EXTE . #1058 1% 19973 169

Design and Implementation of Group Decision
Support System using Object-Oriented
Modeling Tec¢hnique*

Soung Hie Kim** - Sung Sik Cho** - Sun Uk Kim*** - Hung Kook Park****

OMTE 0|23 JBIARIYRIYAIARS] M7 W 23
ELRESEREARESEOE £

{Abstract)

Recently, in organizations many decisions are being made by groups. And the organization is
changing a lot and so are groups. To help decision making of changing groups, we need more
flexible and more adaptive GDSS. Therefore one of the critical success factors of GDSS is flexibility
and incremental improvement.

Prior research on specifying design requirements of GDSS suggests generic design requirements.
But they are too general to be incorporated directly into system design, because of the disparity
between real group and ideal group that the researchers studied. Many design strategies that start
from the generic design requirements thus have contingency variables that change as the characteristics
of group change. From the viewpoint of developers, these variables implicate the desirability of
flexibility. To achieve flexibility we need new methodology of design and implementation.

Nowadays, object-oriented analysis and design methodologies have been progressed to the point
that many systems are being developed through these methodologies.

In this paper, a design is proposed using Object-Oriented Modeling Technique (OMT). Exploiting

object-oriented paradigm results in a highly flexible and easily upgradable design.

1. Introduction individuals who act as one unit to achieve a common
goal. The group can be permanent or temporary. The

A group or work group refers to two or more group can be in one location or in several locations,

* This paper was supported by Korea Science and Engineering Foundation(KOSEF# 93-0100-12-01-3).
** Dept. of Management Engineering, Graduate School of Management, KAIST, Seoul, Korea
**% Dept. of Industrial Engineering, DanKook University, CheonAn, Korea

¥**% Dept. of Telecommunication Systems Management, SangMyung University, Seoul, Korea

170 Soung Hie Kim - Sung Sik Cho - Sun Uk Kim - Hung Kook Park : Design and Implementation of~

and it can meet at the same time or at different time.
A group can be a committee, a review panel, a task
force, an executive board, a team, or a permanent unit.

A Group Decision Support System (GDSS) is an
interactive, computer-based system that facilitates the
solution of unstructured problems by a set of decision
makers working together as a group {1]. And a GDSS
consists of a set of software, hardware, language
components, and procedures that support a group of
people engaged in a decision-related meeting [2].

Work environment tends to change a lot and so do
groups. Deep transformations are modifying today’s
organization of work. Changes in the social environment
permeated work settings with a whole new regime of
demands and constraints. The turbulence characterizing
modern business environments forced industrial enter-
prises to improve their innovative skills, operation
flexibility and product quality. To meet these demands,
work organization must change rapidly and needs more
flexible and more adaptive GDSS to help decision
making for changing groups.

One of the critical success factors of GDSS is
incremental improvement [3]{4]. Using feedback of the
participants with hardware and software innovations, the
GDSS facility needs to be enhanced constantly. Groups
in current work environment keep changing, thus a
GDSS should have flexible design and architecture to
adapt itself to changing environment. To make GDSS
have these property, new methodology of design and
implementation is needed.

On the technological side, since the mid-1980’s there
has been growing interest among system researchers in
an alternative approach to system development called
object-oriented analysis and design [5]. The advantage
of this approach can be summarized as: better
user/analyst communication and thus easier modeling,
reusability of code, and improved flexibility. Nowadays
this approach is mature to create many design and

implementation methodologies. One of them is Object-

Oriented Modeling Technique (OMT)[6].

OMT presents an object-oriented approach to software
development based on modeling objects from the real
world and then using the model to build a language-
independent design organized around those objects.
Object-Oriented models are useful to understand prob-
lems and design programs and databases. A design using
OMT tends to have much flexibility and maintainability.

The main concern of this research is to design and
its implement a GDSS appropriate for changing work
environment using OMT. By using object-oriented
paradigm, the design proposed is flexible, maintainable
and can be evolved easily.

The scope of this research is the design and
implementation of a GDSS for meetings that generates
new ideas. There are various meetings in real work
environment such as reporting, decision making, generat-
ing new ideas and project [7]. The basic functionality
of GDSS for meetings of generating new ideas include
idea generation, idea organization, voting, and documen-
tation.

The rest of this paper is organized as follows. Section
2 presents the multi-disciplinary research on the groups
and the design strategies, and discusses the limitations
of current GDSS design. Section 3 reviews OMT briefly
and explains why OMT is chosen as a development
methodology. Section 4 proposes a design of GDSS.
This design is based on the three-layered Client/Server
architecture. Section 5 explains how our design is
implemented. The final section summarizes the contribu-
tions of this paper and discusses a direction of further

studies.

2. Literature Review

2.1 GDSS Foundation Issues

This section describes a survey and analysis of GDSS

research foundations that are used to guide GDSS

EXIZ 5104

#1997, 3 171

(Table 2.1) Work Group Research(Source: Mandviwalla, 1994)

Author

Field

Focus

Alderfer (1987)

industrial psychology

inter-group issues

Friedlander (1987)

organizational development/behavior

group as a subsystem of the organization

Gersik (1989)

organizational behavior

group development

Goodman, Ravlin, & Schmike (1990)

organizational behavior

effectiveness and underlying assumptions

Hackman (1987)

organizational behavior

design of and process gains

Hirokawa & Johnston (1989)

communications

communication, development & decision making

Levine & Moreland (1988)

social psychology

group processes

Mintzberg (1973)

management science

use of time

McGrath (1984)

social psychology

group tasks

McGrath (1991)

social psychology

task, time, & development

Panko (1992)

information systems

use of time & characteristics

Schwartzman (1990)

organizational behavior

meetings

Steiner (1972)

social psychology

process losses & development

Stokols & Shumaker (1981)

organizational behavior

seftings & environment

Sundstrom, De Meuse, & Futrell (1990)

industrial psychology

effectiveness & types

Wells (1990)

sociology

intact groups

Wicker (1987)

environmental psychology

environment

development. Most modern system development metho-
dologies emphasize the importance of focusing on user
needs. Therefore, the starting point of these methodolo-
gies is the definition of user requirements that must be
reflected into the system design. GDSS development is
no exception.

(Table 2.1) describes a multi-disciplinary survey and
analysis of work group research that is used to derive
generic GDSS design requirements. The work group is
studied in many disciplinary areas, including organiza-
tional behavior, organizational dynamics, management
science, social psychology, decision theory, communica-
tions, and office automation. From the viewpoint of
GDSS design, all these disciplines are valid reference
points providing clues to identifying GDSS design
requirements. This paper limits the definition of work
group as two or more individuals whose mission is to

perform some tasks and who act as one unit. The group

can be permanent or temporary [8].

Based on the prior research many design requirements
were derived as shown in {Table 2.2 however these
requirements are too general for developers to reflect
them into system design. Thus, these design require-
ments remain as an abstraction of contingency variables

such as group size, proximity, and tasks.

(Table 2.2) Generic Design Requirements [9]

Generic Design Requirements

Support multiple group tasks

Support multiple work methods

Support the development of group

Provide interchangeable interaction methods

Sustain multiple behavioral characteristics

Accommodate permeable group boundaries

Adjustable to the group’s context

172 Soung Hie Kim - Sung Sik Cho - Sun Uk Kim - Hung Kook Park : Design and Implementation of~

(Table 2.3) summarizes strategies for designing
GDSS. DeSanctis and Gallupe proposed a multidimen-
sional taxonomy of GDSSs using the contingency
approach. They suggested that the design of GDSS
should be driven by three factors: the size of the group,
the presence or absence of face-to-face interaction, and
the task confronting the group [10].

Huber suggested an activity-driven design strategy as
an alternative to the task-driven strategy [2]. Decision
groups can have a wide variety of tasks. To hold various
tasks in a general GDSS, he suggested that design
should focus on group activities rather than on group
tasks. And he insisted that whatever task a group may
engage in, group members will be found to be carrying
out one or more of the following activities: information
retrieval or generation, and information sharing or
information use.

Nunamaker et al. focused on the process gains and
losses [11]. They proposed four contingency variables
(group, task, context, GSS (Group Support System)) that
affect the meeting process, meeting outcomes and four
theoretical mechanisms by which the GSS can affect
the balance of gains and losses: process support, process
structure, task support, and task structure. And they
proposed three basic concepts on which the general
design builds: GSS meeting room, meeting room

facilitation, and software toolkit.

GDSS. However, the limitations do not necessarily
indicate that existing GDSSs are poor products. Instead
the limitations outlined here indicates the need for
another design approach that can make up the design

limitations.

Cannot_support multiple group tasks

One way to provide support for multiple group tasks
is to implement systems patterned into different modules
that support each generalized task process. For example,
VisionQuest supports multiple group tasks through a
toolkit of modules that directly map into generalized
group tasks such as generating ideas(e.g. brainstorming
tool). However, the depth of support for a particular
task is limited. For example, the feature set is limited
in systems such as VisionQuest compared with special-
ized tools such as ForComment for managing documents
related to group meetings and conferences and
TALKShow for desktop conferencing. However, these
systems in turn are limited in that they are often self
contained and focused on addressing one particular task.
Developing practical support for truly multiple group
tasks will entail massively expanding the functionality
of a single product or getting products from different
vendors to work together.

In contrast, other systems such as Lotus Notes ignore

support for specific tasks and are oriented to information

(Table 2.3) GDSS Foundation Issues

Author Focus

Design Strategy

DeSanctis & Gallupe

Information-Exchange of Decision Making

Group Size, Member Proximity, Task

Huber Information Sharing & Use

Activity-Driven Design

Nunamaker, et al. Process Gains & Losses

Process Support, Task Support, Process Structure,
Task Structure

2.2 Limitations of Current GDSS Design

This section outlines the limitations of the extant

sharing and communication. Lotus Notes provides only
general foundation and leaves generating task specific

modules to users or third-party vendors.

EFTE : HI0E F15E 1997.3 173

Designed to fit in special settings

GroupSystems [12] was designed for decision room
that consists of a large, usually U-shaped table equipped
with twelve to thirty networked microcomputers and a
large screen projection system that permits the display
of work done at individual workstations. Although most
of the offices have special rooms for meetings or
discussions, they are usually not equipped as decision
rooms but with just a table and an OHP. The systems
that need additional equipment fail to permeate into real
life, thus remaining in the laboratory. It does not seem
reasonable to expect a group to use separate systems
for brainstorming in face-to-face and distributed meet-
ings, while receiving an e-mail and documents related

to the brainstorming topic on another system.

Designed on_ simplified view of groups

A few theories and systems take an egalitarian’
approach toward group decision making, focusing only
on the positive aspects of collaboration while ignoring
the status, power, and interest differences among group
members [13][14]. Other systems have been designed
to eliminate or reduce “process losses and direct group
development on to a theoretically ideal stage-based
sequential path. Process losses is the term coined by
Steiner [15] to describe deficiencies in group perfor-
mance due to actions by group members that contribute
negatively or do not contribute positively to group
performance. Actions that can cause process losses
include socialization and conformance to pressure.
Hackman [16] questions the usefulness of the “process
losses” view, arguing that it limits the ability to
visualize process gain. McGrath [17] suggests that the
group process is too complicated to be simply labeled
as positive or negative and views some “process losses”
as necessary part of group interaction.

Gersik [18][19] concluded from a series of experi-
ments that work groups do not follow phase-based or

stage-based paths of development described by earlier

models such as Tuckman’s [20] forming, storming,
norming, and performing. The systems developed on
these theories cannot survive because of the disparity
between real groups and ideal groups. These systems
can meet only a special instance of groups.

Most modern system development methodologies
emphasize the importance of focusing on user needs.
All of us have experience with groups and we
automatically construct an “average” group that reflects
our intuitions and experiences. Yet, there is no
“average” group because every group is a unique
combination of its constituents, environment, and task.
It is hard to predict group requirements; groups are
dynamic entities that change with time especially in real
business environment. Finally, the principles of develop-
ing applications for groups are not necessarily the same

as those of developing applications for individuals.
2.3 Summary and Discussion

Prior researches have been done to define the design
requirements of GDSS. GDSS developers are given
several design guidelines or design requirements that
they must obey. It is hard for them to implement all
the design requirements suggested by the prior research-
ers. And it is meaningless to develop such systems
because the real group who will use the systems is not
the same group in the design framework. Furthermore,
no matter how well a GDSS system is designed, if the
group or organization that uses the GDSS changes, it
is likely that it will fail or be used sub-optimally.

In spite of a lot of research on groups shown in
{(Table 2.1), the design requirements of GDSS have not
been specified clearly yet, because the group is not
fixed. Group is a dynamically moving target. Therefore,
the design strategies proposed by prior researchers in
(Table 2.3) had to use contingency variables or had to
be general. From the perspective of GDSS developers,
they should reflect these variables in the design. But if

174 Soung Hie Kim - Sung Sik Cho - Sun Uk Kim - Hung Kook Park : Design and Implementation of~

one of the contingency variable, for example, task,
changes the developer should rebuild the system. For
this reason, flexibility and incremental improvement of
system became the essential critical success factors of
GDSS [3][4].

In summary, many researchers studied groixps and the
output has been used to derive the design requirements
of GDSS. But a group is not a fixed target. The design
requirements are contingent to the situation the group
is in. Therefore, the design strategies have to emphasize
the flexibility and incremental improvement to meet the
contingent requirements. It means that a key factor for
GDSS success is the development methodology that can
overcome the limitations of the previous development

methodologies.
3. OMT Approach
3.1 An Overview of OMT

OMT is chosen as the design method of GDSS. This

section reviews what OMT is and how it works.

3.1.1 Strategy

According to Rumbaugh, the overall OMT strategy
of system development is as follows [6][21]:

Conceptualization: Conceive a problem to be solved
and a system approach that solves it. Make an initial
cut at the problem statement by writing use cases or
listing requirements.

Analysis: Starting from a statement of the problem,
the analyst builds a model of the real-world situation
showing its important properties. The analysis model is
a concise, precise abstraction of whar the desired system
must do, not how it will be done. The final analysis
models are the true requirements (although they may
continue to change as requirements evolve or mistakes
are discovered).

System Design: During system design, the target

system is organized into subsystems based on both the
analysis structure and the proposed architecture.

Object Design: The object designer builds a design
model based on the analysis model but containing
implementation details. The focus of object design is
on the data structure and algorithms needed to
implement each class.

Implementation: The object classes and relationships
developed during object design are finally translated into
a particular programming language, database, or
hardware implementation.

There is no sharp line between conceptualization and
analysis. Rumbaugh used the word conceptualization for
the initial informal attempt to express the system goals
in words, and analysis for a more rigorous attempt to

build and understand models to capture the requirements.

3.1.2 Three Models

The OMT uses three modellings to describe a system:

Object modeling: 1t describes the static structure of
the objects in a system and their relationships. The
object model contains object diagrams. Object diagram
is a graph whose nodes are object classes and whose
arcs are relationships among classes.

Dynamic modeling: It describes the aspects of a
system that change over time. The dynamic model is
used to specify and implement the control aspects of a
system. The dynamic model contains state diagrams. A
state diagram is a graph whose nodes are states and
whose arcs are transitions between states caused by
events.

Functional modeling: It describes the data value
transformations within a system. The functional model
contains data flow diagram.

The three models are orthogonal parts of the
description of a complete system and are cross-linked.
The object model is fundamental, however, because it
is necessary to describe what is changing or transform-

ing before describing when or how it changes.

EETE . F10%& F15 1997.3 175

3.2 Why OMT?

Object-oriented development inverts the previous
function-oriented methodology, as exemplified by the
methodologies of Yourdon {22] and DeMarco [23]. In
these methodologies, primary emphasis is placed on
specifying and decomposing system functionality. By
contrast, the object-oriented approach focuses first on
identifying objects from the application domain, then
fitting procedures around them. Object-oriented software
holds up better as requirements evolve, because it is
based on the underlying framework of the application
domain itself, rather than the ad-hoc functional require-
ments of a single problem.

A comparison of recent object-oriented methods {24]
bases the comparison on features such as concepts,
models, and support of the process concept, but not on
the actual experience with the methodologies. From the
methods discussed, OMT is selected because of its
strong support for analysis and design as well as
implementation. Wirfs-Brock’s methodology, known as
CRC (Class, Responsibility, Collaboration) [25], is
simplistic but very practical method. Much of its
notation is poor and it does not cover all the issues. It
is usually used as a precursor to the use of other
notations. It is good for the requirement capture stage
and as a pedagogical tool. Buhr’s methodology [26][27],
is tied to Ada packages. HOOD (Hierarchical Object-
Oriented Design) [5] still relies on SA/SD for the
requirements analysis. The lack of support for inheri-
tance makes it object-based rather than object-oriented.
Thus, reuse is supported but not extensibility. Booch’s
methodology [28] looked more powerful than OMT, but
OMT was chosen because it seemed to strike the right

balance between simplicity and expressive power.

3.3 Availability of OMT in GDSS Domain

3.3.1 Flexibility

GDSS design frameworks have many contingent
variables (e.g. group size, task) that implicate flexibility
to the developers.

Flexibility has various definitions in various domains.
For example, in a CSCW (Computer Supported Coopera-
tive Work) system, flexibility is the ability to switch
dynamically between different states or modes of a
CSCW tool. It means that a tool is more flexible if it
supports various applications rather than only one
application.

In GDSS domain, flexibility has a little different
meaning. GDSS should provide a set of software tools,
similar to a DSS model base, that is a collection of
generic tools for various group activities such as idea
generation and voting rather than being one indivisible
system to support the entire task, for example, strategic
planning. Each tool provides a different approach to
support a particular activity; thus the GDSS can provide
various combinations and styles of process structure,
process support, task structure, and task support during
any one meeting. Groups use many different approaches
and often do not proceed in a straightforward manner.
The tools can easily be mixed and combined with non-
GDSS activities in whatever order the group believes
is most effective. This philosophy also enables new tools
to be easily added to the toolkit and existing tools to
be customized to specific needs.

By inheritance property, OMT can support building
a set of tools. Whenever each tool is built, it is needless
to build from the bottom. More specific objects can be
derived from the general objects by inheritance mechan-
ism. It is in other words reusability. From the basic
design requirements a set of basic tools is built and
then both the design and the code can be reused to
make more specific tools that support various tasks.

OMT helps rapid system evolution because of its

176 Soung Hie Kim - Sung Sik Cho - Sun Uk Kim - Hung Kook Park : Design and Implementation of~

better communication between user and analyst. When
the user requirements or the situation change OMT can
support making new tools rapidly. GDSS design
framework cannot cover all the situations before system
development. The limitations of design can be made up

with the incremental improvement by using OMT.

3.3.2 Coordination

Although flexibility is important, it is also important
to restrict the number and type of functions available
to participants [29]. Restrictiveness provides a more
powerful intervention so that groups are more likely to
use the GDSS as intended by its designers, which has
been one of the problems with non-computerized
techniques [30]. Restrictiveness promotes the use of
more effective techniques and prevents less effective
ones, fosters learning, promotes consistency, and pro-
vides coordination to ensure that all group members are
using the same tool at the same time or consistently.
In this context the GroupSystems is locally restrictive
so that users can perform only certain functions while
providing flexibility in that a wide variety of tools are
available.

To achieve this restrictiveness, coordination among
the tools is needed. By using OMT, we can consider
all the tools as objects that communicate each other.
Object-oriented concept helps building coordination
mechanism by its message passing mechanism. A special
object in the lower layer that controls the communica-
tion among objects on the higher layer is needed. But
the coordination mechanism can be changed when a
new object is added into the higher layer or when
another mechanism is needed. Therefore, it is desirable
that the change of coordination mechanism must not
affect the communication of other objects. The special
object can encapsulate the coordination mechanism

without affecting other objects.

4. Design
4.1 Problem Statement

In this section design starts from the probiem
statement. This problem statement includes basic func-
tionality that GDSSs should have [31]. Some additional

requirements from real work groups.

4.1.1 Basic Functionality

Idea generation meetings need following basic func-

tionality:

- Agenda: A description of what activities have to
be performed and when.

- Idea Generation: An activity that allows partici-
pants to share ideas simultaneously and anonymous-
ly on a specific topic proposed to the group.
Participants are able to contribute ideas at the same
time with no loss of information. After a participant
enters an idea, it can be seen to other participants
on the public screen. Idea generation tool gathers
ideas and saves it for future use.

- Idea Organization: An activity that assists groups
categorizing the ideas generated in idea generation.

- Voting: An activity that offers a method for polling
opinions of the group members. It prioritizes
alternatives and determines the degree of group
consensus.

- Documentation: An activity that makes report for
participants. In the report all information about the
meeting is described and it can be used for future

meetings.

4.1.2 Additional Requirements

From the current work environment some factors are
found:

Meeting on the desk: In current work environment,
most of the work is accomplished on the desk. The

meetings are no exception. Now, work environment is

EXTR 108 F15 1997. 3 177

based on computer-network system, therefore it is an
additional burden to make and manage special room
(decision room) for meeting. Whole the office is a
decision room.

Meeting without facilitator: Of course it is better to
have an expert(facilitator) for meetings. But usually in
the current work environment, there is not any
facilitator. So GDSS should be able to support the group
who does not have a facilitator.

Freedom to hold a meeting: Anyone who needs a
meeting should be able to schedule a meeting, be able
to be a meeting leader and be able to choose participants
who are necessary to the meeting. People who have
problem to discuss or to decide know the context of
the problem the best. So, it is natural for people who
need a meeting to lead the meeting.

Easy access to the document of meetings: It means
providing database access for previous meetings. If
people need information about some problem then
he/she could look up the previous meeting documents.
It does not matter whether he/she was the participant
of the meeting or not.

Idea generation anytime before voting: This feature
enables the asynchronous meeting. For some reason
participant cannot participate the meeting, but he/she
can adds his/her ideas to the meeting when he/she feels
free. This feature can help get rid of time barrier of

the meeting.

4.1.3 Problem Statement

A part of problem statement is shown in (Figure 4.1).
A problem statement is a statement of requirements.
This problem statement reflects the basic functionality
and the additional requirements shown in section 4.1.1
and 4.1.2. This problem statement is not complete. There
can be more problem statement that describes each

activity.

(Figure 4.1> Problem Statement of GDSS (parf)

Meeting members are one leader and one or more participants.
If someone needs a meeting, then he/she creates new meeting
and he/she becomes the leader of the meeting.

The leader enters title of the meeting and description of the
meeting.

The description includes why the leader wants the meeting
briefly.

The leader then browses the users of the GDSS and selects the
participant who are needed for the meeting.

The leader decides in what procedure the meeting will proceed.
Usually the meeting procedure is brainstorming, idea organiza-
tion, voting, reporting.

After the leader completed creating new meeting, he/she informs
the participants of the new meeting.

When the meeting begins participants executes the GDSS and
logins to the server.

The Leader can browse who are logged in.

The participants open the meeting that the leader created, and
read the meeting description and meeting procedure.

The participants execute activities such as brainstorming, voting.
The participants can join any activity if the activity is in accord
with the whole procedure.

The participants can join brainstorming at any time before the
voting begins.

After the brainstorming the leader categorizes the ideas.

The meeting can be adjourned if the leader altows.

After the meeting is over, everyone who has an account of the
GDSS can browse the result of the meeting.

Everyone can make report of previous meeting by using
reporting tool.

The meeting can be proceed anonymously or not.

A participants can communicate with other participants informal-
ly during the meeting.

4.2 Analysis

From the problem statement, three models are derived;

object model, dynamic model, and functional model.

4.2.1 Object Modeling

The object model is very simple. The details are
expressed in the design step. This model does not
include implementation-related objects like communica-
tion objects. These objects are added in the design step.

The first step in constructing an object model is to

identify relevant object classes from the problem

178 Soung Hie Kim - Sung Sik Cho - Sun Uk Kim

- Hung Kook Park : Design and Implementation of~

statement. Not all classes are explicit in the problem
statement; some are implicit in the application domain
or general knowledge. Classes often correspond to
nouns. The second step is to discard unnecessary and
incorrect classes such as redundant classes, irrelevant
classes, and implementation constructs. And the third
step is to identify the associations and inheritance

among the classes.

Brainstorming
idea Generate Member
Content Name Resad idea
[~ Store idea
50 Display idea
T2
v
§ Participant Leader Tden
Ci Sreate | jormanization |
egory ting Categorize
Category Sele_d ::::':y < Ideas
name
E Make
g Agenda Voting
S
s 2 Receive vote
s 5 Lo Meeting Display result
H Title have
ripti
Eefc.non Reporting
(Ao | 4
Make report

(Figure 4.2) Object Model of Meeting

4.2.2 Dynamic Modeling

An object model describes the possible patterns of
objects, attributes, and links that can exist in a system.
The attribute values and links held by an object are
called its state. Over time, the objects stimulate each
other, resulting in a series of changes to their states.
An individual stimulus from one object to another is
an event. The response to an event depends on the state
of the object receiving it, and can include a change of
state or the sending of another event to the original
sender or to a third object. The pattern of events, states,
and state transitions for a given class can be abstracted
and represented as a state diagram.

Each object has its dynamic model, that describes
control aspects of the object. The objects with no
operation do not have dynamic models, because their

states do not change. In this section, the dynamic model

of Brainstorming object is described for example.
Brainstorming object sits idle until a participant enters
an idea or an idea arrives from other participant. When
it receives an idea from a participant, it moves to send
state and does the sending activity then it goes back to
idle state. When it receives an idea from other
participant, it moves to display state and displays the
idea and then goes back to idle state. Brainstorming
moves among these states. The dynamic modeling
describes the mechanism that reacts to the external

stimuli.

key down [key # sendl/echo,buffer Send

do : send buffer
to server

key down [key=sen

Display Idea

do : display the
idea on the
public screen

Idea from server

(Figure 4.3) Dynamic Model of Brainstorming Object

4.2.3 Functional Modeling

{Figure 4.4) shows the functional model of a GDSS.
It is the same as the data flow diagram. Functional
model shows which values depend on which other

values and the functions that relate them.

meating
infarmation

akemative
2

meeting
information

e rnative

meeting

voting resoft

{Figure 4.4) Functional Model of Meeting

EETR : £104% H15 1997. 3 179

The rectangles are actors, the ellipses are processes,
the arcs are flows of data, and a pair of thick lines
mean a data store. The actors are external to a meeting
and others are internal to a meeting. Thus, the functional
model analyzes the data that are communicated between
the users and the system. In this functional model the
actors are only a leader and participants. The data stores
corresponds to the objects that do not have operations
in the object model shown in <Figure 4.2). The

processes are the operations in the objects.
4.3 Design

4.3.1 System Architecture

In this section three-layered Client/Server architecture
is proposed. Three-layered Client/Server architecture
allows more flexibility in handling domain-specific
coordination needs. (Figure 4.5) shows the abstract

architecture.

Application Application Application
Tools Tools Tools

[Communication |

Application Application
Server Server

(Figure 4.5) Abstract System Architecture

- DB Server

functions.

Provides basic database access

Application Servers : Take care of coordination
and other needs associated with the execution of a
particular application.

Application Tools : Provide user interface and

application tools.

More details are following;

[PARTICIPANT CLIENT| { SERVER |
mg’ffl_jf_f; HEHE L

(Figure 4.6) Detailed System Architecture

In this detailed system architecture, DBMS and
Communication Controller are included in GDSS Server,
the first layer. And all the servers that are placed
between DBMS and Communication Controller are
Application Servers, the second layer. And all the
components in Participant Client is included in the third
layer, Client layer.

Each component of (Figure 4.6) is described as
follows;

1. DB Server :

- DBMS : All the data service is provided here. It
processes the data requests from the application
layers.

2. Application Server :

- Idea Server : It receives all the ideas from the
clients, asks DBMS to store them and requests
Communication Controller to send out them to
other clients, so that all the participants can see
the ideas.

- Meeting Server : It manages all the information
about the meeting environment. It manages which
members participate in which meeting, which
agenda the meeting follows, and what activity the
meeting is in. There can be several meetings

simultaneously, in such a case meeting server

180 Soung Hie Kim - Sung Sik Cho - Sun Uk Kim - Hung Kook Park : Design and Implementation of~

manages all the meetings.

- Report Server : It replies to the requests of
documenting the meeting results. It gathers the
information about a certain meeting, makes report
and then sends to the client who made the request.
Participants can request the report of previous
meetings to prepare a new meeting.

- Account Server : It manages the accounts of the
users. It must recognize who are logged in and
their personal information.

3. Application Tools :

- Application Tools : These tools are the end point
that users interact. They are Brainstorming tool,
Voting tool, Reporting tool, Participants selection
tool. They are actnally the menu items of client
system.

4. Controller :

+ Communication Controller : It routes messages
from the clients to application servers. It decides
which message has to be passed to which object.
Clients send various messages, for example, ideas,
voting information, and then routes them to
appropriate application servers such as Idea Server
or Voting Server. And it also sends out the
messages from the application layer to the clients.

* Participant Controller : It provides basic user

environment to the participants. It processes com-

munication requests and data requests. It receives
the ideas or voting information from the users and
sends them out to the server. Also it receives the
messages from the server and routes it to the
application tools, such as Brainstorming, Voting.

And it receives the data access requests, then it

decides where the data is located and if the data

is on the server it sends the requests to the server.

4.3.2 Object Design
In this step, the object model derived from the

analysis step is revised. Some system-dependent objects

such as database are added, and unnecessary objects are
removed. <Figure 4.7> shows the object design of the

overall system.

Meeting Uses Tool

]
: Schedule

Member . | | |

Voting Reporter Organizer

sujofJo
sajpal)

Select

(Figure 4.7) Object Design of GDSS

A person can be a leader or a simple participant. A
leader creates a meeting and participants join the
meeting. Agenda and Schedule are link attributes.
Instead of Activity object in the analysis step, Tool
object is used. It’s because an executable system is
being designed in this step, an activity is considered as
a tool or a utility that users utilize. Tool object will be
a menu item of the implemented system. The objects
Member, Schedule, Meeting and Agenda will be a
database. These objects contain data rather than
operations. But the objects that belong to Tool object
- Electronic Brainstorming, Voting, Search, Categorizer
- contain operations rather than data. These objects use
network and database objects. In <Figure 4.7>, network
object and database object are omitted. These objects
will discussed on the next section.

(Figure 4.8) shows the Electronic Brainstorming
object in detail. Electronic Brainstorming object is
composed of two objects Private and Public. These
objects correspond to private screen and public screen
respectively. Through Private object participants enter
their ideas. And Public object shows the ideas that all
participants entered. Both of these two objects are
connected to Idea Server object. Idea Server object

manages the idea object. In this design Private and

EETR L1048 £1% 1997. 3 181

Public do not have to know how to manage the
database. They just have to know where the Idea Server
is. Three objects Member, Idea, Meeting are actually
databases. If these objects are implemented in a certain
vendor’s database, only the Idea Server object must be
changed, not influencing other objects. That is one of

the advantages that object-oriented concepts have.

Cortratior
Weasage buffers
Recone measages
Seno Mesaage Communiceles
Routa messsgm
}\ Idoa Server
[Powiarto
Priven | Joes Dutaltnsa
Porterto
Communicston
Corgroser
Open ides 00
Close (des 08
Gommunteation Ana ides
Comroner Send idea
Server Routing
Information i
Mesong o Membor
Toe idea 14 [“name
Awwnct [kemor [Geaie® PusHon
T T

Crvales or Jols

{Figure 4.8) Object Design of Electronic Brainstorming.

In this object design the objects Idea Server, Member,
Idea, Meeting are going to be located on the server,

and other objects are going to be located on the client.
4.4 Coordination

Application layer hides internal database from the
client, which prevents clients from accessing internal
database illegally, thus the data consistency is checked
first in the application layer before the DBMS checks.
Each request from the client must go through the
application layer, and each component of application
layer asks Meeting Server to validate the request.
Meeting Server looks up the Agenda object and
validates the request whether it is legal or not. Meeting
Server allows some flexibility by providing coordination
rule in addition to Agenda. This coordination rule also
controls the accessibility of participants to the document

of secrete meetings. The rule can prevent some people

from accessing the prohibited data by referring the
Account Server. Account Server checks if people have
the right to access to the secrete meetings. Meeting
Server sets the authority of participants when it creates
a meeting.

In real life some participants can not join the meeting
because they are doing another work with others, in
this case they need the GDSS that support different-
time/same-place or different-time/different-place. To sup-
port these property participants should be able to
generate ideas until the meeting is closed with voting.
It means some activities can be done at different time.
For example, a participant can enter his/her ideas after
other participants finished brainstorming. He/she can
enter his/her ideas while browsing the ideas entered
before. But this can not be allowed after the voting is
executed. Meeting Server contains this coordination rule.

- Brainstorming is always possible before voting.

- Reporting is always possible.

- Categorization is possible after brainstorming starts

and before voting.

- Else, follow the Agenda.

5. Implementation Issues

5.1 System Specification

The design is implemented on the following system
specification. The system configurations of work envi-
ronment have been moving from the centralized one to
Client/Server or distributed one. Usually the Client/
Server system has been composed of UNIX host and
DOS or Windows based PCs. Recently, the PC’s ability
as a server has enhanced without increase of cost. Now,
many work offices use PCs for the server and client.
Also, there are powerful operating systems that can
accomplish server’s roles on the PCs, for example
Windows NT or NetWare.

As the UNIX machines are replaced by PCs, the

182 Soung Hie Kim - Sung Sik Cho - Sun Uk Kim - Hung Kook Park : Design and Implementation of~

Printer

(Figure 5.1) System configuration of GDSS

network protocol changes to be appropriate for the new
environment. TCP/IP is prevalent but it’s not appropriate
for small network because it was designed for large
networks such as Internet. NetBEUI is designed for
rather small network, so it is efficient in the office.
The flexibility or scalability have to be considered.
By the object-oriented paradigm the network module
can be easily substituted by another module that follows
different network protocol. Indeed the network module
is implemented with a protocol-independent object. The
network object, CNetwork, is a meta object. CNetwork
first identifies the type of network protocol and then
loads appropriate DLL (Dynamic Linkage Library) that
actually accomplishes the communication. Fortunately
there are many network DLLs in public domain. Only
what has to be done is to make meta object and to load

the appropriate library.

CNetBEUI

(Figure 5.2) Class Hierarchy of Network Objects

There is no need to use only object-oriented
programming languages but C++ is used because it is
easy to code objects. A system implemented in C++ is
easier to be reused by other developers and reversely
it can absorb other systems into itself, because C++
provides powerful linkage ability. And C++ can be
ported to any platform, which is a essential requirement
of system development.

Here’s a tip of code that implement IdeaServer object.

class CldeaServer :

{
public:

public Cobject

CldeaServer(); //Constructor

~CldeaServer(); //Destructor

/I attributes

LOGINREC* m_login;

DBPROCESS* m_dbproc;

CCommChntrller* m_pCommCitriler;

Cldea m_IdeaBuffer;

// methods

virtual void InitDB(DBPROCESS*, LOGINREC*),
virtual void CloseDB(DBPROCESS*, LOGINREC*),
virtual void Addldea(DBPROCESS*, LOGINREC*, Cldea*);
virtual void Sendldea(Cldea*, CCommCntrller*);

afx void OnRcvIdea(Cldea*)

private:

virtual void MakeMsg(CMsg*, Cldea);

virtual void ResolveMsg(CMsg*);

Some of the objects derived during the Object Design
step, such as idea, are actually database objects. These
objects are implemented with RDBMS, MS-SQLServer.
MS-SQLServer provides DB-Library that interfaces with
C++. Through DB-Library, C++ can use SQL.

5.2 QOperation Model (A Case)

In this section, the operation of this system is
explained as the meeting proceeds. From the creation
of new meeting to reporting, how the system compo-

nents work together is explained.

EXETR : FI10%E H15% 1997. 3 183

Login

Every user who wants to use this system must log
in to the server. The user enters his‘/her login ID,
password, and server’s name. This information is sent
to the server and Communication Controller in the
server routes it to Account Server, then Account Server
looks up the Member table and verifies that the user
account is valid or not. If the user’s account is valid
Account Server updates the Member table that the user

logged in.

Creating A New Meeting

User clicks the menu item ‘New’, then a dialog box
pops up. The user enters the title, and short description
of the new meeting. This information is sent to Meeting
Server in the server, and then Meeting Server adds an
identifier of the meeting and stores it in the Meeting
table. And the Meeting Server considers the user who

created the new meeting as the leader of the meeting.

Selecting Participants

When the leader finished creating the new meeting
he/she selects the participants who are necessary for the
meeting. Participant dialog box pops up when the leader
clicks the menu item ‘Participants’. Account Server
reads the member table and sends the user information
to the leader who clicked the ‘Participants’ menu. The
leader selects among the members and the UserIDs of
selected members are sent to the Meeting Server and it

stores them in Participation table.

Creating Agenda

The leader now creates agenda by selecting the
activities. The leader selects an activity and enters time
duration now long he/she will use the activity. Meeting
Server receives this information and stores it in Agenda
table.

After the leader completes up to this step it’s ready

to start a meeting. The members who are selected by

the leader don’t know they were designated for the
participants. Meeting Server informs them of the new

meeting.

Joining a Meeting

Now a participant logs in to the server to participate
in the meeting that needs him/her. Meeting Server shows
him/her all the meetings. He/she can browse all the
meetings and selects one of which he/she was informed.
From now on all activities he/she does is onto the

meeting he/she opened until he/she closes it.

Brainstorming

A participant joins brainstorming activity. He/she
enters his/her idea in the private area, and then this
idea is sent to the Idea Server and Idea Server stores
it in the Idea table, looks up the Participation table to
find out who are participating the same meeting and
then sends out the idea to the participant who are
participating in the same meeting. Now participants can
see the idea in the public area of their windows. A
participant can add his/her idea to other’s idea by double
clicking the idea in the public area. The added idea is
displayed under the target idea, and these ideas are
categorized into the same category. Of course partici-
pants can move their ideas to anywhere only if the

ideas are their own.

Voting

During the brainstorming many ideas were generated.
Some of these ideas have been categorized already by
the participants and the rest of ideas that are not
categorized can be categorized by the leader. If the ideas
are categorized, the categories can be the alternatives
for voting. Participants give vote to each alternatives.
There can be many voting methods. 5-point scale or
10-point scale is usual. When the participants finishes
voting this information is sent to the Voting Server. It

gathers the votes from the participants and stores it in

184 Soung Hie Kim - Sung Sik Cho : Sun Uk Kim -

Hung Kook Park : Design and Implementation of~

Category table. It counts the votes and shows the result

to the participants.

W*m‘é\ &*%W‘*‘&\%?}:\\

e
3
v'ﬁﬂ AELLLE &3

!l"l £ ‘-ﬁ' XN

(Figure 5.3 Brainstorming

L3 b Bk R -_—
34 \\"&%@&N\“‘% e R R R R AR R RS

{Figure 5.4) Voting

Reporting

After a meeting is finished a member can request a
report. Report Server reads all the tables related to the
meeting and extracts the information. Report Server
sends this information to the member’s computer, then
the member can just browse it or save it on his/her
local area. The report includes who made the meeting,
the participants, title and description of the meeting,

what ideas were generated, and what the result was.

Closing a Meeting

Everyone can leave the meeting by closing the
meeting or exiting their client system. But other people
can still continue the meeting unless all the participants
log out. When the user exits the system all the meetings

that he/she opened are closed.

6. CONCLUSIONS

6.1 Summary of Contributions

This research is an effort to propose a design and
implementation of GDSS using OMT. By using OMT,
the object-oriented concepts could be applied in GDSS
domain. Previous GDSS systems have some limitations
because they have trouble catching up with the work
groups, the target of the systems, that change constantly.
In comparison with previous GDSS systems this study
designed and implemented GDSS emphasizing flexibility
that is one of the critical success factors of GDSS. From
the basic functionality that GDSS should support, this
study described problem statement and designed basic
GDSS. Also this study added additional requirements
that are found in real work environment. And by object-
oriented concepts, the brainstorming objects could be
easily upgraded with modifying small part of the system.

This paper proposed three-layered Client/Server archi-
tecture for GDSS for flexibility and coordination. Three-
layered architecture separates application layer from the
server layer, thus it can support domain-specific
coordination flexibility. The message passing mechanism
of objects also helped implementing three layers.

GDSS developers may employ our design and
implementation to their development. Because our
design and implementation are object-oriented they can
employ them to develop object-oriented applications

with minimal effort.

EXTE F10% F15 1997. 3 185

6.2 Suggestions for Further Research

First, it is needed to extend this design to include
various kinds of meetings such as planning, reporting,
and negotiation. Because our problem statement included
only the requirements of idea generation meetings, our
design cannot support other kinds of meetings. In order
to survive in work environment our design should
support various meetings that happen everyday in
business organizations.

Second, it is needed to extend our design to take
advantage of new technologies. Nowadays many techno-
logies are evolving especially in the CSCW (Computer
Supported Cooperative Work) domain such as videocon-
ferencing. It is needed to enhance our GDSS from text-
based to multimedia-based.

Finally, it is needed to incorporate existing decision-
related technologies into our system, for example,
automatic idea categorization or intelligent voting
method selection. Many research have been done on
specific parts of GDSS and many technologies are

present now.
[References)

[1] DeSanctis, G. and B. Gallupe., "Group Decision
Support Systems: A New Frontier,” Management
Science, May 1987.

[2] Huber, G.P., “Issues in the Design of Group
Decision Support Systems,” MIS Quarterly, Sep-
tember 1984.

[3] Buckley, S. R. and Yen, D, “Group Decision
Support Systems: Concerns for Success,” The
Information Society, Vol. 7, pp. 109-123, 1990.

[4] Vogel, D., et al., "Group Decision Support Systems:

Determinants of Success, Transactions DSS 87, San

Francisco, June 1987.
[5] Graham, I., Object Oriented Methods, 2nd Edition,
Addison Wesley, 1993.

{6] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F,,
and Lorensen, W., Object-Oriented Modeling and
Design, Prentice Hall, 1991.

[7} Park, Olfman, and Satzinger, “Attitude Toward and

Preference of Group Work,” working paper in
Claremont Graduate School, 1995.
[8

—_

Turban, E., Decision Support and Expert Systems:

Management Support Systems, 3rd edition, Macmil-
lan Publishing co., p.355, 1993.
Mandviwalla, M. and Olfman, L., "A Synthesis of

Generic Groupware Design Requirements from a

9

—

Multi-disciplinary Survey and Analysis of Work
Group Research,” Programs in Information Science,
The Claremont Graduate School, 1994.

[10] DeSanctis, G. and Gallupe, B., “A Foundation for
the Study of Group Decision Support Systems,”
Management Science, Vol. 33, No. 5, pp.589-609,
1987.

{11] Nunamaker, J. F., Dennis, A. R, Valacich, J. S.,
Vogel, D. R, and George, J. F., Group Support

Systems Research: Experience from the Lab and

Field. In Jessup, L. M., Valacich, J. S., Group
Support Systems: New Perspective, Macmillan
Publishing co., 1992.

[12] "GroupSystems V: Basic Tools Manual,” Ventana

Corporation, 1992.

[13] Perin, C., “Electronic Social Fields in Beuraucra-
cies, Communications of the ACM, Vol. 34, No.
12, pp.75-82, 1991.

[14] Kling, R., "Cooperation, Coordination, & Control

in Computer Supported Cooperative Work,” Com-
munications of ACM, Vol. 34, No. 12, pp.83-88,
1991.

[15] Steiner, I. D., Group Process and Productivity, New

York: Academic Press.

[16] Hackman, 1. R., The Design of Work Teams. In
J. Lorsh (Ed.) Handbook of organizational beha-
vior, pp.315-342, Englewood Cliffs, NIJ:Prentice
Hall, 1987.

186 Soung Hie Kim - Sung Sik Cho - Sun Uk Kim - Hung Kook Park : Design and Implementation of~

[17] McGrath, J. E., “Time matters in groups, In J.
Galegher, R. Kraut, & C. Egido (Eds.), Intellectual
Teamwork:Social and Technological Foundations
of Cooperative Work, pp. 23-78, Hillsdale, NI:
Lawrence Erlaum, 1990.

[18] Gersik, C. J. G, "Time and Transition in Work

teams: Toward a New Model of Group Develop-

ment,” Academy of Management Journal, Vol. 31,
pp.9-41, 1988.

[19] Gersik, C. J. G, “Marking Time: Predictable
Transitions in Task Group,” Academy of Manage-
ment Journal, Vol. 32, pp.274-309, 1989.

{20] Tuckman, B. W., "Developmental Sequence in

Small Groups,” Psychological Bulletin, Vol. 63, pp.
384-399, 1965.

(21] Rumbaugh, J., “OMT: The Development Process,”
Journal of Object-Oriented Programming, 1995.

[22] Yourdon, E., Modern Structured Analysis, Yourdon
Press, 1989.

[23] DeMarco, T. Structured Analysis and System
Specification, Prentice Hall, Englewood Cliffs, NJ,
1979.

[24] Armnold, Bodoff, S., Coleman, D., Gilchrist, H., and
Hayes, F., “An Evaluation of Five Object-Oriented
Development Methods,” Journal of Object-Oriented
Programming, Special Issue on Analysis & Design,

pp-107-121, 1991.

[25] Wirfs-Brock, R., Wilkerson, B., and Wiener, L.,
Designing Object-Oriented Software, Prentice Hall,
Englewood Cliffs, NJ, 1990.

[26] Karam, G. and Casselman, R., “A Cataloging
Framework for Software Development Methods,”
IEEE, February 1993.

{27] Buhr, R., Practical Visual Techniques in System
Design: with Application to Ada, Prentice Hall,
Englewood Cliffs, NJ, 1991.

[28] Booch, G., Object-Oriented Analysis and Design
with Applications, Second Edition, Benjamin/Cum-

mings, 1991.

[29] Silver, M. S., “Decision Support Systems: Directed
and Non-Directed Change,” Information Systems
Research, Vol. 1, No. 1, pp. 47-70, 1990.

{30] Jablin, F. M. and Seibold, D. R., “Implication for

Problem Solving Groups of Empirical Research on

‘Brainstorming’: A critical review of the literature,”
The Southern States Speech Communication Jour-
nal, Vol. 43, pp.327-356, 1978.

[31] Nunamaker, J. F., Dennis, A. R., Valacich, J. S,
Vogel, D. R, and George, J. F., “Electronic

Meeting System to Support Group Work,” Com-
munications of ACM, Vol. 34, No. 7, pp.40-61,
July 1991.

EXTH F£10% $15 1997.3

187

AL
19739
197841

1983

Ra
o
P

>

ESN

19943
1997

J

i

o

A

Agshn gauiet st
v)=r Univ.of Missouri-Co-
lumbia AFF8 HAH
u)Z Stanford oH8hy 74
CEL R
Fgaerled HANAEY
there AERRAT T
g} g 153 olah, J
= CALS/EC ¥3, 7|&¥
3] oA} ¥ CALS/EC ¥
3, 71=d3 HEvhe Y
T, ST RE 234
o3 AR

CALS, GDSS, BPR(Busi-
ness Process Reengineering),
Decision Analysis, Supply
Chain Management

EEEEEERE L)
sy YR
et

o) ed AR B8 o
NEE

$4 Bol Group Decision Support Sys-

tem, Supply Chain Manage-
ment, CALS

=
2488

19799

19819

BAEF HHA AR, AFA

ulg3

g Fo g
8tat

o) sk A F
AAL

o= Oregon Sl 4143
8t wha

g A4S Rug
HE

T
THN2H, AibaE F

Aedstl I E4, 22 3

g #8 v FHJRE
thetoll A st HA R A
FARE HHARIYE HE
st g HAurtr] A,
HEH HAMde ZF3
T Jon Ax T+ of
22, g2 MISH F
71gA e AR HYAE §
SHA HFEA Z2AE
& FYsHn @A dEd
& AHFAST mgolH,
A B et o 2 A
Folth. AMZE "AHE
&3 AAAA,, TEYAR
A 2", TR A PN 2
L ICH =1

964 98 2= H<, 96W 108 AF TH

