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The Analytic Valuation of  
American Average Rate Options 

 
Abstract 
 
This article explores the analytic valuation of American average rate option based 
on the continuous arithmetic average in the Black-Scholes framework. Because 
there is no closed-form exact valuation formula for the average rate option with 
the arithmetic average, a very well-approximated arithmetic average density 
function is used for the valuation. The optimal exercise boundary and the values 
of American average rate options are compared with those of American plain 
vanilla options. Especially, this article shows that American average rate option 
can have two different optimal exercise boundaries depending on the current stock 
price. Numerical experiments are also performed to demonstrate the influence of 
the component factors on the values of American average rate options and to      
illustrate the accuracy and efficiency of the valuation formula.  
 
 
 
 
 
 

 1



1. Introduction 
 

Asian options, or Average options, are one of the most popular path-dependent 

contingent claims in OTC markets whose payoff depends on the average price of 

the underlying asset during a certain time period. They are very useful for the 

traders who want to hedge the volatility risk of the underlying asset price or 

reduce exposure to sudden movements before the expiration date. They are 

commonly traded on currencies and commodity products and their volume has 

grown up rapidly.  

 

Asian options can be classified by several criteria. According to the possibility of 

early exercise, American-style Asian options and European-style Asians option are 

classified. In the light of the payoff type, an average rate option or a fixed strike 

Asian option is the case where the underlying asset is replaced by the average in 

the payoff of a plain vanilla option, and an average strike option or a floating 

strike Asian option is the case where the exercise price is replaced by the average 

in the payoff of a plain vanilla option. In terms of the type of averaging, arithmetic 

average and geometric average are divided and according to the type of sampling, 

continuous-sampled average and discretely-sampled average are categorized. 

From the standpoint of the type of weighting of the observations, equally-

weighted average and flexible average are divided. Finally, in view of the starting 

time of the contract, forward-starting Asian option and backward-starting Asian 

option are classified.  

 

The theoretical Asian option valuation problem has been studied first by Ingersoll 

(1987).  Kemna and Vorst (1990) have derived the first exact valuation formula 

for the geometric average Asian option. Angus (1999) has provided a general 

expression for European-style continuous geometric Average options. Turnbull 

and Wakeman (1991) and Levy (1992) have introduced a closed-form analytic 

approximation formula for valuing European-style arithmetic Asian options using 

Edgeworth series expansion and Wilkinson approximation, respectively. Curran 
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(1994) has presented an approximation based on the geometric mean price 

conditioning approach. Dewynne and Wilmott (1995) have derived the general 

partial differential equation of Asian option with discrete sampling of average. 

Milevsky and Posner (1998) have provided closed-form approximation formulas 

for arithmetic Asian options based on the Reciprocal Gamma distribution. Zhang 

(2001) has proposed a semi-analytic method for pricing and hedging continuously 

sampled arithmetic average rate options. Ju (2002) has provided an approximation 

formula for the characteristic function of the average rate with the Taylor 

expansion. Zhang (2003) has obtained an analytic solution in a series form solving 

the PDE with a perturbation method.  

 

The theoretical researches on American-style Asian option valuation have been 

done as well. Hull and White (1993) and Chalasani, Jha, Egriboyun and Varikooty 

(1999) have suggested binomial methods to the pricing of American-style Asian 

options. Barraquand and Pudet (1996) have proposed Forward Shooting Grid 

(FSG) Method to price American-style Asian option. Zvan, Forsyth and Vetzal 

(1998) have developed stable numerical PDE techniques to price American-style 

Asian option. Wu, Kwok and Yu (1999) and Hansen and Jorgensen (2000) have 

derived an analytic valuation formula for an American Average Strike options.  

 

Kim (1990), Jacka (1991), and Carr, Jarrow and Myneni (1992) have derived 

analytic Valuation formula for American options in different methods, in which 

they showed that the American option price is made up of the corresponding 

European Option price and an integral part representing the early exercise 

premium. 

 

The purpose of this article is to derive the analytic approximate valuation formula 

for the American average rate option with continuous arithmetic average. The 

American-style Asian option Valuation formula is to be constructed using partial 

differential equation approach. The expression will help us to gain rich 

understanding and intuition for the whole composition and dynamics of 
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American-style Asian options. 

 

This article is organized as follows. In the next section, the derivation of the 

analytic valuation formula for American Average Rate options with continuous 

geometric average is presented. A very well-approximated arithmetic average 

density function which was provided by Levy is used for the valuation. The 

optimal exercise boundary is presented in the solution process of the valuation 

formula. The analytic valuation representation is decomposed into the 

corresponding European average rate option valuation formula and the early 

exercise premium. Numerical results are presented to describe the properties of 

optimal exercise boundary and the influence of the component factors on the 

valuation. The article ends with summary and conclusion in the last section. 

 

2. Valuation of American Arithmetic Average Rate Option 
 

We shall first consider an American Arithmetic Average Rate option written on an 

underlying stock price S with expiration date T and strike price K. Assume the 

stock price dynamics follows a lognormal diffusion process 

 

SdWSdtqrdS σ+−= )(   

 

where dW is a standard Brownian motion, r is the risk free interest rate, σ is the 

volatility, and q is the continuous dividend rate which is less than r. Throughout 

the article K, T, r, q and σ are all taken to be constant and greater than or equal to 

0, unless otherwise noted.  

 

To this date, there is no known closed-form representation for the valuation of 

Asian options based on the arithmetic average because it is impossible to describe 

mathematically the distribution of arithmetic average of the underlying asset 

which follows lognormal distribution. Turnbull and Wakeman (1991) have derived 

an approximation model for arithmetic average rate option pricing using the fact 
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that the distribution under arithmetic average is approximately lognormal and they 

put forward the first and second moments of the average in order to price the 

option. Levy (1992) has derived another analytic approximation model which is 

suggested to give more accurate results than the Turnbull and Wakeman 

approximation using Wilkinson approximation approach. Levy (1992) has used 

the knowledge of the conditional distribution of a sum of correlated log normal 

random variables follows log normal distribution. He has shown that the 

arithmetic average density function which has been approximated in his work 

produced very accurate European average rate option values. The greatest error 

for the cases with volatility below 20% has been no more than 0.02% of the 

underlying asset price. This article develops the analytic valuation formula of the 

American average rate option under the basic assumption proposed by Levy’s 

work.   

 

From the Levy’s approach, the first two moments of arithmetic Average price of 

the underlying asset for the period [t, T], At,T, are used to derive the log normal 

distribution of arithmetic average. The average price dynamics at current time t is 

represented by  

 

 dWdtAtdA aTtTt σµ += ,, )( , (1)
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 With the results above, we can derive the following Black-Scholes-like Partial 

Differential Equation for an European average rate option Pe(S,t) from the basic 

assumption of No-arbitrage. 
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with initial and boundary conditions 
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The Equation (2) and (3) are also applied to the American average rate options 

case.  But we should consider one more condition for American rate option 

options for all the life-span.   

 

We already know that the characteristics of the early exercise feature of American 

options lead to the condition that during the life American options must be worth 

at least their corresponding intrinsic values, namely, max(A0,T-K,0) for a call and 

max(K- A0,T,0) for a put.  To represent this constraint for an average rate put 

option, we should introduce a new expression to the original problem, 

 

 )0,max(),( ,0,0 tta AKtAP −≥  (6)

 

where Pa(A0,t,t) is American average rate put option value. 

 

Moreover, the governing equation, Equation (2) is not always true.  For the 

stopping region (0<S<Sc(t)=B(t)), of American average rate put option, the 

equality is not any longer valid.  (Sc(t) or B(t) is the critical stock price at time t.) 
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The governing equation (2) for European average rate option and equation (3) for 

American average rate option can be transformed into the basic heat or diffusion 

equation (8) and (9), respectively (see Appendix), 

 

 
02

2

=
∂
∂

−
∂
∂

x
uu

τ
, (8)

 
02

2

<
∂
∂

−
∂
∂

x
uu

τ
. (9)

 

We can make formulation of the original problem in diffusion equation form 

separately for exercise region and holding region (Sc(t)=B(t)<S), to understand the 

structure more clearly. 

 

With the governing Equations (9), we reformulate the partial differential equation 

problem of American average rate option pricing into the following heat or 

diffusion equation problem:  
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(10b)
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Equation (10a) is for exercise region and Equation (10b) is for holding region. We 

can gain the final valuation formula from solving the above problems. 
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The first term in Equation (15) is the corresponding European average rate put 

option price while the second term represents the early exercise premium. 

Following the same process as the American average rate put option valuation 

formula, we can obtain the valuation formula for American average rate call 

option Ca(S,t) as follows : 
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(16)

 

Like the American average rate put option case, the first term in Equation (16) is 

the European average rate all option price while the second term represents the 

early exercise premium.  

 

Equations (15) and (16) give us the information that the American average rate 

option valuation formula consist of the European Option Valuation formula and 

early exercise premium.  So, we can conclude that the existence of the analytic 

European option valuation formula is the necessary condition for the existence of 

the analytic American Option valuation formula like the plain vanilla option case. 

 

The early exercise premium can be interpreted as the profits originated from an 

instantaneous arbitrage opportunity as soon as the early exercise property is 

endowed all of a sudden at time t to the holder of a European average rate option 

which is an American average rate option from time immediately posterior to t to 

the expiration date.   Therefore, we only have to add up the amount of profits to 

the exercise region to preclude arbitrage opportunity.  That is, we need to 

supplement the necessary amount of value to keep the American average rate 

option value be equal to the intrinsic value of the option in the exercise region. 

 

3. Optimal Exercise Boundary 
 

Like the optimal exercise boundary of American plain vanilla options, the optimal 
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exercise boundary of American average rate options should be determined in the 

solution process of the valuation formula. The optimal exercise boundary B(t) of 

American average rate put option is implicitly determined by the following 

equation: 
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This shape of the optimal exercise boundary is very similar to that of the 

American plain vanilla option. But the solution for the above implicit equation 

can be two, one or zero depending on the average price. If the solutions are two, 

the American average rate option takes two different optimal exercise boundaries 

for the life-span. If the solution is one, the option takes only one optimal exercise 

boundary which is the same case as the American plain vanilla option. Lastly, if 

the solution is zero, then there is no optimal exercise boundary like the American 

plain vanilla call option with zero dividend rates. 

 

 

4. Numerical Experiments 
 

In this section, the numerical experiments are performed to evaluate the analytic 

valuation formula of the previous section. The critical average values consisting 

of the optimal exercise boundary and the values of American average rate options 

are provided by the numerical implementation.  
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Several numerical techniques to implement the valuation formula can be 

considered but the numerical integration method provides the most accurate 

solutions in American option valuation problems. The time interval [t, T] is 

divided into N sub-intervals and the critical average values are calculated at each 

time points from the expiration date T to the current time t. As the number of sub-

intervals N increases, the error of integration is reduced and the more accurate 

results can be obtained. Of course, this makes the problem of increasing the time 

complexity.   

 

Figure 1 shows the critical average values consisting of the optimal exercise 

boundary of American average rate put option for the special case of t=0. In this 

figure, time to expiration of the option is 1 year, risk-free interest rate is 10% and 

the volatility is 20%. For this case, only one optimal exercise boundary exists. The 

shape of the optimal exercise boundary is very similar with that of American plain 

vanilla put option. The optimal exercise boundary shows the continuous and 

monotonous decreasing movement as time to expiration increases. And the 

optimal exercise boundary of the American average rate put option is always 

higher than that of American plain vanilla put option. This is due to the fact that 

the value of average rate option is always less than the value of plain vanilla 

option. Figure 2 shows the optimal exercise boundaries when volatility has 

different values. The optimal exercise boundary of the average value based on the 

asset with a higher volatility is always lower than that based on the asset with a 

lower volatility. This is also due to the fact that the value of average rate option 

with a higher volatility is always higher than the value of average rate option with 

a lower volatility. Figure 3 shows the values of American average rate option, 

European average rate option, American plain vanilla option and European plain 

vanilla option at t=0. The value of American plain vanilla option is always higher 

than or equal to the value of American average rate option.  

 

Table 1 reports the results of the values of the American average rate options for 

the representative set of parameters for the special case of t=0. To access the 
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accuracy of the analytic valuation formula, the results from implicit finite 

difference method with 10,000×10,000 grid points to the corresponding partial 

differential equation are regarded as the true option values and are used as the 

benchmark. The results of Table 1 provides the information that the values of the 

American average rate put options increase gradually as the interest rate increases, 

as time to expiration increases, and as the volatility increases. These 

characteristics can also be observed in the values of the European average rate put 

options. 

 

To evaluate the performance of the valuation model, three error statistics are used 

in Table 1. Mean of absolute error (MAE) and Mean of relative error (MRE) is 

used to measure the accuracy of the analytic valuation formula and maximum 

absolute error (MaxAE) is used to measure the maximum possible error. Table 1 

shows that the numerical results of the analytic valuation formula has 0.067% and 

0.046% in terms of the mean of relative error and 0.0019 and 0.0007 in terms of 

the mean of absolute error for the cases of N=100 and N=1,000, respectively. 

Moreover, the measure of maximum absolute error is as small as 0.0115 and 

0.0047. These observations lead us to confirm the correctness of the analytic 

valuation formula.  

 

The execution times in several numbers of sub-intervals in time are reported on 

Table 2. As the number of sub-intervals increases, the execution time of the 

numerical integration process of the analytic valuation increases exponentially.  

Considering the error statistics and execution time for the cases of N=100 and 

N=1,000 in the numerical integration process, we can find out that more divisions 

of time axis does not lead to much more accurate results in option values. When 

we increase the number of sub-intervals by 10 times, the error is reduced to 

around a half, but the execution times increases by about 100 times. We can 

conclude that numerical integration process with only 100 sub-intervals makes 

accurate results enough to be taken. 
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Detailed numerical values of American average rate options from Forward 

Shooting Grid (FSG) method of Barraquand & Pudet (1996) are given in Table 3 

to be compared with the results from the analytic valuation formula derived in the 

previous section. All the statistics of MRE, MAE, and MaxAE mention that the 

analytic valuation formula is much accurate than the FSG method when all the 

conditions are the same.  

 

Figure 4 shows a very interesting result which distinguishes the American average 

rate option from the other options. Unlike the plain vanilla option, the American 

average rate option can take two optimal exercise boundaries – upper optimal 

exercise boundary and lower optimal exercise boundary - depending on the 

current stock price.  The lower optimal exercise boundary increases continuously 

and monotonically and the upper optimal exercise boundary decreases 

continuously and monotonically. Finally, the optimal exercise boundaries meet 

each other at some time in a point and disappear from the point of contact. This 

means that the value of American average rate option comes to be higher than the 

early exercise payoff whatever the average value has. The early exercise privilege 

makes no advantage to the option holders for that period.  

 

Table 4 reports the results of the values of the American average rate options for 

the representative set of parameters for more general cases than Table 1. In this 

table, we can observe the effect of the component factors on the option values. 

Focusing on each factor with other factors equal, long time to expiration, small 

current average value, small risk-free interest rate, small current time, big 

volatility and small current stock value make the average rate put option values 

higher than ever in American case as well as in European case. We can detect the 

fact in Table 3 that big exercise price makes the average rate put option value 

higher. 

When parameters have the value of T=0.5, A=100, r=0.05, t=0.25, σ=0.2, q=0.04, 

and K=100 in Table 4, we can find that the value of American average rate put 

option value is equal to the European average rate put option. This means that 
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European average rate option value is always higher than the early exercise payoff 

as time goes on. It is already known that the phenomena of the option value being 

always higher than the early exercise payoff can be observed in the American 

plain vanilla call option. When parameters have the value of T=1.0, A=110, r=0.1, 

t=0.75, σ=0.2, q=0.01, and K=100 in Table 4, we can find that the American 

average rate put option value as well as the European average rate put option has 

the value of 0. If the current value is put back to 0.5, the average rate put option 

becomes to have a positive value. This correspond to the case that the current 

stock price has little possible to make the average value till the expiration date 

drop under the exercise price as explained in the previous section. 

 

5. Summary and Conclusions 
 

This article has presented the analytic valuation formula for American average 

rate option with the continuous arithmetic average which is composed of the 

corresponding European average rate option and early exercise premium. We use 

the result of Levy (1992) that the distribution of an arithmetic average is well-

approximated by the log normal distribution when the underlying asset follows 

the log normal diffusion process. Like the optimal exercise boundary of American 

average rate options which should be determined in the solution process of the 

valuation formula has been developed. This shape of the optimal exercise 

boundary is very similar to that of the American plain vanilla option. Also, the 

optimal exercise boundary of American average rate options is closer to the early 

exercise price than that of American plain vanilla options. From this property of 

the optimal exercise boundary, the values of the American average rate options are 

always lower than that of the American plain vanilla options. This is an interesting 

results considering that the curve of the European average option value cuts across 

the curve of the European plain vanilla option value.  

We need to concentrate on the fact that unlike the American plain vanilla, the 

American average rate option can take two different optimal exercise boundaries 

depending on the current stock value. At the beginning time of the average rate 
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option contract, namely t=0, the optimal exercise boundary is just one. But if the 

option holder loses some opportunities to exercise the American average rate 

optimally as time passes, then the American average rate option can take two 

different optimal exercise boundaries, which is a substantially different 

characteristic of the American average rate options.   

Because the arithmetic density function is approximated based on the Levy’s work, 

the accuracy cannot be guaranteed for large volatility. More precise distribution 

could improve the accuracy of the valuation of Asian options. Closed-form 

analytic approximation formula for American options could be more efficient for 

calculating the option values. 
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FIGURE 1. Comparison of the Optimal Exercise Boundary(OEB) of American average rate put 
option and American plain vanilla option (S=50, K=50, T=1.0, t=0.0, A=0.0, r=0.1, q=0.0, σ=0.2) 
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FIGURE 2. Comparison of the Optimal Exercise Boundary(OEB) of American average rate put 
option with different volatilities. (S=50, K=50, T=1.0, t=0.0, A=0.0, r=0.1, q=0.0.) 
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FIGURE 3. Comparison of the graph of American Average rate option, European Average rate 
option, American plain vanilla option and European plain vanilla option  
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σ=0.2) 
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 Approximation LEVY FDM 

N 100 1,000 - 10,000 10,000 

r T σ S American American European American European

0.05 0.25 0.1 95 4.9957 4.9997 4.4207 5.0000 4.4208 

   100 0.9192 0.9187 0.8595 0.9187 0.8595 

   105 0.0332 0.0332 0.0321 0.0332 0.0321 

  0.2 95 5.2649 5.2638 5.0462 5.2638 5.0462 

   100 2.0445 2.0440 1.9895 2.0440 1.9894 

   105 0.5460 0.5459 0.5360 0.5459 0.5360 

 0.50 0.1 95 4.9949 5.0000 4.0697 5.0000 4.0698 

   100 1.1914 1.1904 1.0634 1.1905 1.0634 

   105 0.1296 0.1295 0.1216 0.1295 0.1216 

  0.2 95 5.6745 5.6725 5.3255 5.6729 5.3255 

   100 2.7549 2.7539 2.6314 2.7541 2.6314 

   105 1.1224 1.1221 1.0845 1.1221 1.0845 

 0.75 0.1 95 4.9941 4.9999 3.8228 5.0000 3.8228 

   100 1.3674 1.3658 1.1696 1.3664 1.1695 

   105 0.2278 0.2275 0.2068 0.2276 0.2068 

  0.2 95 6.0143 6.0115 5.5377 6.0126 5.5377 

   100 3.2524 3.2508 3.0540 3.2514 3.0540 

   105 1.5759 1.5752 1.5001 1.5754 1.5000 

0.10 0.25 0.1 95 4.9908 4.9995 3.8248 5.0000 3.8248 

   100 0.7519 0.7509 0.6237 0.7511 0.6236 

   105 0.0196 0.0195 0.0180 0.0195 0.0180 

  0.2 95 5.0894 5.0868 4.5426 5.0869 4.5426 

   100 1.8322 1.8312 1.7064 1.8313 1.7064 

   105 0.4549 0.4547 0.4338 0.4547 0.4338 

 0.50 0.1 95 4.9890 5.0000 3.0708 5.0000 3.0708 

   100 0.9101 0.9080 0.6557 0.9093 0.6557 

   105 0.0695 0.0693 0.0581 0.0694 0.0581 

  0.2 95 5.3066 5.3021 4.4634 5.3038 4.4634 

   100 2.3695 2.3673 2.0961 2.3685 2.0961 

   105 0.8940 0.8932 0.8167 0.8936 0.8167 

 0.75 0.1 95 4.9885 4.9965 2.5470 5.0000 2.5470 

   100 0.9965 0.9933 0.6287 0.9966 0.6287 

   105 0.1136 0.1133 0.0864 0.1136 0.0864 

  0.2 95 5.4886 5.4823 4.3718 5.4870 4.3718 

   100 2.7150 2.7117 2.2893 2.7152 2.2893 

   105 1.2140 1.2126 1.0640 1.2140 1.0640 

Mean of Relative Error (%) 0.067% 0.046% 0.003% 0.000% 0.000% 

Mean of Absolute Error 0.0019 0.0007 0.0000 0.0000 0.0000 

Maximum of Absolute Error 0.0115 0.0047 0.0001 0.0000 0.0000 

Table 1. Values of American average rate put options (K=100,t=0, q=0) 
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N 50 100 300 500 750 1,000 FDM 

Time(sec) 0.186 0.766 6.715 18.102 40.704 70.636 857.213 

Table 2. Execution Times 
 
 

 Approximation FSG FDM 

σ T K Amer Euro Amer Euro Amer Euro 

0.1 0.25 95 0.015 0.013 0.013 0.013 0.015 0.013 

  100 0.752 0.624 0.832 0.626 0.751 0.624 

  105 4.990 3.794 5.337 3.785 5.000 3.794 

 0.50 95 0.056 0.047 0.051 0.046 0.056 0.047 

  100 0.910 0.656 0.978 0.655 0.909 0.656 

  105 4.988 3.048 5.287 3.039 5.000 3.049 

 1.00 95 0.126 0.088 0.104 0.084 0.126 0.088 

  100 1.052 0.584 1.079 0.577 1.054 0.584 

  105 4.986 2.142 5.230 2.137 5.000 2.142 

0.2 0.25 95 0.397 0.379 0.407 0.379 0.397 0.379 

  100 1.832 1.706 2.066 1.716 1.831 1.706 

  105 5.128 4.589 6.108 4.598 5.125 4.589 

 0.50 95 0.803 0.734 0.820 0.731 0.803 0.734 

  100 2.370 2.096 2.629 2.102 2.369 2.096 

  105 5.382 4.539 6.338 4.552 5.378 4.539 

 1.00 95 1.335 1.125 1.318 1.099 1.336 1.125 

  100 2.969 2.390 3.181 2.369 2.971 2.390 

  105 5.749 4.363 6.596 4.356 5.750 4.363 

Mean of Relative Error (%) 0.12% 0.00% 9.11% 0.99% 0.00% 0.00% 

Mean of Absolute Error 0.003 0.000 0.255 0.007 0.000 0.000 

Maximum Absolute Error 0.014 0.000 0.983 0.026 0.000 0.000 

Table 3. Comparison of the American average rate put options with FSG method(Barraquand and 
Pedet (1996)). 
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 Approximation LEVY FDM 

N 100 1,000  10,000 10,000

T A r t σ q S Amer. Amer. Euro. Amer. Euro 

0.5 100 0.05 0.25 0.2 0.04 95 2.7074 2.7074 2.7074 2.7074 2.7074

0.5 100 0.05 0.25 0.2 0.04 100 1.1081 1.1081 1.1081 1.1081 1.1081

0.5 100 0.05 0.25 0.2 0.04 105 0.3124 0.3124 0.3124 0.3124 0.3124

0.5 100 0.1 0.25 0.1 0.01 95 1.9671 1.9671 1.9659 1.9671 1.9659

0.5 100 0.1 0.25 0.1 0.01 100 0.3338 0.3338 0.3324 0.3338 0.3324

0.5 100 0.1 0.25 0.1 0.01 105 0.0102 0.0102 0.0101 0.0102 0.0101

1.0 100 0.05 0.25 0.1 0.01 95 3.0763 3.0762 3.0621 3.0760 3.0621

1.0 100 0.05 0.25 0.1 0.01 100 0.9846 0.9845 0.9753 0.9844 0.9752

1.0 100 0.05 0.25 0.1 0.01 105 0.1835 0.1834 0.1811 0.1834 0.1811

1.0 100 0.05 0.25 0.2 0.01 95 4.3140 4.3141 4.3126 4.3140 4.3126

1.0 100 0.05 0.25 0.2 0.01 100 2.4037 2.4037 2.4024 2.4036 2.4023

1.0 100 0.05 0.25 0.2 0.01 105 1.1937 1.1938 1.1928 1.1937 1.1928

1.0 100 0.1 0.25 0.1 0.01 95 2.2789 2.2795 2.0677 2.2765 2.0678

1.0 100 0.1 0.25 0.1 0.01 100 0.6068 0.6063 0.5337 0.6056 0.5337

1.0 100 0.1 0.25 0.1 0.01 105 0.0872 0.0871 0.0773 0.0870 0.0772

1.0 100 0.1 0.25 0.1 0.02 95 2.3927 2.3930 2.2319 2.3908 2.2319

1.0 100 0.1 0.25 0.1 0.02 100 0.6624 0.6619 0.6019 0.6613 0.6019

1.0 100 0.1 0.25 0.1 0.02 105 0.1007 0.1006 0.0917 0.1005 0.0917

1.0 100 0.1 0.25 0.2 0.01 95 3.4657 3.4653 3.4169 3.4641 3.4169

1.0 100 0.1 0.25 0.2 0.01 100 1.8412 1.8408 1.8083 1.8401 1.8082

1.0 100 0.1 0.25 0.2 0.01 105 0.8677 0.8675 0.8499 0.8671 0.8499

1.0 100 0.1 0.25 0.2 0.02 95 3.5918 3.5915 3.5581 3.5906 3.5581

1.0 100 0.1 0.25 0.2 0.02 100 1.9264 1.9262 1.9028 1.9256 1.9028

1.0 100 0.1 0.25 0.2 0.02 105 0.9176 0.9175 0.9043 0.9172 0.9043

1.0 100 0.1 0.5 0.1 0.02 95 1.7177 1.7176 1.7095 1.7175 1.7095

1.0 100 0.1 0.5 0.1 0.02 100 0.4019 0.4018 0.3967 0.4017 0.3966

1.0 100 0.1 0.5 0.1 0.02 105 0.0398 0.0397 0.0390 0.0397 0.0390

1.0 105 0.1 0.25 0.1 0.01 95 1.4071 1.4074 1.3950 1.4067 1.3950

1.0 105 0.1 0.25 0.1 0.01 100 0.2953 0.2954 0.2914 0.2952 0.2914

1.0 105 0.1 0.25 0.1 0.01 105 0.0336 0.0336 0.0330 0.0336 0.0330

1.0 110 0.1 0.75 0.2 0.01 95 0.0000 0.0000 0.0000 0.0000 0.0000

1.0 110 0.1 0.75 0.2 0.01 100 0.0000 0.0000 0.0000 0.0000 0.0000

1.0 110 0.1 0.75 0.2 0.01 105 0.0000 0.0000 0.0000 0.0000 0.0000

1.0 110 0.1 0.5 0.2 0.01 95 0.3454 0.3454 0.3454 0.3454 0.3454

1.0 110 0.1 0.5 0.2 0.01 100 0.0963 0.0963 0.0963 0.0963 0.0963

1.0 110 0.1 0.5 0.2 0.01 105 0.0216 0.0216 0.0216 0.0216 0.0216

Mean of Relative Error (%) 0.046% 0.033% 0.003% 0.000% 0.000%

Mean of Absolute Error 0.0004 0.0004 0.0000 0.0000 0.0000

Maximum Absolute Error 0.0024 0.0030 0.0000 0.0000 0.0000

Table 4. Values of American average rate put options (K=100) 
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 Appendix 
 
Derivation of equation (8) 
 
It is more convenient to work in traditional normalized coordinates with the stock 
price variable normalized by the strike price, the time variable normalized by the 
volatility and the strike price, the critical stock price variable normalized by the 
exercise price, the American Options price normalized by the exercise price 
respectively,  
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then, Equation (2) can be transformed into the basic heat or diffusion equation 
problem in thermal physics as follows, 
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