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An Exploratory Study on Contingency Rules to Control a Production
Process subject to an Assignable Cause

Abstract

We present two contingency rules to control a production process that is subject to an
assignable cause, i.e., the process shifts from in-control to out-of-control state when
an assignable cause occurs. In this paper, we assume a 100% inspection policy as
opposed to the sampling concept. However, the first rule we suggest is comparable
with the traditional sampling model in that its criterion to intervene into the process 1s
based on the number of defective products. The second rule uses more information
than the first does: it triggers intervening into the process when the inter-arrival time
between two consecutive defective products is smaller than an optimally derived cut-
off rate. We first show how the two rules can be derived, and, as a preliminary
analysis, propose conditions under which one contingency rule might be more
effective than the other.

1. Introduction

Production pracess control is an essential part of production and operations
management, and operations improvement can be facilitated through effective
controlling of the production process. Effective process control enables operations
managers to intervene into the production system for controlling various forms of
variance occurring in the process (Jaikumar 1988). Inadequate process control causes
the production system to produce defective goods. A production process can be
affected by assignable causes, also referred to as ‘contingent events’ in this paper, that
shift the process state from ‘in-control’ to ‘out-of-control.” One of the key issues
related with the process control is to determine when to intervene into the production
process in order to prevent or minimize the negative effect that can be done by those
contingent events.

In the literature, process control is also perceived as related to a more comprehensive
function in operations management, i.e., inventory control/management. Hall (1983)
suggests that the inventory level is an indication of the efficiency of process control.
This relationship between inventory and efficient process control has been further
investigated in Hall (1987), Jaikumar (1988), Karmarkar (1987), and more recently
Klastorin, et al. (1993). Focusing on a more specific function of process conwol,
researchers in SPC (Statistical Process Control) theory have developed several
economic rules to intervene into the production process to minimize the costs due to
out-of-control process and also defective products it produces (Chiu 1976, Chiu and
Wetherill 1974, Chiu and Cheung 1977, Costa 1993, Duncan 1956, Gibra 1978, Goel
and Wu 1973, Nelson 1993, Taylor 1968). A typical SPC model would suggest an
economic rule taking into account an assignable cause, in-control versus out-of-
control state, false alarm (e.g., a defective product from an in-control process) versus
true alarm signaling occurrence of a contingent event, and probabilistic distributions
of processing time and event time. Markov decision theory has been used in some of
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the economic models: based on principles of dynamic program and Bayesian theory, a
Markov decision model capitalizes on a sequential updating’ in determining the
process state (Bertsekas 1987, Dreyfus and Law 1977, Ross 1970 and 1983)

In this paper, we present two contingency rules to control a production process,
assuming a complete inspection policy, i.e., 100% inspection. The process is assumed
to shift from in-control to out-of-control state when an assignable cause affects it. The
first rule we propose triggers intervening into the process when the number of
defective products is larger than an optimallv derived cut-off number. The second rule
uses additional information about the inter-arrival times between two consecutive
defective products: it triggers the intervention when the inter-arrival time between two
consecutive defectives is smaller than an optimally derived cut-off rate.

In the next section, we describe key characteristics of the production process assumed
in the current research. [n section 3, two control rules, first-order contingency rule and
second-order contingency rule, are defined and their analytical models are developed.
A preliminary analysis, based on a simulation run, comparing the two rules’
performance is presented also in the section. [n the final section, section 4, we discuss
the analysis outcomes and suggest a faw managerial implications.

2. Contingeney in Production Process Control

An assignable cause, also referred to as a contingent event in this paper, is an event
that causes a production procsss to shift from an ‘in-control’ state to an ‘out-of-
control’ state, and involves an inherent uncertainty. Whether a process is ‘in-control’
or “out-of-control’ is a relative concept, and this relativity makes the process control
“contingent.” For instance, if an in-control process always produces a good product,
then the process control is not contingent since a decision maker (DM), i.e., an
operations manager, can determine the state of the production process perfectly by
simply observing the products produced by the process: when a defective product is
produced, the DM can be sure that the process is in out-of-control state.

The problem becomes more complicated since P(process produces defectives | in-
control) > 0 and P(process produces defectives | out-of-control) < 1. In other words,
even if the process is not affected by an assignable cause, i.e., in in-control state, it
still produces defective products but with much smaller probability. Likewise, a
process affected by an assignable cause can still produce good products, albeit with
lower probability.

Let’s define,
P(process produces a defective | in-control) = ¢,
P(process produces a defective | out-of-control) = 4.

Then, we assume o < 3.
We focus on a 100% inspection policy as opposed to a sampling plan. Considering the

availability of sophisticated inspection squipment at a decreasing price, it seems not
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too constraining to assume a complete inspection. Other assumptions necessary for
mathematical modeling will be made in the ensuing associated sections.

A general picture of production process operations is in Figure 1.1. The process starts
(n in-control state. As mentioned already, before an assignable cause affects the
process, it can produce defective products, which are referred to as false alarms
(implying that the defectives are false signals for the process’ being out-of-control).
Once an assignable cause occurs, the process enters an out-of-control state and
produces defectives more frequently, i.e., with much higher probability. Until the
managers detect the process state and intervene into it, the process remains in the out-
of-control state. The two contingency rules we develop znable the managers to take an
appropriate measure to control the production process optimally.

Figure 1.1 Production Process and Inspection Procedure

Inter-arrival
Defective, Time < w
False Alarm

/, .
r I

In-control Assignable  2nd-order  [st-order
State Cause: Out-  Rule Stop  Rule Stop
of-control
s
< al
Time during which the
o Good Product assignable cause is underected
*  Defective Product according to each rule

3. First-order versus Second-order Contingency Rule

We develop two contingency rules to control a production process subject to an
assignable cause. Although we assume an 100% inspection policy different from a
sampling policy, the first rule, “first-order contingency rule,” is comparable with the
sampling concept in that it uses the number of false alarms as a criterion to trigger the
DM to intervene into the process. The second rule, “second-order contingency rule,” is
different from more traditional approaches in SPC (possibly including the first-order
contingency rule) in that it utilizes an additional information about the inter-arrival
times between two consecutive defectives.

In this section, we develop mathematical models for the contingency rules. As a
preliminary analysis based on a limited set of parameter values, we also set up a
sumulation run to compare the relative performance of the two rules.
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Before presenting the mathematical modeis, we point out basic attributes ot the
production process in point:

e As alluded before, the production process utilizes a 100% inspection policy.

o With the inspection, the manager (DM) can determine whether the product is good
or defective, but can not decide if an assignabie cause has affected the process.

e In order to determine whether an assignable cause (contingent event) has occurred,
the manager has to stop the process and carry out a thorough investigation.

Thus, the primary objective of the contingency rules is to help the manager decide
when to intervene into the process so as to minimize the total costs associated with the
process stopping, based on the information related with the occurrence pattern of
defective products.

3.1. First-order Contingent Process Control

Researchers focusing on an economic design of SPC strategy have extensively studied
the nature of contingent process control (Chiu 1976, Duncan 1956, Nelson 1993). We
call this line of research ‘Economic Statistical Process Control (ESPC).” According to

ESPC, the expected number of samples taken during an in-control period is (Chiu
1976): '

o [(z= DA e-u,

Ne=Z[ f x,z.e‘“d:] - (1)
= 0 <h l-e

where

h: a sampling interval (i.e., a sample is drawn ever 4 hour),
x: number of samples taken during an in-control period,
y: time for an assignable cause to occur, following an exponential distribution with a

probability density function of £,(y)=4e ™.

With P(process produces a defective | in-control) =& as the probability that a false
alarm occurs in a sample (i.e., a defective product is produced while the process is in-
control), we can obtain the expected number of false alarms during the in-control
period by multiplying Ng by « .

As mentioned before, we assume a 100% inspection policy. Under the policy, we need
to modify (1) accordingly. We can regard 4 as a processing time to produce a product.
As in the literature, we model 4 as following an exponential distribution with a
parameter 4, 1.2,

h: processing time (time necessary to produce 2 unit of product),
£, (h) : probability density function of A, and f, (4) = ue™*.

Thus, the expected number of false alarms during an in-contol period under the 100%
inspection policy is
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For a numerical analysis, (2) can be further simplified as

( "
an | (—I—Zkic—)—dk, ...... (3)

b]
where n=§ and k=] —e ™,

Let's define [47 as the largest integer which is less than or equal to 4. The first-order

contingent process control enforces a decision rule to intervene into the process when

. . 1_ k L I. 1_- k ”n

the number of defective products hits (ozn J (—,Ldk]+lz since J (——-)—d/c
0 x 0

is the most likely average number of false alarms during an in-control period, the m®

l

k

”n

|
-k
defective product, where m=l> anJ. (—k)—dk]:—l, is the first defective after the

0
process enters an out-of-control period on average. Since this first-order contingency
rule is consisteht with a general SPC model, we expect its performance to be
comparable with that of a policy based on the sampling concept.

3.2. Second-order Contingent Process Control

We can see that the first-order contingency rule does not utilize all of the possible
information given. For instance, it does not use information associated with P(process
produces a defective | out-of-control) = 4. A critical rationale underlying the second-
order contingency rule is to utilize the information by observing the difference in
inter-arrival times between consecutive defectives as the process status changes.

Figure 3.1 Inter-arrival time of two consecutive defective products

—a e X e N — X
|f N time(t)
l g

[nter-arrival time between
defective products

® Good Product
X Defective Product

Figure 3.1 depicts the concept of an inter-arrival time. Suppose at ¢; a defective
product is produced. At this point, however, the decision maker (DM) can not be sure
about if the process is in-control or out-of-control: all the DM can know is that the
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product is defective. Then, each time a product is produced, she has to consider the
following probabilities:

P(defect | in-control)=a , P(defect | out-of-control)= 3,

P

u +A

A
Plin-control)=P(h<y)= —éf_; , Plout-of-control)=P(h>y)= —
e

au LA

P(in-control = -0/~ =
(in-control | defect) o 50 , Plout-of-control | defect) 2 +5A

+B.

Suppose at ¢ another defective product is produced. Now the decision maker must
decide whether the process is affected by an assignable cause and thus out-of-control.
The DM can do so by analyzing the inter-arrival time of the two consecutive defective
products, i.e., £2- 7. [n making a decision, the DAf wants to minimize the total cost
due to two types of mistake. One such mistake is called type [ error that occurs when
the DM determines that the process is out-of-control when it actually is in-control.
The other, type II error, occurs when the DM determines that the process is in-control
when in fact it is out-of-control. The DM must balance the costs associated with the
two errors according to their relative weights.

For the second-order contingent process control, we suggest a cut-off rate of inter-
arrival time, @ as a decision criterion. Let's define the inter-arrival time of the two
latest consecutive defective products as r = t2- t;. Then, the analytic rule works as
follows. If r <&, then stop the production process since it is determined as ‘out-of-
control.” Otherwise, the process is assumed to be in-control.

In order to develop a rule using @, we need to specify two additional probability
distributions, one for the inter-arrival time between two consecutive defective
products while the process is in-control and the other while the process is out-of-
control.

Let’s define,

u: inter-arrival time between two consecutive defective products while the process
was in-conwrol when the first defective was produced,

g.(u) : probability density function of u,

v inter-arrival time between two consecutive defective products while the process
was out-of-control when the first defective was produced,

g.(v) : probability density function of v.

It is reasonable to assume E(ux) >£ (v), t.e., the mean inter-arrival time of defective

products while the process is out-of-control is shorter than that while the procsss is in-
control.

Assuming independence and memoryless property (Wolff 1989), we can show that u
follows an exponential distribution with a parameter,
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P(defect and in-control)x u =P(defect | in-control)xP(in-control)x y = E, - ] u

2 au’

-4 ey <
Thus, g, (u) ) e S (3)

Applying the same logic, we can obtain

P(defect and out-of-control)x v =P(defect | out-of-control)x Plout-of-control)x u

, B
) %L—J#,md g.(v)= Pui e “T (6)

U +A U +A

Since E(u) >E(v) is assumed, from (3) and (6) we can obtain

au®  Bul
#+A<#+l,andtherefore au<pr. (7

Thus, the objective of the current decision making problem is to minimize

Total Cost (TC( @ ))=¢,+3 |,
=c,xP2(t <@ | defect and in-control) xP [(in-control | defect) +

¢, xPy(t > | defect and out-of-control) xP [(out-of-control | defect)

$ , : cost due to type [ error,

$ , : cost due to type II error,

¢, unit penalty cost associated with type [ error,

¢, : unit penalty cost associated with type II error,

P;: probability associated with an event at ti, =1, 2 (see Figure 3.1).

In (8), we assume an additive cost function, i.e., linearly summing the two cost factors
with appropriate weights. Another caveat is in order. Although the decision making
process is considered dynamic, the objective function, TC( @), does not incorporate a
dynamic decision making mechanism. Rather, it is a point decision making. The DM
makes a decision by observing the probabilities relevant at the particular time point a
defective product is made, i.e., the probabilities of mistakes she would make if @ is
used as a cut-off rate. Thus, the objective function tries to minimize the weighted sum
of the probabilities at a time point: it does not intend to minimize the total cost
summed over an entire decision time horizon. [n effect, the DAf considers the past cost
as sunk, and the future cost as less relevant for the current decision making. Thus, the
goal of this analytic rule is to find out the most likely ‘timing’ an assignable cause
affects the production process by observing an inter-arrival time between two
consecutive defective products. Consequently, it might be possible that ¢, and c,
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depend on time, ¢ But if the overall production cvcle is short enough to make the
costs, ¢, and ¢,, change little within the current decision time horizon, we can regard
¢, and c, as constants for the purpose of the current decision making. [n this paper.
we consider such an environment.

The detailed objective function is

= T o ad + i o (Vv ‘B}-
TC(w') c, (6“ cu(u)du) au +‘B/1 ~Cy {ﬂj' o.~(">dv) au "‘B;L

—iv AL, ‘iu.f—.:a
__ae T 22N W= (9)
au +PA au +pA

[n order to obtain an optimal @, we differentiate (9) in terms of @,

dTC(w) auc, ay’ -j—“&w Bic, Bul e';’f%’
dTC(@) _|_axe | | Z£ |, G i
do au +pA +A au +fA ) \u +4

o : c, A
where 6 = ‘a/.zfl‘c,lﬁ‘} [—‘?#—;} and 6, = {}?@:—ﬂ_—] —ﬁ—&z}
+8A ] |4 T 1 +5A +

After rearranging (10), the optimal @ can be described as

m"‘=[ s A }lnF—‘-}. ...... ()
au™ =Pl 6,

In order for (11)tobea meaningful solution, it must be satisfled that @ * >0. Since we

é
know au< B, ie., au’ =pud <0, from (7). it must be that /n {-;—]SO, ie., 6,<6,.

1

. . . .ad ¢ -
By rearranging 6, and &, in (10), we can see that 6, <6, implies E{S _C—‘— . Thus, for

. . au |c
an acceptable solution, we need to impose _,é_ < f—. (12

A C,
au S . .. o

Theorem 1. ES = is a necessary condition for TC(@) to have an admissible
optimal solution. Theorem 1 is proved above.
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e gyt

r~f

a, .
We also know -ﬂ—j< I from (7). Therefore, if ¢, <¢,, then (12) is always satisfied

a, ¢ L .
because ﬁ—§< 1< [— . That ¢ <S¢, implies the penalty t0 a type II error is at least as
€2

great as that to a type [ error. [t makes sense since ‘determining an out-of-control
process as in-conwol’ can be more detrimental to the process control than
“determining an in-control process as out-of-con:rol’ provided the probability that the
process s out-of-control is the same as the probability that the process is in-control.
Even if ¢, <c, is not valid, (12) can still be satisfied. For a nontrivial solution, we

assume (12) is satisfied throughout the remaining discussion (or, we impose it as a
constraint).

Theorem 2. (Sufficient Condition for Optimality) z* that solves (11) 1s the
optimal solution for 7C( ar).

Sufficient condition for optimality calls for

d*TC F] . 2.
(ZW)=_Q L e P I e
dw +4 Ty +A

[n order for (11) to be optimal, (13) with @ * must be nonnegative
A}

From (7) au® —=ful <0or g > % (15) becomes

T* < [“'—"'Ji—]!n[ﬂ-Jv[ u A }In[a'u-] i.e.
au’ =fud ) 16, | et —put | " (g ) S

/(a‘f]

n[ﬁuﬂ,

[ u+A
low® ~Buid

Tg*so*F

: . au’ u+1 oy’
Since au® —fuld <0, In ——] <0, and thus [ ~ }{n[p - }> 0. Therefore,
A [ﬂu}. au” —ful LA

(16) is supported.
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Therefore, the second-order contingency rule uses @ * derived above as a decision
criterion. One caveat is in order. Even if the process is in-control at t7, there is
possibility that a contingent event occurs between ¢/ and 7. This may cause a slight
underestimation of an assignable cause occurring time. However, for the second-order
contingency rule, we specifically focus on the inter-arrival time distribution of
defective products, and we need to pay attention to the defective products only, trying
to pinpoint the assignable cause occurring time by observing the defective products’
inter-arrival times. Note that this rule is based on « and v rather than 4 and y that
constitute the underlying distribution of the production process.

3.3. Comparative Analysis

The primary thrust of this paper is to derive contingency rules to intervene into a
production process that can be affected bv an assignable cause. However, since we
expect the first-order contingency rule to perform in a comparable way with a general
SPC model, it can be useful to compare the two contingency rules’ performance.

We designed a simulation run to obrtain the following 3 performance measures (Law

and Kelton 1982):

a) % _detected: proportion of successful process stopping, i.e., (number of process
stops when there was an assignable cause, i.e.. successful process stops) divided
oy (total number of process stops),

b) mean_stqp: mean process stopping time.

) %_undetected: period during which an assignable cause has not been detected as
% of process stopping time, i.e., [(process stopping time - assignable cause
occurring time) / process stopping time].

Figure 3.2 Proportion of Successful Process Stopping

1 - Second-order Contingency Rule
092
0.8 -
0.7 -
06 -
05 -
0.4
03 +
02 =
Q.1 -

First-order Contingency Rule

% detected

0.005 0.0t Q.015 Q.02 0.02s 0.03
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Figure 3.3 Mean Process Stopping Time
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Figure 3.4 Period of Contingent Event Undetected
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The simulation was run- with the following parameters: i=0.1, 4=20, £=0.5~1.0,
@=0.005~0.03, and ¢, =c,. The simulation results are in F igures 3.2~3.4 (%_detected
in Figure 3.2, mean_stop in Figure 3.3, and % _undetected in Figure 3.4): in the
figures, for each ¢, the different values by [ were averaged, since it turned out that
0.35 3 <1.0 does not affect the solution very sensitively.

Given the simulation results, we can tentatively conclude:
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a) The second-order contingency rule performs better than the first-order
contingency rule in terms of mean process stopping time and period during which
an assignable cause has not been detected.

b) In terms of proportion of successful process stopping, the second-order rule is
better than the first-order rule up to a certain value of «, that is, once & 20.02, the
second-order rule loses its advantage over the first-order rule.

An exploratory implication of these results is that the value of S as decision
information might decrease as « becomes larger, i.e., P(process produces a defective |

in-control) increases: as « increases and approaches A, the information 4 provides
becomes less valuable. Therefore, for an incapable process (that produces a defective
frequently even if no assignable cause is present), a traditional SPC model works
reasonably. But, if the process is highly capable. the second-order contingency rule
might be performing better than the traditional model, i.e., the value of additional
information, A, can be significant.

4. Discussion and Implications

In this paper, we developed two contingency rules to control a production process
subject to an assignable cause. A primary distinction between the two rules is whether
to use an additional information about the process behavior. Based on a simulation,
we showed some of the conditions under which one contingency rule might perform
better than the other. That is, we tentatively concluded that for a capable process, the
second-order contingency rule that takes into account information of f performs better
than the first-order rule. However, we have to be very careful in extrapolating the
simulation result too far: the simulation run was based on only a set of parameters,
thus the result might be valid within a limited range. [t seems necessary to simulate
the models with more realistic and comprehensive parameter values. Another
suggestion for further research is concerned about the assumptions for probabilistic
distributions. For this research, we assumed exponential distributions for both
processing time and contingent cause occurrence time. [f a more general distribution
like a normal or 2 uniform distribution had been used, the contingency rules might
have taken different forms.

As mentioned before, the main thrust of this paper is to derive analytical rules for a
production system with a particular set of attributes such as 100% inspection policy
and identification of a good from a defective product on site. This can further limit the
validity of the paper’s conclusion. Nevertheless, the mathematical conceptualization
can be a helpful guide in pursuing this line of research.
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