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Exploration and Exploitation in Complex Networks: 

The Influence of Interpersonal Network Structure 

 

Abstract 

 

We use a simulation study to extend James March’s (1991) classic model of exploration and 

exploitation by allowing for direct interpersonal learning. As individuals interact with one 

another in an organization, they evaluate each other’s performance and alter their own solution 

routines by imitating other superior performers. In this setup, we are interested in whether a 

subgroup structure, which is popular in many organizations in the form of team or department 

structures, fosters the diversity of ideas and solution routines in an organization, thereby 

improving learning outcomes. We find that this structure is, indeed, conducive to learning, as 

long as there is a small fraction of random, cross-group links. Such semi-isolation allows the 

organization to learn moderately fast with the highest learning outcome. This numerical result is 

consistent with empirical research, which shows that small-world network properties enhance the 

performance of a system. 
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In 1991, James March published a seminal work on organizational learning that demonstrated a 

trade-off between short-run and long-run concerns in an organization. March developed a model 

in which an organizational code interacts with individuals who are initially endowed with diverse 

sets of beliefs. The organizational code learns from individuals with superior knowledge, and 

individuals, in turn, learn from the code. As a result, the organization’s knowledge improves over 

time. His model illustrated that “fast learners” (those that quickly adopt beliefs from the 

organizational code) rapidly exploit the firm’s existing knowledge, increasing the efficiency of 

organizational learning. Fast learners, however, are likely to converge prematurely on a 

homogeneous set of beliefs, thwarting long-run learning and leading the organization to a 

suboptimal equilibrium. In March’s simulations, a slower learning rate, though less efficient, 

allowed the organization to preserve more diversity of individual beliefs, enabling the firm to 

explore a wider range of possible combinations of beliefs and increasing the chance of improving 

the quality of organizational knowledge in the long run. This model demonstrated that although 

exploitation yields more certain and immediate returns, exploration creates and preserves the 

requisite variety of knowledge necessary for the organization to sustain its learning in the long 

term. The trade-off between exploration and exploitation represents a fundamental conflict 

between short-run and long-run concerns in many adaptive systems (Holland, 1975, Goldberg, 

1989). 

Since adaptive processes often put organizations at risk of focusing primarily on 

exploitation to the expense of exploration (March 1991), firms must conscientiously attend to 

and manage the mechanisms that influence their use of exploitation versus exploration. One such 

mechanism is the interpersonal network structure that shapes how individuals exchange and 

create knowledge within the firm.  
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When individuals in an organization interact, they pool, exchange, and recombine 

information, resulting in the creation or refinement of the knowledge possessed by each 

individual (Argote, 1999; Brown & Duguid, 1991; Larson & Christensen, 1993; Schilling & 

Phelps, 2006b; Wegner, 1987). Furthermore, numerous studies suggest that with whom an 

individual interacts can have influence well beyond any specific dyadic relationship; through the 

process of interacting with one another, individuals weave a network of direct and indirect 

relationships that serve as conduits for information dissemination throughout the firm. The 

overall pattern of relationships created through interpersonal interaction represents the structure 

of the interpersonal network. As demonstrated in recent studies, the structure of the interpersonal 

network within which individuals are embedded influences the likelihood and degree to which 

information is exchanged among a group of individuals, and the ease at which it may be 

assimilated and utilized productively (Borgatti & Cross, 2003; Hansen, 1999; Hargadon, 2003; 

Reagans & McEvily, 2003; Schilling & Phelps, 2006b; Uzzi, 1997; Uzzi & Spiro, 2005).  

In this paper, we extend March’s 1991 model by allowing for direct interpersonal learning. 

In particular, we examine learning dynamics in an organization that consists of many, semi-

isolated subgroups. This structure, which is commonly observed in the form of team or 

department structures, allows parallel, isolated learning among subgroups, since individuals are 

more likely to interact with other individuals within a subgroup than outside it. The key 

questions we raise are: Does this subgroup structure enhance organizational learning? Could an 

organization improve the balance of exploration and exploitation in organizational learning by 

designing its structure properly? 

Our numerical analysis demonstrates that the subgroup structure fosters the diversity of 

ideas and solution routines, thereby enhancing the long-run outcome of learning, as long as there 
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is a small fraction of random, cross-group links—i.e., subgroups are semi-isolated. These links 

play a role of bridges between different subgroups, dramatically facilitating exchanges of 

superior knowledge across groups. But, either when there are too many such cross-group links or 

when they are almost (or completely) absent, the long-run outcomes of learning tend to be 

suboptimal. All these findings together suggest that the semi-isolated subgroup structure 

improves the balance between exploration and exploitation. In this context, exploitation arises 

from learning across subgroups, which facilitates rapid diffusion and assimilation of currently 

superior knowledge, while reducing heterogeneity of knowledge within the firm. Exploration 

arises from the parallel, isolated learning among subgroups, which preserves the requisite variety 

of knowledge necessary for the organization to explore different areas of its fitness landscape.2 

Our paper is organized as follows. First, we introduce a model of organizational learning 

with subgroup structures. Second, we present the numerical results. Finally, we discuss the 

implications of our findings in light of the extant literature. 

 

MODEL 

We model organizational learning as a process by which individuals within an organization 

interact to exchange and jointly create knowledge. When individuals first join an organization, 

they have idiosyncratic sets of beliefs about reality that are heterogeneous across individuals. 

However, as these individuals regularly interact with their contacts within the firm, they will 

compare the performance of their own belief sets to those of their contacts. If individuals are able 

to ascertain that others have belief sets that are better performing in some way, they may update 

                                                 
2 The term “requisite variety” generally refers to Ashby’s (1956) Law of Requisite Variety that states, " the available 
control variety must be equal to or greater than the disturbance variety for control to be possible." This axiom is 
widely used to explain the need for variety to ensure evolvability in any entity subject to selection pressure (e.g., 
species diversity).   
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their own beliefs to incorporate aspects of the higher performing belief sets. The process of 

sharing, comparing, interpreting, and updating beliefs helps groups of individuals develop a 

shared understanding (Argyris & Schon,1996; Crossan, Lane & White, 1999; Daft & Weick, 

1984; Huber, 1991, Klimoski & Mohammed, 1994; Sandelands & Stablein, 1987).  In this way, 

the beliefs about reality possessed by individuals within the organization tend to become more 

homogeneous over time.  

Though individuals may be able to determine if other individuals have belief sets that are 

better performing than their own, they might not be able to determine which aspects of a 

particular belief set lead to better performance. That is, while an individual may believe that 

another’s individual’s belief set is more complete or correct than their own, they may not know 

how it is more correct or complete. This is compounded by the fact that an individual’s better-

performing peers may not have identical belief sets. These factors cause an individual to face 

ambiguity about whether and how to update their own beliefs. To address this, we adopt a 

majority decision rule similar to that used in the March (1991) study. Individuals look at all of 

the other individuals with which they interact, and identify which are better performing than 

themselves. The focal individual then identifies what the dominant belief (the majority view) is 

on each of m dimensions of the belief sets of these higher performing peers. The focal individual 

may then decide to update each dimension of his or her own belief set to this majority view with 

some probability p that reflects the proclivity or ability of individuals to learn from one another. 

This majority decision rule (and equiprobability otherwise) is consistent with a large body of 

research on social decision schemes and has been supported by numerous studies of social 

decision making (e.g., Castore, Peterson & Goodrich, 1971; Davis et al, 1975; Kerr et al. 1976). 
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It is particularly likely to be used by groups when it is difficult for individuals to assess which 

alternative is correct.   

Main Entities 

In our model, there are three main entities, reality, individual, and organization.  

External Reality. Like March (1991), we describe reality as having m dimensions, each of 

which has a value of 1 or -1. The probability that any one dimension will have a value of 1 (or -

1) is 0.5.  

Individual. There are n individuals in an organization. Each of them holds m beliefs about 

reality at each time step. Each belief for an individual has a value of 1, 0, or -1.  

Organization. As mentioned earlier, our model is different from the March model (1991) in 

that an organization is seen as a complex system where its individual members directly interact 

with one another. A key to the understanding of the dynamics of such a system lies in its 

topology of interaction patterns (Strogatz 2001). To represent interpersonal interactions, we 

modified Watts’ (1999) “connected-caveman” network, which is irregular—some nodes have 

more links than others. As shown on Figure 1a, our modified connected-caveman network (or 

“nearly-isolated” network) is a regular network, where every node has the same number of links. 

To construct different interaction patterns, we rewire each link of this subgroup structure by 

making random connections between subgroups with probability β. When β = 0, the nearly-

isolated network structure is preserved. When β is non-zero but sufficiently small, the subgroup 

structure is preserved, but there is a few random connections among subgroups. On the other 

hand, when β grows large and approaches unity, a network becomes random, as shown in Figure 

1c. 

---------------------Insert Figure 1 About Here --------------------------- 
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Learning  

Individual learning occurs when each individual modifies her beliefs through interactions 

with other individuals. Organizational learning is viewed as a collective outcome of interactions 

of individual members. An individual is likely to change her beliefs when she is influenced by 

“superior performers.” They are defined as those individuals who are connected to a focal 

individual and whose performance is superior to that of the focal individual. These superior 

performers may not have the same beliefs on each of m dimensions. Then, the focal individual 

adapts to a dominant belief (or a majority view) within the superior performers on any particular 

dimension. Like March (1991), we also assume that this learning process is probabilistic. That is, 

each individual adapts to each dominant belief on m dimensions with probability p. 

Payoff 

The performance of an individual is evaluated at every time step by a given payoff function. 

Let Φ(x) denote a generalized payoff function for a bit string x with its dimension m. We assume 

that Φ(x) is characterized by a continuum between two polar ends. In the one end of the 

continuum is a linear payoff function L(x)—this is equivalent to the one March (1991) used in 

his learning model. Let δj denote jth element of the bit string x. Then, the linear payoff function 

is 

L(x) =∑
=

m

j
j

1

δ                                                    (1) 

where δj = 1 if jth belief for an individual corresponds with reality on that dimension, and 

δj = 0 otherwise. In this framework, L(x) is a special case of Φ(x). When the payoff function is 

characterized by (1), it is rather easy for an organization to search for higher payoff points 

because a payoff of each problem is independent from others. 
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Let us consider another extreme case. We consider Hinton and Nowlan’s (1987) payoff 

function, which is known as a “needle in a haystack” search problem. Let H(x) denote this payoff 

function. There is only one peak in a space of 3m possibilities, and all the others are characterized 

by flat surface. Unlike March’s linear search problem, this problem is very hard because the 

search landscape provides no cue for guiding evolution to the peak. For instance, suppose m = 10. 

For simplicity, suppose that a bit string representing the highest payoff is 1111111111. The 

essence of the problem is that its neighboring points, say, 1011111111 or 1101111111, show a 

zero payoff. That is, even when the organization is one step away from the peak, there is no clue 

for the organization to infer where the peak is. Only random trial and error can lead it to the peak. 

At every position, there are 3m -1 ways to move. 

Between the two extreme cases, there is a middle ground, where an m-bit string is 

partitioned into l independent subsets. Within each subset, there are s bits, whose performance is 

coupled. Note that l = m/s. Formally, we can represent our generalized payoff function as 

Φ(x) = ∏∏∏
+−=+==

+++
m

smj
j

s

sj
j

s

j
j sss

1

2

11

... δδδ                              (2) 

Here, s serves as a tunable parameter that can control the difficulty of the search problems. 

Note that 1 ≤ s ≤ m. When s = 1, Φ(x) = L(x). By increasing the value of s, the search problem 

becomes more interdependent. That is, the performance will not improve unless several beliefs 

jointly match corresponding parts of reality. For example, consider a case for s = 5. When an 

individual obtains all of correct beliefs, her payoff is 5. But, when an individual has four correct 

beliefs and one incorrect one, her payoff is zero. In general, if any single element among s beliefs 

is wrong, the payoff for the whole subset becomes zero. The bigger the value of s is, the more 

interdependent the search problem is. In other words, s represents the degree of coupling. When s 

is small, the search problem is loosely coupled. When s is large, the search problem becomes 
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tightly coupled. When s = m, the search problem becomes Hinton and Nowlan’s (1987) payoff 

function. That is, 

Φ(x) = ∏
=

m

j
jm

1

δ  = H(x)                                          (3) 

The main benefit of this characterization of the payoff function is that we can control the 

difficulty of a search problem with only a single parameter s. 

 An organization’s performance is measured as the average performance across all 

individuals in the organization.3  

Simulation Procedure 

Preparation Step. All parameter values for the simulation (see Appendix A) are set up at 

this stage. Reality is determined by randomly assigning a value of 1 or -1 for each of m 

dimensions. In the runs of the simulation for the current study, m is set to 100. There are 280 

individuals in each organization. Each individual is assigned a value for each belief on the m 

dimensions, randomly drawn from 1, 0, or -1. Also, an organizational network is constructed by 

connecting each individual to six other individuals within a subgroup, and then rewiring these 

connections according to the algorithm specified before.  

Period 1. The simulation procedure will evaluate each individual’s performance by 

comparing her beliefs with values on m dimensions of reality. This evaluation is based on the 

payoff function described before. Then, superior performers for each individual will be 

determined. When there is no superior performer, the focal individual keeps all of her previous 

beliefs. When there are two or more superior performers, a majority belief among them will be 

determined for each of m dimensions. The focal individual adapts to each majority belief with 

                                                 
3 Note that by the time equilibrium is obtained, almost all individuals will possess identical beliefs so the difference 
between using the average performance or the maximum performance of any single individual or group of 
individuals is trivial.   
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probability p. 

Period t. All of individuals at time t −1 who have superior performers will modify their 

beliefs at period t. The learning process will be repeated until no further change in any 

individual’s beliefs arises (equilibrium is obtained).   

 

SIMULATION RESULTS 

 To investigate whether organizational structure affects learning outcomes, we developed 

a computational model, which would enable a learning process that is almost identical to the one 

used in March (1991), except that learning occurs through interpersonal interaction rather 

through interaction between employees and an organization code. In this setting, we are 

interested in whether a subgroup structure, which is popular in many organizations in the form of 

team or department structures, fosters the diversity of ideas and beliefs in an organization, 

thereby improving learning outcomes. First, consider an extreme type of organizational structure, 

“nearly-isolated subgroup structure,” which is illustrated on the left in Figure 1. We can 

construct diverse kinds of subgroup structure by randomly rewiring some of the existing links in 

this structure with probability β. The bigger the value of β, the greater the number of random, 

cross-group links. For example, when β = 0.1, we have a “semi-isolated subgroup” structure with 

about 10% of random, cross-group links. When β = 1, subgroup identity disappears due to too 

many cross-group links. The questions are: which type is most conducive to improving learning 

outcome in the long run?; can we improve the balance between the long-run outcome and 

learning speed by designing an organization properly? 
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Typical Simulation Runs 

 As a starting point, we show the typical behavior of our learning model. In March’s 

model, the speed of organizational learning is controlled by learning rates for organizational 

members. Since the key variable of our interest is organizational structure, we keep learning rate 

constant at p = 0.3 for the moment—we relax this assumption later in our sensitivity analysis. 

The other parameters used in the simulations are specified in Appendix. Figure 2 shows that all 

of the dynamics reach some steady states in the long run. The results indicate that the speed of 

organizational learning is affected by structural parameter β, which can be roughly interpreted as 

a fraction of cross-group links. The bigger the fraction of cross-group links, the faster the speed 

of organizational learning. By more facilitating the exchange of diverse ideas and beliefs across 

subgroups, organizational members can learn faster. The learning speed tend to be faster when β 

approaches 1 or when subgroups tend to lose their identity with too many cross-group links. On 

the other hand, the learning outcome tends to be lower with any increase in β over an interval of 

β ∈ [0.1, 1]. When subgroups are “semi-isolated” with a small fraction of random cross-group 

links (e.g., β = 0.1), the long-run outcome of learning seems to be highest. On the other hand, 

when β = 0, or when subgroups are nearly isolated, both the learning speed and outcome are 

lowest. Due to the randomness in our system, however, we cannot make a conclusion only with 

typical simulations. 

Simulation Experiments 

We conducted simulation experiments to systematically investigate the effects of 

network structure on the long-run outcome of learning. To reduce statistical errors, we repeated 

each simulation 100 times. All the data in this figure are averaged over 100 simulation runs at the 

steady states. 
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 As shown in Figure 3, the results of the simulation experiments confirm the previous 

typical observation that the long-run average outcome of learning tends to decline over the 

interval of β ∈ [0.1, 1] as β approaches 1. In this range, the variance of observations is roughly 

equal across different values of β, as shown in the cumulative frequency distributions in Figure 

4.4 One may wonder why the long-run outcome tends to decrease with an increase in cross-group 

links. To address this issue, we developed a measure of organizational diversity, or what we call 

“dissimilarity index.” To construct such a measure, we make pairwise comparisons of all n 

individuals. There are 
2
1 n(n − 1) pairs. For each pair of individuals, there are m beliefs to be 

compared. Then, we measure dissimilarity as follows: 

Dissimilarity = ∑ ∑
−

= =−

)1(
2
1

1 1)1(
2

nn

i

m

j
ijnmn

ω                            (x) 

where ωij takes on a value of 1 if two chosen individuals for ith pair have different beliefs on jth 

dimension, and 0 otherwise. 

Figures 5a and 5b show that an organization tends to lose the diversity of ideas and 

beliefs very fast when networks are characterized by a large fraction of cross-group links (e.g., β 

= 1) or the loss of subgroup identity. Here, dissimilarity among organizational members quickly 

disappears. In our basic model, once organizational diversity is lost, there is no way for an 

organization to promote it. So, the management of such diversity is crucial for improving the 

long-run performance. Diversity among individuals is maintained longer in a semi-isolated 

network structure (e.g., β = 0.1), where a subgroup structure exists with a small fraction of cross-

group links. Indeed, such semi-isolation improves the long-run outcome of learning. Figure 3 

                                                 
4 An exception is the variance of observations for β = 0, which is much larger. The cumulative frequency 
distribution for this case covers a much broader range than other distributions.  
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indicates that this finding is not parameter-specific, but that there is a broad interval of β over 

which the long-run outcome is relatively high.5 These results suggest that subgroup structure, 

which fosters organizational diversity, is conducive to learning, as long as a small fraction of 

random, cross-group links exist. 

But our study shows that the long-run outcome of learning is low when β = 0, or when 

subgroups are nearly isolated. In this case, diverse ideas and beliefs among different groups are 

well maintained. Figures 5a and 5b demonstrate that dissimilarity among individuals decays very 

slowly in this network. Then, why do we systematically observe the lower performance in this 

network? In our model, learning from other superior individuals is key to improving the outcome. 

The problem with this structure is that diverse ideas cannot be exchanged easily across 

subgroups due to the limited availability of cross-group channels. In other words, maintaining 

organizational diversity well is no good unless it influences organizational members across 

subgroups to improve their knowledge. 

Would the long-run outcome of organizational learning be worse if subgroups are 

completely isolated from one another? We tested this idea by running another simulation. Our 

numerical analysis shows that the average learning outcome under this setting is close to zero, 

indicating that the complete isolation makes it very hard for an organization to improve its 

knowledge. We also tested another extreme form of organizational structure, a complete network, 

where every individual is directly connected to every other individual in an organization—in this 

case, subgroup identity completely vanishes. Our analysis reveals that the average outcome is 

about 36.7, which is much lower than those in the above sparse networks. This suggests that 

organizational learning is also very hard in the complete absence of subgroup structure. 

                                                 
5 We thank James March for bringing this issue to our attention.  
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DISCUSSION 

In this study, we used a series of simulations to examine the influence of the interpersonal 

network structure on organizational-level learning. We found that a subgroup structure, which 

fosters the diversity of ideas or beliefs within an organization, is conducive to learning, as long 

as there is a small fraction of random, cross-group links. Such semi-isolation allows the 

organization to learn moderately fast with the highest learning outcome. On the other hand, 

either the near-isolation or the absence of subgroups does not help organizational members 

improve learning outcome in the long run. 

Our findings speak to the literature on exploration and exploitation. In March’s (1991) work, 

the main source of the tension between exploration and exploitation was learning rate. 

Exploitation arises as fast learners increase the efficiency of organizational learning, leading to a 

suboptimal learning outcome in the long run. On the other hand, exploration occurs when an 

organization becomes inefficient in learning with slow learners, who collectively achieve the 

better, long-run outcome by preserving the diversity of ideas and beliefs. Our model did show 

this sort of tension when we varied learning rates. But a more important contribution of our 

paper is to identify a new source of tension between exploration and exploitation. In our model, 

exploitation arises from learning across subgroups, which facilitates the faster diffusion of 

currently superior knowledge. On the other hand, exploration arises from the parallel, isolated 

learning among subgroups, which better maintains the diversity of solution routines. That is, our 

study numerically demonstrated that organizational structure is an important source of tension 

between exploration and exploitation.  

Furthermore, our findings address a key question in the literature: How should an 

organization balance the effort between exploration and exploitation? Our study numerically 
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demonstrated that semi-isolation with a small fraction of random, cross-group links improves the 

balance between learning speed and long-run outcome. This study thus extends prior work on 

exploration and exploitation by demonstrating the importance of organizational structure, and 

offers important implications for organization design. 

Implications for Organizational Design and Innovation 

Our results have direct implications for managers seeking to design organizations that strike 

a balance between exploration and exploitation. In our study, the best equilibrium performance 

levels were obtained when groups of individuals in the organization were semi-isolated. This 

enabled each group to pursue an isomorphic learning path until progress slowed, and then 

explore whether the within-group solution could be improved upon through recombination with 

the solutions created by other groups. These results are consistent with prior work that has 

suggested that it is beneficial to isolate new product development (NPD) teams, at least 

temporarily, from each other or from the rest of the organization (e.g., Bower & Christensen, 

1995). Isolating NPD teams and giving them considerable autonomy can help them to pursue 

new technological possibilities, unfettered from existing organizational paradigms, routines, and 

incentives. This is especially important when teams are working on disruptive innovations whose 

features appear inconsistent with current customer requirements. Without such isolation, NPD 

teams may face undue pressure to conform to existing organizational practices, reinforcing the 

organization’s current capabilities rather than building new areas of competence. On the other 

hand, our results also suggest that teams should not be completely isolated. A modest degree of 

connection between NPD teams (or between other divisions of the firm) is important to enable 

the leveraging of ideas across teams, fostering the identification of valuable synergies. This is 

consistent with prior research that suggests that iterating between centralized and decentralized 
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structures may result in greater long-term learning than either centralization or decentralization 

alone (e.g., Bartlett & Ghoshal, 1990; Siggelkow & Levinthal, 2003). 

The results here are also generally consistent with recent work that suggests that small-

world networks may be valuable for creativity and innovation. As argued in Schilling and Phelps 

(2006a, 2006b), the redundant connections created by clustering help to increase the information 

transmission capacity of a network, improving the speed of access and degree to which 

information can be meaningfully understood and utilized. Nonredundant connections in a 

network, on the other hand, help to increase the scope of new information that can be accessed. 

Small world network properties help to resolve the tradeoff between transmission capacity and 

scope of accessible information. Consistent with this, Schilling and Phelps (2006a) found that 

small-world properties in alliance networks were significantly related to the patenting output of 

firms in such networks. 

Fundamental Linkage to Evolutionary Theory 

Our study also indicated that when the interpersonal network is characterized by a subgroup 

structure with a modest amount of random cross-group links, learning within and between 

subgroups played out in a process that bore remarkable symmetry to Sewall Wright’s shifting 

balance theory. Wright (1964) attempted to explain how a species could make adaptive walks 

from a lower peak to a higher peak on a fitness landscape—this has been conceived as a 

fundamental problem in evolutionary biology. Until he proposed this theory, this had been a 

puzzling problem. Biologists had known that two variation mechanisms, recombination (through 

mating processes) and mutation, are not very helpful when the species is trapped into a local 

peak. Since all the organisms in this state become similar to one another, recombination will only 

generate offspring that look like their own parents. Then, the whole species cannot move out of 
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the local peak. Mutation may be the only hope. But it is often deleterious, especially when 

mutants are incompatible with existing genes. 

Wright argued that there should be an additional variation mechanism, what he called 

“demes,” or semi-isolated local populations. Wright described (1964): “Most species contain 

numerous small, random breeding local populations (demes) that are sufficiently isolated (if only 

by distance) to permit differentiation…” Our numerical results are quite consistent with Wright’s 

intuition. But the critics argued that his conceptualization of the adaptive landscape is not precise 

enough in characterizing a space. Martin, Lienig and Cohoon (2000: 102-103) argued: 

 

First and foremost, it is not clear what the topology of the underlying space should be. 
Wright (1932) considers initially the individual gene sequences and connects genetic codes 
that are ‘one remove’ from each other, implying that the space is actually an undirected 
connected graph. He then turns immediately to a continuous space with each gene locus 
specifying a dimension and with units along each dimension being the possible allelomorphs 
at the given locus. Specifying the underlying space to be a multidimensional Euclidean 
space determines the topology. However, if one is to attempt to make inferences from the 
character of the adaptive landscape (Radcliffe 1991), the ordering of the units along the 
various dimensions is crucial. With arbitrary orderings the metric notions of nearby and 
distant have no clear-cut meaning…  
 

Given no clear-cut meaning of the underlying space, it is hard to make sense out of what 

semi-isolation means. By adopting the variants of modified connected-caveman graph (i.e., 

subgroup structure), we clarified what the underlying space would mean. In organizational 

context, the space means how individuals interact with one another. It also means whether 

subgroups are nearly isolated or not or whether a subgroup structure exists or not. Furthermore, 

our study provided a more precise operational definition of semi-isolation: a subgroup structure 

with a moderate number of random, cross-group links. Put another way, semi-isolation satisfies 

what complexity theorists would call “small-world” network properties—high clustering with a 

short characteristic path length. In particular, our numerical analysis indicates that this definition 
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is not specific to an arbitrarily chosen parameter value, but that there is a broad interval of such 

values where evolutionary outcomes are relatively high. Therefore, we believe we contributed to 

this literature by proposing how Wright’s conceptualization could be numerically reconstructed 

in a parsimonious way.  

 

CONCLUSION 

The research here suggests that organizational learning is a function of both the propensity 

of individuals to learn from one another, and the network topology that determines who learns 

from whom. Both dimensions can significantly influence the degree to which an organization 

exploits well-known competencies or explores unfamiliar terrain. Furthermore, these dimensions 

interact, enabling levels of one to influence the effect of the other. Future studies of 

organizational learning should thus attempt to account for both the learning rate and the 

underlying network topology; doing so can help us greatly advance our understanding of the 

balance between exploration and exploitation.  
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Appendix. Parameters for Simulations 

 

Figure n b m β p s

2 1000 7 100 Variation 0.3 5

3 1000 7 100 Variation 0.3 5

4 1000 7 100 Variation 0.3 5

5a 1000 7 100 Variation 0.3 5

5b 1000 7 100 Variation 0.3 5
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FIGURE 1 

Various Types of Organizational Structure 
 
 

a) Nearly-isolated subgroup 
structure 

b) Semi-isolated subgroup 
structure with randomly 
rewired links 
 

c) Random network:  
Network structure without 
subgroup identity 



 

FIGURE 2 

Typical Simulations 
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FIGURE 3 

Organizational Structure and Learning Outcome 
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FIGURE 4 

Cumulative Frequency Distributions of Learning Outcomes 
 

0

20

40

60

80

100

0 20 40 60 80 100

Performance

C
um

ul
at

iv
e 

fre
q

Beta = 0.0 
Beta = 0.1
Beta = 0.3
Beta = 1.0

 
 
 
 

FIGURE 5 

(a) Diversity of Beliefs over Time: 
Typical Simulation Run 
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(b) Ten-period Average of Dissimilarity 
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