time instead of the overall weights [lo]. There 
are total L sets of weights, defined by {?i$(n), 1 = 0,1,. .. , M }  
at j = 0 , 1 , .  . . , L - 1, each of which is associated with a hid- 
den unit. Only one set, {6L(n), 1 = 0 , 1 , .  .. , M}, is chosen 
at time n and updated by (13); the rest of the sets remain 
unchanged. This procedure is repeated in an asynchronous 
manner. 

I i  

Figure 7: Structure of dynamic bandwidth allocation system 
using on-line bandwidth prediction 

Similarly as in the RLS-based system, the transmission 
bandwidth required during the next adaptation interval [n + 
D,  n + D + M )  is predicted by 

&(n) = Cmax{yl(n), z = 0,1,. . . , M }  (14) 
The asynchronous allocation scheme is given by 

&(n)=Cmax{q5,yi(n), l=O,l,...,M} (15) 

Using the round-to-largestrule, the real value of &(n) is ‘ quan- 
tized into an integer in cell unit. The whole structure of dy- 
namic bandwidth allocation system using the PSN-TDNN- 
based prediction scheme is shown in Fig. 7. In practice, such 
system is implemented at the network access point. The func- 
tion of dynamic bandwidth control protocol is to guarantee 
the predicted bandwidth either locally at each node by adap- 
tive link capacity assignment among individual virtual circuit 
(VC) connections or globally at the network layer by rerout- 
ing of active VC connections. 
3.3 Computational Complexity 

One disadvantage of the RLS prediction scheme is its com- 
putational complexity. The parameter estimation in (4)(5)(6) 
requires 2N2 + 7N + 5 multiplications and N2 + 4N + 3 di- 
visions per iteration. The bandwidth prediction in (7) needs 
N x ( D + M )  multiplications. Since the parameter estimation 
is computed at every A interval while the bandwidth predic- 
tion is computed at every M A ,  the total complexity per M A  
is M x L2Nz + 7N + 5) + N x (D + M) multiplications and 
M x (N + 4N + 3) divisions. The computational complexity 
can also be reduced by using the so called fast transversal 
filters (FTF) algorithm [9]. This algorithm attains the RLS 
solution with the same convergence properties as in the RLS 
algorithm but at a computational cost that is competitive 
with the LMS algorithm. As a result, the complexity in pa- 
rameter estimation is reduced to 7N + 12 multiplications plus 
4 divisions per iteration; the total complexity per M A  then 
becomes M x (7N + 12) + N x (D + M) multiplications and 
4M divisions. In comparison, once it is trained, the PSN- 
TDNN scheme only requires (M + 1) x ( N  + 2) x L multi- 
plications per MA. Although special computation for the 
sigmoid function is required, in practice the sigmoid function 
is usually replaced by a linear saturator or a lookup table. 
3.4 Prediction Performance 

In the experimental study, we choose oc = 2~ for the 
low frequency signal z ~ ( t )  which represents the video scene 
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changes according to the power spectral distribution in 
Fig. 2b. The RLS scheme is designed by (N,  D ,  M) = (5,1,4) 
and the PSN-TDNN scheme is by (N,  D, M, L) = (5,2,4,  a), 
both of which are found to provide adequate prediction of 
abrupt scene changes in queueing performance. The predic- 
tion lead time is defined by ( D  + M)A,  which at A = 0.14 
seconds is equal to 0.7 seconds for the RLS scheme and 0.84 
seconds for the PSN-TDNN scheme. The longer the lead 
time, the better the prediction scheme to achieve identical 
performance. Since the time varying scale of the low fre- 
quency video signal is a t  least one second long, we design the 
bandwidth adaptation interval at MA=0.56 seconds close to 
the Nyquist sampling interval. 

In the initial stage of our experimental study, we also 
considered the use of MLP-based TDNN for the prediction, 
but no significant performance advantage was observed over 
the PSN-based TDNN. In contrast with PSN-TDNN, MLP- 
TDNN suffers higher computational complexity and subse- 
quent longer training period. For the training of the PSN- 
TDNN, we used a 2-minute video segment (page 56) in 
Fig. 3a, filtered at wc = 2a. By scanning the filtered video 
segment along time, we collected 208 training examples. Af- 
ter adding a 2A-long offset, we again scanned the segment 
thereby updating the 208 examples. By repeating this proce- 
dure three times, we obtained a total of 624 examples. Due 
to the dynamic range of the sigmoid function, the input data 
needed to be normalized into [0,1]. In the design of the PSN- 
TDNN, having the observation interval N A  > 5A or the 
degree L > 2 was found to simply add computational com- 
plexity with no significant performance improvement. It can 
be interpreted in that,  in statistical estimation, increasing 
complexity of the model over some optimal point may de- 
grade performance due to bias-variance dilemma. The learn- 
ing rate was tuned at q=0.15. The training was carried out on 
a SPARC-10 workstation for 24 minutes (CPU time) through 
5,000 epochs. In the design of the RLS scheme, the observa- 
tion interval was also tuned at N=5 and the forgetting factor 
was set at b O . 9 .  

The performance is measured by the prediction error 
statistics. In our application, the transmission bandwidth 
is adapted at every M A  interval. Denote the maximum of 
the predictions in the adaptation interval t E [(n + D)A, (n + 
D + M)A) by i m a x ( t ) ,  i.e., 

- 

c m a =  
E m . n  

i m a x ( t )  = max{iL(n + I ) ,  I = D, D + 1,  ..., D + M }  (16) 

( D  + M)A=0.84 ( D  + M)A=0.7 ( D  + M)A=0.84 
0.044 0.051 0.050 
0.071 0.092 0.114 
0.541 0.658 0.740 
-0.145 -0.144 -0.256 

The relative prediction error at time t is then defined by 

E ( t )  = [i .max(t) - Z L ( t ) I / Z L ( t )  

Positive and negative values of ~ ( t )  correspond to t,he over- 
estimation and underestimation of the video scene changes. 
Note that it is the underestimation that may cause the buffer 
congestion while the overestimation can only result in the 
under-utilization of the transmission bandwidth. This is why 
in (2) we have taken the maximum of the predictions in each 
adaptation interval for the bandwidth allocation. 

Table 3 shows the prediction error performance of the 
PSN-TDNN on the training video segment (page 56). The 
performance on the same segment achieved by the RLS 
scheme is also shown. While the lead time of the PSN-TDNN 
scheme is 0.14 seconds longer than that of the RLS scheme, 
the performance is basically identical. In the RLS prediction 
error statistics, initial transient performance for convergence 
was excluded. For comparison, also listed in Table 3 is the 

I II p SN-TDNN I RLS 

Table 3: Prediction error performance on training set (page 
56) at MA=0.56 seconds where E,  be, emas and emin are re- 
spectively the mean, standard deviation, maximum and min- 
imum of ~ ( t )  

lsginb 
(b) 

Figure 8: (a) Q-Q plot of page 40 versus page 56 (training 
set), at wc = 2n (b) autocovariance functions 

performance of the RLS scheme at the lead time equal to 0.84 
seconds. Obviously, this design of RLS scheme degrades the 
performance. It is observed that the RLS scheme has larger 
prediction error variance than the PSN-TDNN scheme. 

Let us now examine the general applicability of the PSN- 
TDNN scheme, trained by one video segment, to other video 
segments. Six 2-minute filtered-video segments (pages 39-41, 
55-57) were chosen as testing sets. Pages 39-41 were arbi- 
trarily selected to  represent statistically different scenes. For 
example, Fig. 8a shows the quantile-quantile (Q-Q) plot of 
page 40 versus page 56 (the training set), a t  w, = 27r. Since 
the Q-Q plot is largely deviated from the linear reference 
line, the probability distribution of page 40 is substantially 
different from that of page 56. Also displayed in Fig. 8b are 
the autocovariance functions of the two segments, which are 
quite different. Hence, the scene statistics of page 40 must be 
substantially different from that of the training set. It is inter- 
esting to find that the PSN-TDNN scheme, trained on page 
56, works very well on the other pages. Fig. 9a shows a part 
of the prediction curve to track the abrupt scene changes on 
page 40. Similar performance is observed on the other pages. 
Listed in Table 4 are the error statistics of the PSN-TDNN 
scheme on page 40 vs. page 56. The error statistics of the 
RLS scheme on page 40 are also included for comparison. 

Furthermore, in Table 5 we compare the prediction perfor- 
mance of the two schemes for the overall 12 minutes. The 
generality of the PSN-TDNN scheme is also tested on the 
prediction of a 2-minute multiplexed video segment. Here we 
take the summation of five 2-minute video segments (pages 
55-59) to represent the statistical multiplexing of five video 
sources. Similar performance is achieved as plotted in Fig. 9b. 
In summary, we argue that the PSN-TDNN scheme, properly 
trained on a 2-minute video segment, can be directly used to 
a certain extent on other video segments (which consist of 
statistically quite different scenes). 
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Figure 9: Testing of PSN-TDNN (a) on video segment with statistically different scenes(page 40) (b) on video multiplexed 
by pages 55-59 

on page 40 
PSN-TDNN I RLS I 

( D  + M)A=0.84 ( D  + M)A=0.84 ( D  + M)A=0.7 - 
E 0.044 0.045 0.048 

Em,, 0.541 0.597 1.875 
~ U* 0.071 0.086 0.128 

Table 4: Prediction error performance on a testing set at 
MA=0.56 seconds 

Table 5: 12-minute prediction error performance (on pages 
39-41, 55-57) a t  MA=0.56 seconds 

According to the analysis in Section 3.3, the complexity of 
the RLS scheme is 385 multiplications and 192 divisions while 
the complexity of the PSN-TDNN scheme is only 70 multipli- 
cations per 4A. When the FTF algorithm is applied [SI, the 
complexity of the RLS scheme is reduced to 213 multiplica- 
t,ions and 16 divisions. In contrast, the on-line computation 
of the PSN-TDNN scheme is less than one-eighth of the RLS 
scheme. 

The study in this section indicates that, in our applica- 
tion of video bandwidth prediction, the PSN-TDNN scheme 
is superior to the RLS scheme in terms of both prediction 
performance and computational complexity. In the next sec- 
t,ion we evaluate the video queueing performance when the 
two schemes are applied to  the dynamic adaptation of trans- 
mission bandwidth. 

4 Performance Evaluation of Dynamic 
Bandwidth Allocation 

First, let us design a zero-loss transmission system to de- 
liver a 12-minute video segment (pages 39-41, 55-57). As- 
sume that the buffer size should never exceed 300 cells. As 
described in Section 2, the transmission bandwidth is essen- 
tially captured by the video scene changes which are located 
in a well-founded low frequency band. For simplicity, we 
choose a fixed wc = 2~ for the filtered video signal z ~ ( t )  to 

capture the scene changes. The transmission bandwidth is 
then allocated through the observation and/or prediction of 
z ~ ( t ) ,  either dynamically or statically. In the static alloca- 
tion, the bandwidth is assigned by maxtzL(t), which is the 
maximum of z ~ ( t )  in the entire 12-minute period. In prac- 
tice, however, maxt z ~ ( 2 )  is unknown. In the ideal situation 
of dynamic allocation, the bandwidth is directly assigned by 
C z ~ ( t )  as in (l) ,  which is also unrealistic since the bandwidth 
cannot be instantaneously adapted by the filtered input rate. 
For the practical implementation of synchronous dynamic al- 
location, the bandwidth is periodically adapted by Cimax(t), 
where gmaX(t) represents the maximum prediction of z ~ ( t )  in 
the next adaptation interval defined in (16). For the asyn- 
chronous dynamic allocation, the bandwidth is determined by 
C"ax{$,~max(t)}  where 4 stands for a pre-assigned nomi- 
nal video bandwidth. We assume $=E[z(t)] + (Var[z(t)])*. 
Both RLS and PSN-TDNN schemes, designed in Section 3 
at the adaptation interval M A  = 0.56 seconds, are used to 
evaluate i.,,,(t) in the synchronous/asynchronous dynamic 
allocation. We choose C = 1.25 for the dynamic allocation 
policies. 

Listed in Table 6 are the transmission efficiency and queue- 
ing solutions with respect to each allocation policy. Obvi- 
ously, the transmission efficiency p reaches its highest value 
at 0.80 by the ideal dynamic allocation while its lowest value 
occurs a t  0.54 by the static allocation. We also get p = 0.74 
for the synchronous dynamic allocation and p = 0.62 for 
the asynchronous dynamic allocation. Note that one can get 
p = C-l for the ideal dynamic allocation. The rest of the val- 
ues of the transmission efficiency are measured by simulation. 
Although both RLS and PSN-TDNN prediction schemes have 
achieved the same transmission efficiency ( p  = 0.74 or 0.62), 
the queueing performance of the PSN-TDNN scheme is al- 
ways better than that of the RLS scheme as shown in Table 
6. This is consistent to the prediction performance compari- 
son in Section 3. Displayed in Fig. 10 is the queue distribution 
with respect to each allocation policy. In Fig. 11 we show a 
sample path of the synchronous/asynchronous dynamic al- 
location using the PSN-TDNN scheme. As one can see, the 
asynchronous operation significantly reduces the frequency of 
bandwidth adaptation, which is desirable for low-complexity 
network management, but at the expense of increased trans- 
mission bandwidth. This study indicates the significant per- 
formance improvement of dynamic allocation and the feasi- 
bility of its implementation at a reasonably long adaptation 
interval such as 0.56 seconds for video transmission. 

Next, we consider a single transmission trunk of fixed 
bandwidth p to support five VC connections as shown in 
Fig. 12. Each connection is associated with a separate buffer. 
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Figure 11: A sample path of synchronous/asynchronous dynamic allocation (on page 41) using the PSN-TDNN scheme 

Table 6: Performance comparison of different bandwidth allo- 
cation policies for a finite-buffer zero-loss system to transmit 
12-minute video in the worst scenario 

Figure 10: Queue distribution of 12-minute video transmis- 
sion by different allocation policies in the worst scenario 

The ATM traffic on each connection, denoted by z , ( t )  at 
i = 1 ,2 ,  ... 5 ,  is represented by a 2-minute video source. We 
use pages 39-41, 55 and 56 of the movie “Star Wars” to in- 
dividually represent each source. Let the transmission band- 
width of each VC be dynamically adapted based on the fil- 
tered z,(t)’s.  As in the previous example, we choose wc = 2~ 
for the input filter and denote the filtered z , ( t )  by z , ~ ( t ) .  
For the ideal dynamic sharing, the bandwidth of each VC is 
instantaneously changed by 

For the synchronous dynamic sharing, similar to the defini- 
tion of i m a x ( t )  in (16), we use tmax,(t) to represent the max- 
imum prediction of z ; ~ ( t )  in each adaptation interval. The 
total bandwidth is then adaptively divided among the five 
VCs in every MA interval, according to 

, t E [(n+D)A, ( n + D + M ) A )  (17) 
i m a x  i ( t ) P  

P : ( t )  = 
i m a x j ( t )  

Here we use the same RLS and PSN-TDNN schemes as used 

Figure 12: Transmission of five video sources by dynamic 
sharing on a single ATM trunk 

in the previous example for the prediction, where the a d a p  
tation interval is fixed at 0.56 seconds. 

Assume that the overall trunk utilization is p = 0.7. Since 
the mean of the aggregate video traffic is 114.1 cells per slice, 
we have the total trunk bandwidth equal to p = 163.0 cells 
per slice. One slice corresponds to 1.4 milliseconds. Listed in 
Table 7 are the queueing solutions of each VC connection us- 
ing different dynamic sharing policies. As one can see, every 
dynamic sharing policy provides a fair service performance 
among the individual connections. It is also interesting to 
observe that the performance of the synchronous dynamic 
sharing is almost identical to that of the ideal one. 

For comparison purposes, we also consider some static 
sharing policies where the total bandwidth is statically di- 
vided by 

p : ( t )  = - y , V t  (18) E,=, e3 

e, denotes the static bandwidth measure of the i th connec- 
tion. For instance, e, can be the peak of the input traf- 
fic (maxt z , ( t ) ) ,  the peak of the filtered input (maxt zl~(t ) ) ,  
or the average input ( E [ z , ( t ) ] ) .  The assumption of infinite 
buffer size is made for each connection. As shown in Ta- 
ble 7, the queueing solutions of the static sharing are highly 
unbalanced among the individual connections. In contrast, 
the queueing performance of the static sharing is much worse 
than that of the dynamic one. In summary, the temporal 
bandwidth demand of each video connection is essentially 
characterized by the scene changes, which are highly pre- 
dictable through the on-line traffic measurement. One can 
therefore implement the dynamic sharing to significantly re- 
duce the transmission bandwidth and buffer capacity require- 
ment. For the slow time-varying scale of scene changes, we 
also expect that the same technique can be applied for the 
control of network-wide video traffic flow. One feasible a p  
proach is to periodically reroute active VC connections to 
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Static Alloc. Dynamic Alloc. 
peak filtered mean ideal RLS PSN 

peak (syn.) syn. 
11.5 137.0 9.8 8.3 3.5 8.2 
17.7 371.8 13.4 9.7 14.0 9.6 

Table 7: Performance comparison of different sharing policies 
of transmission bandwidth 

guarantee the predicted bandwidth. 

5 Conclusion 
This paper has presented a novel approach to dynamic 

bandwidth allocation for transport of real-time VBR video 
over ATM networks. Describe video traffic in the frequency 
domain: the low frequency signal captures the slow time- 
variation of consecutive scene changes; the high frequency 
signal exhibits the feature of strong frame correlations. Our 
study indicates that the video transmission bandwidth in a 
finite-buffer system is essentially characterized by the low fre- 
quency signal. Since the time scale of scene changes is usually 
in the range of a second or longer, the video low frequency 
signal is defined in a well-founded low frequency band. Hence, 
it is possible to  implement dynamic allocation of video trans- 
mission capacity using on-line observation and prediction of 
scene changes. Two prediction schemes have been examined: 
recursive least square method vs. time delay neural network 
method. A time delay neural network with low-complexity 
high-order architecture, called Pi-Sigma Network, has been 
successfully used to  predict scene changes. The proposed dy- 
namic bandwidth allocation scheme is shown to be promising 
and practically feasible in obtaining efficient transmission of 
real-time video traffic with guaranteed quality of services. 
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