
Knowledge-based system
based on consistency and congruity

for logical and physical interface component design

Ho kyoung Ryu Wan Chul Yoon
IE Dept. KAIST, 373-1 IE Dept. KAIST,373-1

Kusong-dong, Yusong-gu Kusong-dong, Yusong-gu
Taejon , Korea Taejon, Korea

+ 82 42 869 3159 + 82 42 869 3119
hogg@cogsys.kaist.ac.kr wcyoon@sorak.kaist.ac.kr

ABSTRACT Keywords
Consistency, Congruity, User task knowledge ,
Task-Interface Matching, Evaluation System for
Task-Interface Matching, Knowledge-Based System,
Logical interface component formalism, Physical interface
component formalism

Previous user interface analyses have performed manually
for evaluating complexity and consistency on user interface.
However, manual analysis and evaluation process is not
cost-effective and time-efficient. Additionally, interface
problems in real life are dealt with by users whose
knowledge plays a key role in understanding and using
interface. That’s why we need a new analysis and design
method that could explicitly take user’s expectation or user
task knowledge into account.

INTRODUCTION

Our life is surrounded with intelligent products of more
complex and diverse function. Moreover, user would use
products in different way that designer expect. In such case,
committing errors, users experience frustrations and then
resign rights to use high-cost function. That is why product
designers should try to reflect user’s needs into products. Up
to now, in the studies on analysis and design of user
interface, researchers have mainly studied the logical
consistency, complexity or physical elements of user
interface. However, users feel discomfort when a product
has different behaviors with user knowledge, so we need
cognitive evaluation method based on user knowledge for
getting an interface understood. Under this motivation, we
have developed a knowledge-based design system and novel
evaluative rules based on diverse user knowledge on
interface.

This study expands this viewpoint with an automatic
evaluation process and a knowledge-based system for it. The
results guarantee an efficient and objective analysis and
evaluation on user interface.
The implemented system (Evaluation System for Task
Interface Matching ;ESTIM) explicitly represents a lot of
user knowledge, logical interface component of user
interface and then matches the two using knowledge-based
system. In addition to, Extended ESTIM will cover physical
interface element. Eventually, ESTIM not only evaluates the
logical characteristics that are defined in the interface such
as operation images, procedural consistency, and match with
user’s expectation, but also identifies the physical attributes
such as labels of command button, size of push button and
layout. Through this ESTIM result, designer and usability
engineers can efficiently assess user interface. In this paper,
diverse formalism and ESTIM will be demonstrated with a
practical telecommunication appliance, pager.

In the following sections, we will explain and validate a
framework and support system through an example of pager.

FORMALISMS FOR USER INTERFACE ANALYSIS AND
EVALUATION

 The drawbacks of previous methods for analysis and
evaluation of interface is that they take a lot of time and do
not produce the consensus of result by analysts. That’s why

we need a system which supports the analysis of user
interface independent of analysts’ ability and formalisms
which can define user interface.

M- Long s1

M

S s2

M

S

WAIT(10)
M+ S

WAIT(3)
M+ S

TASK "Set Time".S1
Formalism on logical interface component
It can be said that user interface has two disjoint component:
Logical Interface, Physical Interface[4]. Therefore, our team
designed different formalism for the interface modeling and
evaluation: Logical Interface Component formalism(LIC
formalism), Physical Interface Component formalism(PIC
formalism). The detail explanation of each formalism will be
shown in the following section.
 Figure 2: Diagrammatic LIC formalism of task “Set date” in

pager. The first step for analysis and design process is the
representation of logical interface components on system. In
this research domain, multiple approaches to formal
specification of interface have been suggested[13][14].
However, this formalisms have some problems to apply to
various case. Therefore, we developed a new formalism for
specifying the logic of interface centered on user’s action. It
is called OCD[14]. OCD is the method for drawing
cognitive process and representing users’ action in
performing a task. Figure 1 illustrates the entities for
expressing logical interface components in OCD. And,
Figure 2 exemplifies an OCD representation of task “Set
date” in a pager.

Figure 2 do not illustrate system responses and function of
actions, but they will be contained invisibly in each state.
Especially, there is an editor to express them in ESTIM.
Also, diagrammatic LIC formalism as Figure 2 is
transformed automatically into script LIC formalism in
ESTIM. The following Figure 3 is a script formalism
corresponding to Figure 2.
• Procedural Facts • Function Facts • Response Facts
(Sleep ; M-Long ; SH(S1)) SHOW(MENU) SHOW(MENU) & BLINK(MENU)
(SH(S1) ; Wait(3)||M+S ; Sleep) CANCEL SLEEP
(SH(S1); M ; SH(S1)) CHANGE(MENU) CHANGE(MENU)
(SH(S1); S; SH(S2)) NEXT !BLINK(MENU) &
 SHOW(DATE) & BLINK(DATE)

 (SH(S2); Wait(10)||M+S ; Sleep) CANCEL SLEEP
(SH(S2); M; SH(S2)) CHANGE(DATE) CHANGE(DATE)
(SH(S2); S ;Task “Set Time”. S1) NEXT !SHOW(DATE) &
 !BLINK(DA E) & SHOW(HR) & T

Figure1: LIC formalism -OCD

Going into details of Figure 2, it is shown user’s action
sequences for accomplishing a task “Set Date”. Firstly, if
button ‘M’ is pushed long, then menu icons as system
response appear in the LCD of pager. This is state ‘S1’ of
task “Set Date”. At ‘S1’, user selects menu “Date”, with
scrolling by button ‘M’. Also, at ‘S1’, user may want to go
ready-state for recovering their error or other causes. For
this behavior, user should wait for 3 seconds or push button
‘M’ and ‘S’ at the same time. In this way, LIC formalism is
designed to be visual and intuitive by OCD.

Figure 3. Script LIC formalism of task “Set date” in pager

Formalism on physical interface component
All physical interface components can be represented by
specified attributes. For example, command buttons have
prior-defined attributes as the following: size, color, label,
and label properties. These attributes are extracted from
style guidelines[6][12]. ESTIM will contain the module for
evaluation of physical interface components.

Formalism on users’ knowledge
We need to acquire user’s prior-knowledge, affinities,
metaphors, analogies, and idiomatic term of operations for
cognitive evaluation. Especially, our team divided task
knowledge for users to use into four-level based on
knowledge level: Means-end structures of tasks,
Organization of operations, User’s procedural knowledge,
and Familiar patterns of controls [13][14][11].

Means-ends structures of tasks(MES)
The highest level structure of user task knowledge is
means-ends structure that can be drawn in the form of goal
tree [11].

Organization of operations.
Primitive operations are understood mainly in terms of two
types of organization[14]: Semantic affinity of tasks, and
Whole-part relationship. Affinity between subtasks and

 BLINK(HR)
Operation

State

Control

State
header

State
Closure

Abstract
operation

operations makes user expect two aspects from an interface.
First, the members with closer affinity should share more
similar syntactical behavior. Second, similar tasks may well
be included into a cluster or a mode. If an interface is not fit
for supporting this user’s expectation, user should memorize
each task procedure in a cluster with separation. That’s why
this user task knowledge should be reflected in user
interface design.

Especially, PIC formalism which extended in this paper is
used as input facts in knowledge-based system. The
following figure illustrates an overview of extended ESTIM.

LIC
formalism ESTIM + KB system

PIC
formalism

Logical Interface evaluation Physical Interface evaluation

Procedures
 Rules

Cases

User Input

Extended ESTIM

Extended ESTIM architecture

UK
formalism

TIM

Additionally, users have knowledge of whole-part
relationships among operations in a user interface. In general,
users will memorize the consecution of operations as
semantic units based on their knowledge with
implication[14]. Accordingly, information or system
responses which are distant from user’s expectation will
prevent user from making relationship of operations.

 User’s procedural knowledge
User knows some natural order of operations that are more
or less generic to the task or got through interaction with
different products or systems. There are three important
procedural knowledge structures: Sequence, Branch and
Loop knowledge structure. In contravention of these user
expectation, user may feel uncomfortable with extant user
interface[14].

ESTIM: EVALUATION SYSTEM FOR TASK-INTERFACE
MATCHING SYSTEM

Representation of LIC formalism in ESTIM
We developed the system for supporting the analysis
framework illustrated in Figure 4, which is called ESTIM. In
ESTIM, interface representations are depicted as Figure 5.
In Figure 5, LIC formalism can be expressed by OCD
format or form-filling editor. Familiar patterns of controls

There is a few well-known control patterns as idioms in user
interface. Toggle button is one of them. If the user interface
do not allow these ‘take for granted’ knowledge of users ,
additional cognitive overload will be required[14].

Additionally, abstraction and generalization process of some
operation set is represented in Figure 6. In the first place,
user selects operations, states, and state headers building up
an abstract operation or state closure. And then, the selected
entities are assigned each name and function(s). Overview of analysis and evaluation of user interface

Analysis and evaluation on user interface can be performed
from diverse viewpoints[3][5][9][10]. These viewpoints may
produce inconsistent analyses or require a long time to
complete an evaluation on interface. Therefore, Yoon
proposed a time-efficient and cost-effective cognitive
approach, which is called Task-Interface Matching(TIM),
based on LIC formalism and UK formalism[13]. The
following Figure 4 illustrates the framework of TIM.

Also, each operation produces a change of system response
and has peculiar function. In ESTIM, Figure 7 illustrates a
form of expression on system response(s) and function(s).

Shortcut among tasks

Abstraction
Gneralization

Operation image

LIC formalism
(OCD/OCS)

UK formalism
- Means- ends structure
- Organization of operations
- User procedural knowledge
- Familiar pattern of controls

Feedback

Consistency Congruity

Menu grouping

 Task procedure

Control availability

Information availability

Figure 5:The window for representing LIC formalism in

ESTIM

Figure 4:Framework of TIM using LIC and UK formalism.

Second, in ESTIM, it is implemented a modified clustering
analysis for getting affinity knowledge among tasks with
data in Figure 9[8]. These data are acquired by grading as
3-point scale(Low, Medium, High related) on each task
couples. After getting data, through formulas we can
automatically get all affinity indexes between tasks. In
addition , this result is visualized by graphical type in Figure
10. In ESTIM, this semantic affinity knowledge of task will
be utilized for evaluating congruity of menu structure and
selection of tasks which should have similar syntactic
behaviors.

 Figure 6: Abstraction and generalization process of logical
 interface components in ESTIM.

Representation of users’ knowledge in ESTIM
In ESTIM, there are various forms of expression of user
knowledge. First, representation of MES is given in Figure 8.
For example, in USINE [5], Lecerof proposed that temporal
relationship of tasks is classified into 7 types.

Figure 9: Comparison data among task in ESTIM

Figure 7: Expression of system response(s)
 and function(s) in ESTIM

In this paper, we proposed that temporal relationship of
tasks falls into 5 types: unordered, parallel, sequence,
alternative and optional types.

Figure 10: Graphical presentation of semantic affinty

index in ESTIM.
Third, In ESTIM, we proposed function diagram for
representing the user’s procedural knowledge. This is based
on function analysis which describes the events that must
occur for user to achieve intended results. It doesn’t describe
physical actions that users will take or specify system
actions[15].
Function diagram is made up of ‘Function’, ‘Decision node’,
and ‘Time flow’. For example, in pager, function diagram of
task “Set ALARM ON” will be represented as the following
Figure 11.

Figure 8: MES of task “ Set Date and Time” in pager
example.

Operation image

SET(MENU) SET(HR) SET(MIN)
SET

(AM/PM)
SET

(ON/OFF)
SET

(MELODY)

Figure 11: User’s procedural knowledge

of task “Set ALARM ON”

Operations are classified into two categories. One is a
primitive operation for reaching to particular goal in
performing tasks. The other is a navigational operation,
so-called control, for reaching to particular state. Therefore,
we have two types of operation image: Primitive operation
image, and Navigational operation image. Moreover,
primitive operation image is divided into two types from the
orientation-viewpoint: Function-oriented, and State/response
oriented. We have implemented analytic rules to evaluate a
function-oriented operation image in ESTIM and LISP.
Figure 13 and 14 illustrates a function-oriented operation
image of a pager in ESTIM and LISP environment. Figure
15 shows a navigational operation image of a pager in LISP
environment.

In ESTIM, there is a window for drawing function diagram
as Figure 12.
Eventually, this UK formalism may serve as reference
materials to enhance the understanding of human-system
interaction, or they can be used directly to identify training
needs and contents [15].

From Figure 13,14, we can identify inconsistency point that
action “change” is performed by different operations, ‘M’ or
‘S’ in task space.

Figure 12: Function diagram for representing the user’s
procedural knowledge in ESTIM

Figure 13: Example of function-oriented operation image

analysis in ESTIM environment
TASK-INTERFACE MATCHING: CONSISTENCY AND
CONGRUITY

-- Our main viewpoint of interface analysis and evaluation is

consistency and congruity. Consistency is the most widely
used measure for goodness of user interface. This is because
consistency greatly reduces complexity of required
knowledge, and can be measured with relative objectivity. In
case of TAG, it tries to measure the consistency of
procedure, but it does not consider the system response[2].
But users expect same response(s) for the same operation at
a similar situation, consistency check of tasks should include
system response(s). In addition, it is needed to consider the
functional consistency of operations. Because operation has
peculiar function(s) as means to achieve the goal, each
operation should have same function(s) in task space.
Otherwise, users may be confused by interpreting function
in every action. Additionally, similar tasks need to have a
similar procedure, because user will understand the interface
as simplified procedures.

“Set Date” Opeartion analysis

(M -> CHANGE(X)).
(M+S -> CANCEL(X)).
(WAIT(X) -> CANCEL(X)).
(M-Long -> SHOW(X)).
(S -> Set Time (X)OR NEXT using --> Inconsistency).

“Set Time” Opeartion analysis

(M+S -> CANCEL(X)).
(WAIT(X) -> CANCEL(X)).
(M-Long -> SHOW(X)).
(S -> NEXTOR CHANGE(X) using --> Inconsistency).
(M -> CHANGE(X)OR NEXT using --> Inconsistency).
(M -> CORRECT(X)OR CHANGE(X) using --> Inconsistency).
Figure 14: Example of function-oriented operation image

analysis in LISP environment

Procedural consistency of similar tasks
Similarities between tasks make user expect the similar
procedures or grammatical behaviors. Therefore, we need to
evaluate whether similar tasks have the similar behaviors or
procedures or not. In ESTIM, we use a modified cluster
analysis for specifying the similar tasks, the result is

The following analysis process is performed based on LIC
formalism and UK formalism.

depicted in left tree-view of Figure 16. Specified tasks to be
similar by UK formalism transform into script LIC
formalisms. With those data, full comparison of tasks will be
performed for finding inconsistent tasks
.

Abstract Operation: 'Set MIN'
Task Entering Finishing Exiting Exiting-State
AUTOON NONE NONE (WAIT 10 OR M+S) SLEEP
ALARM NONE NONE (WAIT 10 OR M+S) SLEEP
 = = = M X1
TIME NONE NONE (WAIT 5 OR M+S) SLEEP

<<< Consistency Check in AO 'Set MIN' >>>
ENTERING :: CONSISTENCY
FINISHING :: CONSISTENCY
EXITING-STATE :: INCONSISTENCY
- Task 'TIME', 'ALARM', 'AUTOON'--> 'AO: Set MIN' 's
EXITING-STATE is 'SLEEP'
- Task 'ALARM'--> 'AO: Set MIN' 's EXITING-STATE is 'X1'
Exiting INCONSISTENCY: Exiting operation's number is different in
Task!
Exiting operation's parameter INCONSISTENCY: operation 'WAIT' 's
parameter is different!

Figure 15 : Example of navigational operation image in
LISP environment

Figure 16: Specification of tasks to be similar by UK

formalism in pager

User has some procedures or goal tree or other prior
knowledge about tasks that are more or less generic. We
called this ‘user task knowledge’. This stage, in congruity
analysis, shows that how well logical interface
component(LIC formalism) is in harmony with user task
knowledge(UK formalism).

Matching a logical interface procedure with users’ procedural
knowledge
The first step in congruity analysis is to check whether
procedural knowledge is in harmony with the procedure of

logical interface or not. For example, we came to know that
there are procedural incongruities in pager as the following
Figure 17

TASK “SET ALARM ON”
 <User’s expectation>
(SLEEP -> (SET MENU (ALARMON)) -> ONOFF -> SET_TIME ->
SET_MIN -> SET_AMPM)
 <System behavior>
(SLEEP -> (SET MENU (ALARMON)) -> SET_TIME -> SET_MIN ->
SET_AMPM -> ONOFF)
 <User’s expectation> <System behavior>

 (ONOFF-> SET_TIME) (NO)
 (ONOFF-> SET_MIN) (NO)
 (ONOFF-> SET_AMPM) (NO)
Figure 17: Example of incongruent procedure with user’s

expectation of pager in LISP environment

In Figure 17, task “Set Alarm On” is composed of five
abstract functions: Set(MENU(ALARM ON)), Set(ONOFF),
Set(TIME), Set(MIN),and Set(AM/PM). We assume that in
real product the sequence of these functions are in turn
Set(MENU(ALARM ON)), Set(TIME), Set(MIN),
Set(AM/PM), and Set(ONOFF). In such case, through
depth-first search with LIC formalism and UK formalism,
ESTIM highlights the differences in user’s expectation and
system’s behavior.

Control availability
The mismatch between UK formalism and LIC formalism
will cause error in performing tasks. Especially, when users
expect a particular action in a specific state, however not
implemented in a real system, this may invoke some
problems. Therefore, availability of operations in the
particular state is an important issue in the error-prevention
of interface. For example, in Figure 18, users think that after
“Selecting Menu: Alarm on ”, “Selecting ON/OFF” can be
done. But, in real product, “Selecting ON/OFF” can be
performed at last time. Therefore, it is natural that users are
prone to error in that point of control unavailability.

TASK “SET ALARM ON”

Control Availability Test

User expectation: ((SET MENU (ALARMON)) -> ONOFF)
System behavior: (((SET MENU (ALARMON)) -> SET_TIME -> SET_MIN
-> SET_AMPM -> ONOFF))
Result: INCONSISTENCY

User expectation: (ONOFF -> (SET MENU (ALARMON)))
System behavior: ((ONOFF -> SLEEP -> (SET MENU (ALARMON))))
Result: INCONSISTENCY

User expectation: (ONOFF -> SET_TIME)
System behavior: ((ONOFF -> SLEEP -> (SET MENU (ALARMON)) ->
 SET_TIME))
Result: INCONSISTENCY

Figure 18: Control availability of pager in LISP environment

Shortcut among tasks
Users may have an idea of necessity for tasks to be linked.

In pager example, after user sets up receiving method as
MELODY, users may usually want to decide MELODY
TYPE. That is, user thinks that two tasks are closely
connected by higher level goal. Therefore, we implemented
an analytic rule so as to evaluate the differences with user’s
expectation in navigational availability.

Menu grouping
Nowadays the greater part of electronic or software system
is menu-based than before. In these system, required
behavior to complete a task is how to select menu items, and
how to recognize where the item is located. Thus, one of
sufficient conditions of good interface is a menu structure
matching user’s expectation. The transformation of UK
formalism is illustrated in Figure 19. From this Figure 19,
we can identify that users expect that task “Set ALARM
on/off ON” is located in a different position, but it is
included same position in an interface.

Figure 19: Example of comparison between menu
structure of interface and one by user knowledge

Manual evaluation and automatic evaluation based on
ESTIM
We found the facts that ESTIM proved to be more
time-efficient and the number of highlighted problem found
matched up to about 95% in comparison to manual analysis.

PIC FORMALISM AND KNOWLEDGE-BASED SYSTEM
PIC formalism of user interface contains the layout
information which defines external and visual form of each
component and the organization information which specifies
relationship and grouping among components. Our team is
building the layout rule and organization rule for evaluating
of physical interface component respectively.

CONCLUSION AND FUTURE WORKS
We have progressed in development of novel method for
user interface analysis and evaluation. Ultimately, the most
important perspective on interface design is congruity with
UK formalism as well as consistency. Therefore we should
have the expression for UK formalism, LIC formalism, and

PIC formalism. Also, we have implemented a
knowledge-based system to support these cognitive
evaluation process. We validated that the results through
knowledge-based system are equivalent to manual analysis
under TIM framework.
In future, through a novel acquisition and representation
method about UK formalism and exquisiteness of inference
engine on physical interface component, this study will be
expanded to a total interface analysis tool. Additionally,
ESTIM will be expanded to user interface management
system.

REFERENCES
1. Byrne. M.D, Wood. S.D, Foley.J.D, Automating

interface evaluation, In Proceeding of ACM/CHI ’94,
pp.232-237

2. Harrison. M and Thimbleby. H, Formal methods in
Human-Computer Interaction, Cambridge, 1988

3. Kieras.D.E, Wood.S.D, Meyer D.A, Predictive
engineering models based on EPIC architecture for
Multimodal high-performance human-computer
interaction task, ACM Tran. On Computer-Human
Interaction, 4,9(Sep, 1997),pp230-275

4. Kim .W.C, Foley.J.D, Providing high-level control and
expert assistance in the user interface presentation
design, INTERCHI ’93

5. Lecerof. A, Paternó. F, Automatic support for usability
evaluation, IEEE Tran. On software, 24,10(Oct.
1998),pp.863-888

6. Löwgren. J, Lauren.U, Supporting the use of guideline
and style guides in professional user interface design,
Interacting with computer, Vol. 5, 1993, pp. 385-396

7. Löwgren. J, Nordqvist.T, Knowledge-based evaluation
as design support for GUI, CHI ’92

8. McDonald.J.E, Stone. J.D, Liebelt.L.S, Searching for
items in menus: The effects of organization and type of
target. In proceedings of the 27th Annual Meeting of
Human Factors Society, pp834-837

9. Nielsen. J, Usability Engineering, American Press, 1993
10. Palanque.P, Paterno.F ,Bastide, R. Mezzanotte.M,

Towards an integrated proposal for interactive systems
design based on TLIM and ICO, Design, Specification
and verification of Interactive Systems ’96

11. Rasmussen.J, Pejterson. A.M, Goodstein.L.P, Cognitive
system engineering, Johns Wiely and sons, 1994

12. Scapin D.L, Organization human factors knowledge for
the evaluation and design of interface, Int. J. of Human
Computer Interaction ,vol. 2,1990, pp.203-229

13. Wan C. Yoon, Jisoo Park, User interface design and
evaluation based on task analysis, In proceeding of
ICPR ’97 pp. 598-601

14. Wan C. Yoon, Jisoo Park, An interface model for
evaluating Task-Interface congruity, In proceeding of
HCI international ’97 , pp. 295-298

15. Williams.E , Rideout.T, Task analysis in the product
design, Hewlett Packard

