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Abstract 
I n  this paper‘ we explore the fundamental limits of input 

mte control by spectral analysis in frequency domain. Both 
deterministic and stochastic analyses are developed. Espe- 
cially, the simple deterministic analysis helps us to gain a 
great knowledge of performance trade-off for input rate con- 
trol in high speed network. 

1 Introduction 
A central objective of input rate control in high speed net- 

work is to prevent nodal congestion, caused by irregular or 
unexpected bursty input. Many control protocols have been 
proposed to regulate (or reshape) the input rate process at  
network entry point, among which the most popular one is 
the leaky bucket control. In principle, an input rate control 
system is designed to trade packet delay, or selective loss, at 
source for congestion avoidance within network. Most analy- 
ses of input rate control focus on control delay and loss rate, 
with simplifying assumption of the input process to be Pois- 
son, renewal, or 2-state (3-state) Markov modulated Poisson 
process [1]-[8]. It is lack of technique, however, to measure 
the effectiveness of input rate control to avoid network con- 
gestions. This is largely because of the complexity involved in 
the exact modeling of output rate process of the control sys- 
tem [6] [8]. As a result, there is no clear comparison between 
irregular input and regulated output via control system. 

This paper applies a new concept of input spectral char- 
acterization, recently developed in queueing theory [9] [lo], 
to measure input rate control effectiveness in frequency dm 
main and therefore to explore the fundamental limits of input 
rate control to performance improvement. Figure 1 describes 
a control system with its input rate process generated by 
source and output rate process injected to network. Our em- 
phasis is placed on the study of interrelationship between in- 
put power spectrum Pr (U) and output power spectrum P0(w) 
of the control system. A key observation made in [9] [lo] is 
that the network performance is dominated by input power in 
low-frequency band. Ideally, an input rate control system is 
to reduce input power in low-frequency band without causing 
excess delay/loss of information at the source. Hence, the less 
the output power in low-frequency band, the less the chance 
for nodal congestion to occur, and so the less the delay/loss 
of information within network, 

There are two basic approaches to system modeling: the 
stochastic approach and the deterministic approach. It is 
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Figure 1: A generic input rate control system 

Figure 2: Leaky-bucket input control system 

generally difficult to characterize the output rate process by 
stochastic approach since most control systems are nonlin- 
ear. Here we first use a deterministic approach to explore the 
performance tradeoff among input spectrum, queueing delay 
and output spectrum of the control system. Despite some 
obvious mathematical looseness of deterministic approach, it 
has been successfully used to provide many insightful results, 
which otherwise may not be possible to provide by stochastic 
analysis [9] [ll]. It is also true that many solutions obtained 
by deterministic analysis can form the basis to stimulate and 
further enhance the theoretical development by stochastic 
analysis. 

Our deterministic analysis is most simple and clear in con- 
cept. Consider a generic stationary random input process. Its 
first degree property is measured by the average input rate 
7; the second degree property is characterized by continu- 
ous input power spectrum Pr (w) .  The study in [lo] indicates 
that the queueing performance is much more dependent on 
{?, PI ( w ) }  than higher degree input properties. In our mod- 
ehng, only the first two degree input properties are consid- 
ered. In order to examine the effect of individual input power 
spectral components, here we choose an “isolated” sinusoidal 
input as a test signal to measure the control system response 
as a function of the input sinusoidal frequency. The analysis 
can therefore be much simplified. 

Our study concentrates on a leaky-bucket control system 
described in figure 2. The operation is simple. First, each 
packet in the input buffer, before being moved forward, must 
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be matched by a token from the pool. Tokens are generated 
to  the pool at constant time interval A, unless the pool is 
full. The token pool acts like a bank credit system, which al- 
lows input packets to  borrow the service capacity in advance. 
Before being forward t o  network, the matched packets can be 
further divided into two priority streams, measured by P,(w) 
and P L ( w )  in frequency domain. The packets in high priority 
stream is constrained by peak access rate ymax, and the rest 
of packets are in low priority stream. The low priority pack- 
ets are likely to  be dropped within network in case of nodal 
congestion. There are three control parameters: 

0 p: control utilization factor with p %if f A  
0 T: token pool size 
0 ymax: peak access rate. 

In response to  the input function (7, P, ( w ) } ,  one can there- 
fore measure the control performance by 

0 7,: mean queue length at input-control buffer 
0 Po(w):. output power spectrum which can be further di- 

For simplicity, we assume infinite buffer size. Hence, the per- 
formance tradeoff between 9; and Po(w) is to  be observed in 
function of {p,T,ymax} for each given input {Y ,P, (w)} .  We 
will capture the effect of each individual control parameter 
on output spectrum and queueing delay, in response to input 
spectrum. The analysis is then extended to  the next adjacent 
queue with controlled input, which is used to  further evaluate 
the network response to  input rate control. 

vided into { P w ( w ) ,  P L ( w ) )  

The following four guiding principles are developed: 

The overall queueing performance is inherently deter- 
mined by both input source and network environment; 
the function of input rate control is simply to  trade more 
input queueing for less network queueing. 
Due to  the large disparity between source generation 
rate and link transmission rate, a stringent input rate 
control may unnecessarily increase the user end-to-end 
delay significantly. 
While input rate control is ineffective in high frequency 
band, it will be effective in low frequency band if and 
only if the user can tolerate excess delay or loss at  net- 
work entry point. 
The network performance is insensitive to the adjust- 
ment between token pool size T and token generation 
rate l / A  for the leaky bucket control system. 

The same control performance, explored by the deterministic 
analysis, can also be found by stochastic analysis except in 
very limited cases. In this paper we will use the stochastic 
approach t o  obtain the exact solutions of two adjacent queues 
in response to  input power spectrum, where the first queue 
is a leaky bucket input rate control system and the second 
queue represents the network. 

Section 2 shows the 
stochastic modeling of input rate control system. The corre- 
sponding deterministic modeling is given in section 3. The 
main results of this paper are in section 4 for input con- 
trol performance trade-off based on the deterministic anal- 
ysis. The stochastic analysis is carried out in section 5 to 
further explain the solutions obtained in section 4. The pa- 
per is then summarized in section 6. 

The paper is organized as follows. 

2 Stochastic Modeling 
Let us first neglect the peak rate control implemented by 

ymax in figure 2. Based on fluid flow modeling, which is com- 
monly used for stochastic queueing analysis [6] (121, one can 
describe the above leaky-bucket queueing system by 

i ( t  + A) = max{ -T, i ( t )  + TI (1) - 1) (1) 

where T, ( t )  is the input rate random variable at time 1, mea- 
sured in A unit. i ( t )  is a continuous random variable, which 
is equal to  the input buffer content i , ( t )  subtracted by the 
token pool size & ( t )  at time t .  Here we add a - accent to 
each of the notations for stochastic analysis. Since both Q, (t) 
and iT ( t )  cannot be simultaneously positive, we have 

That is, @ , ( t )  = max{O,g(t)). The output rate random vari- 
able will then be characterized by 

if i ( t )  2 0 
otherwise 

Mathematically, the queueing analysis of such a leaky-bucket 
queueing system is equivalent to that of a single queue system 
loaded by p (as if taking T = 0 here) [2] [5]. 

In our stochastic modeling, T, ( t )  represents a stationary 
random process, to which only the first and second degree in- 
put properties, defined by {f, P, ( w ) } ,  are assumed to be char- 
acterized. This assumption is made for two reasons. First, in 
practice it is always difficult to  measure higher degree p r o p  
erties of random traffic. Second, the queue response is much 
more dependent on the first two degree input properties than 
higher ones [lo]. Note that the stochastic queueing analysis 
cannot be carried out unless the time variation of the input 
rate + ( t )  is characterized by Markov chain. The technique de- 
veloped in [lo] shows how to  construct such an input Markov 
chain from the given first and second degree input proper- 
ties. The queue response to input power spectrum can then 
be evaluated by using the QBD-Folding algorithm developed 
in [13] [14]. The key problem with the stochastic analysis, 
however, lies in its difficulty to  characterize the output rate 
process, which essentially measures the effectiveness of the in- 
put rate control. The detail stochastic analysis is postponed 
to  section 5 .  The next two sections focus on the deterministic 
analysis. 

3 Deterministic Modeling 
In the deterministic analysis, we use a periodic input func- 

tion y, (t) = y, ( t  + t o )  for the input rate where 1, is the com- 
mon period. One can then describe the input queue function 

q ( t  + A) = max{-T, q ( t )  + Y,(t) - 1) 

as its counterpart (1). From y , ( t )  = y r ( t +  t o )  we must also 
have q ( t )  = q ( t + t , )  in steady state. The average input queue 
is therefore measured by 

by 

Similar to  (a), we have the output rate function y o ( t )  equal to 
2 for q , ( t )  2 0, and y , ( t )  otherwise, with respect to  yo(t )  = 
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yo(t+to). The numerical evaluation of q ( t )  and yo(l) therefore 
becomes most simple and straightforward using deterministic 
analyaie since all functions are periodic. One can also obtain 
the &rete output spectrum PO(kwo) by taking Fourier series 
expansion of yo(t) at wo = e. 

Note that we must keep y,( t )  2 0, Vt ,  which means 
that the DC component always exists in the input spectrum. 
Without causing information loss by control, the same DC 
component will appear in the output spectrum. For simplic- 
ity, we will neglect such a DC component in the definition 
of all our power spectral functions. Further, since the power 
spectral functions are central symmetric, it is only necessary 
to consider k > 0. 

To facilitate our performance measurement in frequency 
domain, let us consider a single sinusoidal input, defined by 

7, ( t )  = T( 1 + cos wot) (3) 

Essentially, the sinusoidal frequency WO can be used to de- 
scribe the input correlation properties. The lower the WO in 
frequency domain, the slower the time variation of the input 
process, and so the higher the input correlation is in time do- 
main. The corresponding power spectrum PI (kwo) is a single 
impulse function at  k = 1. In appendix we derive at  T = 0 
for the zero pool system 

where F ( p )  is an intermediate function only dependent on 
p. Note that WO is defined in radian frequency and A is 
equivalent to the mean service time. It is obvious that the 
time variation of the input process, which is represented by 
WO in frequency domain, needs to be measured in unit of mean 
service time for queueing analysis [lo]. This is equivalent to 
normalize 00 by A. A key property explored in (4) is that 
TI cc &. That is, the mean queue response is proportional 
to the inverse of sinusoidal input frequency. As one will see in 
section 4, this can be regarded as the most inherent property 
of queue response to input spectrum. For application of voice 
and video transmission in high speed network, most of their 
input powers are in low-frequency band [lo], which in our 
case implies that & can be substantially large. 

To a large extent one may view the angle sinusoidal in- 
put as a test signal to measure the control system response. 
As will be seen shortly, many intrinsic properties of input 
rate control can therefore be revealed by such a simple deter- 
ministic analysis, which otherwise can hardly be exposed by 
stochastic analysis due to the complexity involved. 

4 Performance Trade-off 
- Deterministic Analysis 

In this section we use a single sinusoidal input to explore 
the performance trade-off in the design of leaky-bucket s y 5  
tem for input rate control. Without loss of generality, we 
assume 3 = 1 and so p = A to represent the token generation 
interal. Hence, there is only one source parameter, W O ,  which 
is used to  represent the input power spectral property. 

We first consider a zero pool system at T = 0. Figure 
3a shpws the mean queue length performance in function of 
p and 1/00. By definition, p is also the utilization factor of 
the control system. This is why the queue response is al- 
ways improved by the reduction of p. On the other hand, as 

(a) (b) 

Figure 3: Control performance in function of p at T = 0: (a) 
mean queue length (b) output spectral envelope 

Figure 4: Control performance in function of p at T = 50: (a) 
mean queue length (b) output spectral envelope at  l/wo = 
100 

described by (4) at each given p,  the mean queue response in- 
creases linearly with I/wo. Plotted in figure 3b is the envelope 
of the corresponding output power spectrum in function of p. 
From the appendix one can verify that the shape of Po(kwo) 
is independent on the frequency unit WO when T = 0. Ob- 
viously, increasing p will reduce the output spectrum in low 
frequency band. There are two extremes. One is a t  p = 1, 
where Po(kwo) will contain the DC component only since the 
buffer is never empty and so yo(t) becomes constant. One is 
for p to be sufficiently small, such that the buffer is always 
empty which yields Po(Lwo) = P,(kwo). For the single sinu- 
soidal input defined in (3), the buffer will always be empty 
at  p = 0.5. This is why the output spectrum, as p + 0.5 in 
figure 3, is gradually shifted to a single impulse function at  
k = 1 which is equal to the input spectrum. A clear tradeoff 
exists between ij, and Po(w) through the adjustment of con- 
trol parameter p. Any reduction of ?, will cause the increase 
of Po(w) in low frequency band, and vice versa. Similar ob- 
servation is made in figure 4 a t  T = 50, except for the shape 
of Po(kwo) dependent on WO when T > 0. 
Remark 1: Via input buffering, more powers in low frequency 
band are reduced and shifted to high frequency band as the 
token generation interval p increases. 

To study the impact of T, we fix p at 0.8. Figure 5 shows 
the mean queue response to sinusoidal input in function of 
T and l/wo. It  is clear that the token pool size T has to be 
sufficiently large in order to reduce the mean queue length 
when l / w o  is high (i.e., when more input powers are in low 
frequency band). The corresponding output spectrum is also 
displayed in figures 5b and 5c with respect to l/wo = 100 and 
500. 
Remark 2: Via token pooling, more powers remain in low 
frequency band as the pool size T increases. 
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Figure 7: Control performance in function of T subject to a 

queue ?I 'i,, at l/"'o = loo  (C) overall queue 7, + 7 , ~  at 
l / w o  = 500 (d) overall queue ?j, + ijN in function of T and 

(4 
Figure 5: Control performance in function of T at p = 0.8: fixed ?jr at P N  = o.8: Of p at 71 = 2o (b) Overall 

(a) mean queue length (b) output spectral envelope at  I / w o  = 
100 (c) output spectral envelope at  l/wo = 500 

l/wo for i j ,  = 20 

Figure 6: Input control with network queueing 

As one can see, by proper selection of p and T one can always 
trade more input queueing delay for less output powers in 
low frequency band, or vice versa. Nevertheless, the inherent 
nature of queue response to input frequency, i.e., ?jr o( l/wo, 
is basically unchanged at  each given p and T. In other words, 
the selection of p and T for the design of input rate control 
must be strongly dependent on input spectrum. 

Once we understand the performance trade-off by indi- 
vidual selection of p and T, one may raise a question on 
their joint adjustment. Consider that a practical design of 
input rate control is always subject to some delay constraint. 
Choosing a fixed mean queue length QI to be the subjective 
condition, our objective in the joint adjustment of p and T is 
to minimize the delay within network. For simplicity we use 
a single queue to represent the network. Further, to isolate 
the input control from rest traffic in network, all the arrivals 
are assumed to be the departures from the input control sys- 
tem, represented by 7 4 t )  in figure 6. Denote the mean queue 
length of the network by ijN and its utilization factor by p N ,  
respectively. Since yo(t) is periodic, the analysis of Q,, based 
on 7 4 t )  is just like the analysis of i j ,  based on y , ( t ) .  

Figure 7a shows the solution of p in function of T and 
I/wO, under a subjective condition ?jr = 20. Note that in 
order to keep GI = 20 we must have a sufficiently small p,  
or a significantly large T, especially when more input powers 
are in low frequency band (i.e., when l /wo is large). Choose 
p,, = 0.8. Also plotted in figure 7b is the overall performance 

?j +i jN in function of T subject to a fixed Q, when l/wo = 100. 
dote that T is jointly adjusted with p under each subjective 
condition E [0,50]. Clearly, the overall performance i j ,  + 
?jN is basicahy independent on the joint adjustment of p and 
T. Similar observation is made in figure 7c at l/wo = 500. 
That is, the overall performance is essentially captured by the 
source parameter l/wo and the network parameter p N ,  and it 
can hardly be changed by input rate control. This acts like a 
conservation law for the design of input rate control system. 
Hence, there is a fundamental limit to input rate control. 
Remark 3: The overall queueing performance is inherently de- 
termined by both input source and network environment; the 
function of input rate control is simply to trade more input 
queueing for less network queueing. Further, the network per- 
formance is insensitive to the joint adjustment of p and T; for 
simplicity one may design a single parameter control system by 
having T = 0. 
Also depicted in figure 7d is the sensitivity of ?jN + ?jr  to 
both T and l/wo for a fixed (= 20). Note that T cannot 
be too large for small l / w o  in order to keep TI = 20. The 
overall queueing performance is much dependent on the in- 
put powers in low frequency band. Again, we have seen the 
general trend i j  + i j N  o( l / w o .  That is, the more the input 
powers in low dequency band, the longer the queue will be. 
Essentially, the only way to reduce ? by input rate con- 
trol is to proportionally lift ij,. In otKer words, unless the 
source has a large input buffer and can tolerate excess delay, 
the input rate control can hardly improve the network per- 
formance. This is true especially when we consider that the 
low-frequency powers are the main cause to drive the network 
to congestion [9],[10]. Hence, such input rate control cannot 
be effectively applied to real-time trafiic like voice and video 
due to the stringent service time constraint [15], but it can 
be used effectively to regulate nonreal-time traffic to avoid 
network congestion. 
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Figure 8: Output spectral envelope in function of T subject 
to q, = 20 (a) a t  l /wo = 100 (b) at WO = 500 

I . -  

Figure 9: Input control in multiplexing of N homogeneous 
sources 

Figure 8 shows the output spectrum Po(kwo) at l /wo = 
100 and 500, with respect to the control system in figure 7 
under q, = 20. As one can see, the output spectrum PO(kwo) 
is always dominated by the single input sinusoidal frequency 
WO at k = 1. The value of Po(kwo) a t  k = 1 slightly re- 
duces as T increases at  l/wo = 100, while it basically re- 
mains unchanged by T at l / w o  = 500. We then come across 
a question: why the network queue ij, is unaffected by the 
reduction of PO(kwo) in low frequency band (i.e., at  k = 1) 
at  I /WO = 100. This is due to the effect of phase interference 
amongst the harmonic frequencies [9]. It is known that the 
power spectrum is phase blind. In stochastic modeling, the 
phase spectrum represents the third degree property. In our 
case, the output rate function yo(t) cannot be fully recov- 
ered from PO(Cwo) without phase spectrum. As found in [9] 
[lo], however, the impact of input phase spectrum on queue 
is much less significant than that of input power spectrum. In 
practice, the statistic measurement of phase spectrum is also 
much more difficult than that of power spectrum. Therefore, 
without knowledge of higher degree output properties, the 
power spectrum can generally be used to measure the control 
effectiveness as found in figures 3-5. 

So far we have separated the input control system from 
rest traffic in network. From user’s point of view, the perfor- 
mance should be measured by end-bend delay, including the 
input delay for control and the network delay for multiplex- 
ing: Similarly, we use a single queue to represent network, 
which is now shared by N homogeneous sources as described 
in figure 9. N can be very large in practice due to the large 
disparity between input source generation rate and network 
link transmission rate. For simplicity, the same input control 
parameters, T and p, are assumed to apply at  each source. 
Note that the function of input rate control is to reduce the 
network delay (or congestion) at  the expense of increasing its 

1 (&)I 500 

(3 
T 
(b) 
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Figure 10: Performance of input delay and network delay: 
(a) in function of I /WO,  (b) in function of T, (c) in function 
of p, (d) in function of N,  where the rest parameters are fixed 
accordingly by l / w o  = 100, T = 50, p = 0.8, N = 20 and 
p ,  = 0.8 

own input delay. On the other hand, simply based on the 
large number law, one will expect that the network queueing 
is more efficient than the input queueing especially when N is 
large. Let us now examine the control trade-off between the 
average input delay and network delay, denoted by d,  and 
d,, Assume the network queue is always loaded at  p, = 0.8. 
There are four design parameters: W O ,  T, p and N .  Figure 
10 shows the results of d,  and d, in function of each indi- 
vidual parameter. Except for the parameter to be tuned, the 
rest three parameters are fixed accordingly by l / w o  = 100, 
p = 0.8, T = 20 and N = 20. 

Figure 10a shows that, once the input control p and T are 
fixed, the input delay can be much increased as more input 
powers are in low frequency band, while the network delay 
is basically unaffected. In other words, the input rate con- 
trol does have the effect of blocking low frequency powers at  
network entry point, which otherwise may cause nodal con- 
gestions in network. But, this is done at  the high expense of 
input delay. The results in figures lob, 1Oc further indicate 
that the input delay can also be much increased by tightening 
the input rate control (as to reduce T or increase p),  while 
the improvement on network delay is negligible. I t  is obvi- 
ous that the optimal solution for the minimum of d,  + d, 
is to entirely remove the input rate control. Again, this is 
caused by the disparity between source generation rate and 
link transmission rate, measured by N > 1. The input delay, 
as compared with the network delay, is much more sensitive 
to W O ,  p and T for large N .  Figure 10d shows the network 
delay improvement as N increases, with respect to the given 
values of W O ,  p and T. 
Remark 4: Due to the large disparity between source gen- 
eration rate and l ink transmission rate, a stringent input rate 
control may unnecessarily increase the user end-to-end delay by 
significant amount. 

The above argument of having no input rate control is 
made purely from delay performance’s point of view. Of 
course, many other important factors need to be considered in 
practical system design. For example, excessive bursty input 
generated by a source can be highly unpredictable. It is then 
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Subordinate Sources 

Figure 11: Input control in multiplexing of dominant and 
subordinate sources 

essential t o  provide a direct and tight feedback loop from con- 
gestion point to  input source for control purposes. Consider 
that the time for relaying congestion information from net- 
work internode t o  input source can be too long. One effective 
way is to  simply block highly unpredicted excessive traffic at 
network entry points via input rate control. The performance 
trade-off explored here provides us a guiding principle for the 
design of effective input rate control. 

For integration of heterogeneous sources, we consider the 
multiplexing of two diverse traffic types as shown in figure 
11. Each type consists of five homogeneous sources. The 
input rate control for source type 1 is defined by (pl,Tl) ,  
and for source type 2 by (p2,Tz). The average source input 
queue is denoted by qII and ij, respectively. The network 
queue i j  is used t o  measure t%e congestion. That  is, the 
smaller b e  i j  the less the probability for network to  con- 
gest. Again, &: input function at each source is assumed to 
be a single sinusoidal with identical amplitude. The diversity 
of the two traffic types is characterized by the significant dif- 
ference of the two sinusoidal frequencies w1 and w2. Choose 
l / w z  >> l/wi so that the type 2 traffic is dominant and 
the type 1 traffic is subordinate. In the example we have 
l/wl = 100 and I / w ~  = 1000. Unless otherwise specified, the 
control parameters are assigned by (p1,Ti) = (0 .8,50)  and 
( p z ,  Tz) = (0.6,50). The network is loaded at p N  = 0.8. Fig- 
ures 12a,b show the effect of type 1 traffic control on both 
input and network queues, in function of p1 and TI. It is obvi- 
ous that the network performance can hardly be improved by 
the control of the subordinate traffic type 1. On the contrary, 
as shown in figure 12c,d, the input control on the dominant 
traffic type 2 can significantly reduce the network queue (but 
at the high expense of input queue). 
Remark 5: While input rate control is ineffective in  high fre- 
quency band, it will be effective in low frequency band if and 
only if the user has a large storage capacity to tolerate excess 
delay at  network entry point. 

Let us now study the impact of peak rate control on the 
two priority output streams P,(w) and P,(w) in figure 2. For 
sinusoidal input in (3) at 7 = 1 we have ymax E ( l /p ,2)  for 
effective peak rate control. Again, the input control p and T 
are designed under the constraint i j ,  = 20. Here we fix T at 
50 while p is adjusted in function of I/WO to satisfy q, = 20. 
As in figure 6, the network is symbolicly represented by a 
single queue which is loaded by the control output only. Let 
the queue be loaded at p N  = 0.8 when both priority output 
streams are accepted by the network. Figure 13a shows the 

(c) .-- (d) 

Figure 12: Performance of input delay and network delay: 
(a,b) control on subordinate sources at l / w o  = 100 in func- 
tion of Ti and p i ,  (c,d) control on dominant sources at 
I/WO = 1000 in function of T2 and p z ,  where the rest pa- 
rameters are fixed by p1 = 0.8, TI = 50, p~ = 0.6, T2 = 50 
and p N  = 0.8 accordingly. 

overall queueing performance V I  + ijN in function of I/WO 
and ymax. Note that we must have ymax >_ l / p  where p is 
adjusted by I/WO to  keep T ,  = 20. Also displayed in figure 
13b is the corresponding average loss rate L ,  caused by the 
network blocking of the entire low priority stream. Since no 
traffic is in low priority at ymax = 2, the loss rate becomes 
zero while the queue reaches its maximum for each given WO. 
As ymax decreases, the loss rate arises while the queue falls. 
Nevertheless, at each given ymax we find the same basic trend 
T I  + qN a l / w o  in figure 13a. The same behavior can be 
found as we change the subjective conditions P I  and T. I t  
means that, when more input powers are in low frequency 
band, the only way to reduce qN is to  increase the loss rate 
L for a fixed input queue constraint 7,. Both priority power 
spectra, P,(kwo) and P,(kwo), are shown in figures 13c,d 
in function of ymax at I/wO = 200, in association with the 
original output spectrum Po(kwo) in figure 13e. Note that 
both P,(kwo) and P,,(kwo) are dependent each other. As is 
found, via peak access rate control one can shift some of the 
low frequency powers from the high priority spectrum to the 
low priority one. 

5 Performance Trade-off 
- Stochastic Analysis 

The inherent properties of input rate control, explored in 
the above section by the deterministic analysis, can also be 
obtained by the stochastic analysis but with much more com- 
plexities. As is recalled in section 2, for stochastic queueing 
analysis we need the input rate process =y,(t) to  be modu- 
lated by Markov chain, described by { Q , ? } .  Q is an N x N 
state transition rate matrix, which is assumed to  be diagonal- 
izable. 7 is a vector for the input rate associated with each 
individual state, given by 7 = [yo,yl, . . . ,y ~ - 1 1 .  By spectral 
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bandwidth BWI = -2Re{Xi}. Both WI and BWl are defined 
in radian frequencies. 

For simplicity we consider a two-state Markov chain, al- 
ternating between ON and OFF periods, which is commonly 
used as a building block for construction of voice and video 
sources. Define 

z 
200 

'U, 
I W  

Q = [ ] , ?=  [ :- I T ,  am -son 

0 k 6 

(e) 

Figure 13: Performance in function of peak access rate ymax 
(a) overall queue (b) loss rate (c) high priority output spec- 
trum (d) low priority output spectrum (e) total output spec- 
trum (at l /wo = 200)  

decomposition, 
N-1 

Q = E X i & L  
I r O  

( 5 )  

where both $1 and are the right and left eigenvectors for 
the eigenvalue XI. For stationary Markov chain, one of the 
eigenvalues, denoted by XO, must be zero, while the rest eigen- 
values satisfy Re{X1} < 0. Its input power spectrum is then 
readiiy expressed by [IO] 

N-1 

P,(w) = 2xT26(w) + E $tbt(w) ( 6 )  
i=l  

with 

B1(w)dw = 1 (7) 
1 +- - 

2% L 
whye Qki is the k-th element of $1 and hni is the n-th element 
of hi. Tis the average input rate. 2xT26(w) is the DC term for 
non-negative input rate. Each eigenvalue component, bi (w)  
in (7), represents a bell-shape curve located at  the central 
frequency wi = Im{Xt} and weighted by $1. The shape of 
each bell, before being weighted, is measured by its half-power 

L J L  - -  J 

where 7- is the input rate while in ON-state. For two-state 
Markov chain, X1 must be real and 80 we have w1 = 0 and 
BW1 = -2.41. Hence, the single bell on its power spectrum' 
is always centered at  zero-frequency, expressed by 

with Ti = €7- where E is the source activity factor given by az/(az +ai,?,). C& is the squared coefficient of input rate 
variation, equal to (1 - €)/e. 

The power spectrum is directly additive for superposition 
of independent input processes, except for the DC term. De- 
note the power spectrum of the k-thindependent input pro- 
cess by PIk(w)  and its DC term by 2xTk'6(w), where Tk 
represents the average input rate. Excluding the DC term, 
one can generally write 

M 

k r l  

Since the DC term in Pr(w) is physically determined by the 
superimposed average input rate, it is given by 2xTZ6(w) with 
7 = Er, yk. For the k-th process defined by {Qk, Y k } ,  the 
overall input process will be described by {Q, J }  with 

r'= Ti @?z @...e ?M. (IO) 
Hence, for the superposition of M homogeneous 2-state 
Markov chains we get 

Q = Qi @Q2 e... @QM, 

(11) 
MYl 'C:, BWi 
(BW1 /2)' + w2 

',(U) = 2xM2T126(w) + 
Assume that the leaky-bucket system has finite buffer size 

of K, in packets. As was shown in [2] [SI, the mathemati- 
cal modeling of leaky-bucket system, defined by {p,T, K I } ,  
is equivalent to that of single-server queue system with buffer 
size K, + T and loaded by p. The corresponding service rate 
is fixed at  p = 1/A. With a {Q, 7) Markovian input process, 
one can thus characterize the leaky-bucket system by a finite 
QBD process. The state of such a QBD process is defined by 
levels and phases. Each level represents a buffer occupancy 
for -T 5 d ( t )  5 K,; each phase on a level corresponds to a 
state of input Markov chain. The overall QBD transition ma- 
trix will then be expressed in the following block tri-diagonal 
form: 

.. 1 a Q - S X  - 
P Q-P-a a 

G = [  - 
- B Q - P - Q  a 

- P Q - P  
(12) 
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where G is finite and irreducible. The steady state distribu- 
tion vector ii will be the unique solution to  the equations: 

i?G=O, i l = 1  

where e' = [l, 1, ..., 1]*. Q represents the queue expansion 
rate matrix while in overload, given by &tag[(?, - p)+] where 
4, = 7 k  when the input Markov chain is in phase k with 
0 5 k 5 N .  Similarly, Pis the queue reduction rate matrix 
while in underload, equal t o  diag[(p-?,)+]. The symbol (.)+ 
denotes the larger of 0 or its argument. Notice that here i ( t )  
assumes a discrete state space, unlike the continuous fluid 
flow model proposed in [12]. This discrete model was origi- 
nally introduced and well examined in [13],[14] and referred to 
as Markov-modulated fluid-flow model. The queueing perfor- 
mance is measured by the mean queue size T, and the average 
packet loss rate L, for each given p and T, in response to  the 
input power spectrum P,(w). The results are obtained by 
using the QBD-Folding algorithm developed in [13][14]. 

Denote a QBD state in level j at phase k by ( j , k ) .  The 
transition probability from ( j ,  k) to  (n, m) in time interval t 
is then defined by [e"'] The output rate process 
'i.o(t) is also a stationary random process, which is defined on 
the QBD state space by 

(j.k).(n,m) ' 

i f j > O  
To( j ,  k) = min{yk, p }  if j = 0 (13) { l k  else 

where p is the service rate and 7 k  is the input rate in phase 
k. The output rate autocorrelation function will thus be ex- 
pressed by 

where *J,k is the steady state probability in state (j, k), i.e., 
%J,k E i?. Numerically we always find that G is diagonalizable. 
By spectral decomposition as done in (5), 

i.1 

we get 

In numerical study we consider four homogeneous 2-state 
Markov chains with its power spectrum in (9), defined by 

(swi,Y,, cT1) = (0.01,0.25,1.22) 

Figure 14: Stochastic control performance in function of p 
and T: (a) input power spectrum (b) mean queue length (c) 
average loss rate 

Figure 15: Output spectrum by stochastic control analysis 
(a) in function of T at p = 0.8 (b) in function of p at T = 20 

as is also plotted in figure 14a. To avoid the numerical diffi- 
culty we choose the buffer size K ,  = 80 and limit the pool size 
in 0 5 T 5 50. Figures 14b and 14c show the performance of 
9 and L, in function of T and p for the leaky-bucket system. 
dxactly as we have observed in figures 3-5 by the determinis- 
tic analysis, both queue and loss performances are improved 
by the increase of T or the reduce of p. T has to  be suffi- 
ciently large to  improve the queueing performance since in 
our case most input powers are in low-frequency band, which 
is consistent with what we have found in figure 5a. Also dis- 
played in figure 15 are the output spectrum in function of T 
at p = 0.8, as well as in function of p at T = 20. Just as what 
has been stated in remarks 1 and 2, more input powers are 
reduced in low frequency band at the output as the control is 
to be strengthened. By comparison, the effect of p on output 
power spectrum in figure 15b is very much like the one found 
in figures 3b,4b by the deterministic analysis. Note that the 
output spectrum at p = 0.5 in figure 15b is about identical 
to the input spectrum in figure 14a. Similar comparison is 
drawn between figure 15a and figure 5c for the effect of T 
when input powers are in low-frequency band. 

For the input control with network queueing in figure 6, 
we introduce an output rate vector fo = ['i.o(j, k)] as defined 
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Figure 16: Stochastic control performance in function of T 
and BW;' subject to ij, = 10 (a) solution of p (b) overall 
mean queue length (c) overall queue standard deviation (d) 
overall average loss rate, with respect to p N  = 0.8, K, = 80 
and KN = 255 

by (13). Just like the input rate process {Q, y}, the output 
rate process can be exactly characterized by a Markov mod- 
ulated process, described by {G,Yo}. Note that the state 
space of To(t) is .(If, + T + 1) x (M + l), identical to that 
of the above entire QBD process. One can then formulate 
the network queue by another finite QBD process, which has 
the same structure as in (12) for the input queue process, 
except with a much larger phase space. Denote the network 
buffer size by K ,  and the constant service rate by p , .  We 
have p N  = Y / p N ,  which is the network utilization factor if 
no packet loss occurs at  both input and network queues. The 
network performance will be measured by the mean queue 
length, queue standard deviation and average loss rate, de- 
noted by ij,, uqN and L, respectively. As we had in figure 
7, one can tune the input control parameters (p ,T)  under 
a subjective condition i j , ,  and then evaluate ( i j  up,, L N )  
by the QBD-Folding algorithm. In numerical stu&'we follow 
the same example used in figures 14,15 for the construction of 
{G, Too), except to keep 0 5 T 5 30 for simplicity. The size of 
the phase space for the network QBD process will then be in 
the range of 405 to 555 for 0 5 T 5 30 at K, = 80. Further, 
for the four i.i.d. 2-state Markov chains of the original input 
process we still fix (Y1,CT1) at (0.25,1.22), but change the 
central-bandwidth BW1 to reflect the variation of the origi- 
nal input power spectrum P,(w) in figure 14a. BW1 is like the 
sinusoidal frequency WO in section 4. The smaller the BW,, 
the more the input powers are shifted from high-frequency 
band to low-frequency band, while the average input power, 
given by MYl2C;, in ( l l ) ,  remains unchanged. 

Similar to figure 7a, we show in figure 16a the solution of 
p in function of T and BWF' subject to a fixed input mean 
queue length i jI  = 10. The reason we choose ij, = 10 is to 
keep the average input loss rate L, relatively small. Assume 
K,  = 255 and p N  = 0.8 for the network environment. Dis- 
played in figure 16b are the corresponding overall mean queue 
length i j ,  + i j N ,  which is analogous to the results in figure 7d. 
Also in figures 16c,d we plot the solution of up, + uqN and 

Figure 17: Overall performance comparison between con- 
trolled and non-controlled systems in function of BWF' at 
p N  = 0.8, KI = 80 and K ,  = 255 

L, + L,. It is obvious that all these results are virtually inde- 
pendent on T. As already indicated by remark 3, the overall 
performance is insensitive to the joint adjustment of p and 
T. On the other hand, both queue and loss performances are 
very sensitive to the input power spectrum. The higher the 
BWF' is, the more the input powers are in low frequmcy 
band, and so the larger the queue and the higher the loss 
rate. The effect of BWI is somewhat like the effect of WO on 
queueing performance (although it is not linear as found in 
figure 7d). 

Now, let us suppose that one can remove the input control 
in figure 6 ,  and so the two separate queues are merged into a 
single one. We would then have a single queue system with 
capacity K = K, + K,  and service rate p ,  to support the 
original input process {Q, q}. Such a non-controlled system 
is also measured by the mean queue length, queue standard 
deviation and average loss rate, denoted by (ij,uq,L). In 
figure 17a we compare the results of both ( i j ,  + i j N ,  mq, +up.,) 
and (ij,uq) in function of BW;' for the controlled and non- 
controlled systems. The controlled system is designed by T = 
30 under the subjective condition i j4 = 10. The total buffer 
capacity of the two systems are identical. Since the controlled 
system has two separate finite-buffer queues, its average loss 
rate, as found in figure 17b, is always greater than that of the 
non-controlled system. This also explains why in figure 17a 
the queueing performance of the controlled system is slightly 
better than that of the non-controlled system. Nevertheless, 
the queueing difference between the two systems is always 
negligible. This study clearly indicates that the function of 
input rate control is simply to trade more input queueing for 
less network queueing. Once again, this is consistent to the 
remark 3 made by the deterministic analysis. As compared to 
the deterministic analysis, not only the stochastic analysis is 
much more difficult but also one can only solve much limited 
systems. 

6 Summary 
In this paper we have measured the effectiveness of input 

rate control in frequency domain. Based on spectral analysis 
we are able to explore the fundamental limits of input rate 
control. Four guiding principles have been developed. First, 
the overall queueing performance is inherently determined by 
both input source and network environment; the function of 
input rate control is simply to trade more input queueing for 
less network queueing. Second, due to the large disparity 
between source generation rate and link transmission rate, a 
stringent input rate control may unnecessarily increase the 
user end-to-end delay by significant amount. Third, while 
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Figure A-1: Queue response to  single sinusoidal input 
(a) input function (b) queue function 

input rate control is ineffective in high frequency band, it is 
effective in low frequency band if and only if the user can 
tolerate excess delay or loss at network entry point. Fourth, 
the network performance is insensitive to the adjustment be- 
tween token pool size and token generation rate for the leaky 
bucket control system. As one can see, the simple determinis- 
tic analysis of input rate control developed here has helped us 
to  gain a great knowledge of performance trade-off for input 
rate control in high speed network. 

Appendix 

The continuous fluid flow model at  T = 0 can be expressed 
by 2 = y , ( t )  - A-’ for q( t )  _> 0 where A-’ is the service 
rate. For a single sinusoidal input yr ( t )  = 7[1 + cos(wot)] ,  as 
described in figure A-1, one can introduce two time indexes, 
t1 and t2, such that q( t )  > 0 for t l  < t < t2 and q ( t )  = 0 
elsewhere within a sinusoidal period. We then get q ( 2 )  = 
Jt: [y, ( t )  - A-’]&, which yields 
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