
QUANTUM TRANSFORMATION : THE ANALYSIS OF 
QUANTUM RECTIFIER-INVERTERS 

C. T. Rim ond G. H .  Cho 

Dept. of Electrical Engineering, Korea Advanced Institute of Science and Technology 

P.OBox 150 Chongryang, Seoul 130-650, Korea (Tel. 966-1931 ext. 3723) 

ABSTRACT 

The quantum rectifier-inverters becoming a new class of 
cyclo-converters are analyzed by a new analysis based on quantuni 
frarisforniufion . The procedure of the transformation is explained 
and then it is applied to the quantum converters to obtain equivalent 
conventional circuits. Then it is analyzed by the circuit DQ 
transformation, from which the DC voltage gain is derived. Finally 
the gain is verified by the time-domain simulations with good agree- 
ments. The switching patterns, or equivalently the control laws, of 
the quantum converters are determined by a very simple logic cir- 
cuit composed of only two EXOR gates when those of the 
equivalent rectifier-inverters are already known. From this paper it  
is found that the operation of the quantum converters is tightly 
related with that of the conventional converters via the propsed 
quantum transformation. 

I. INTRODUCTION 

Recent years a new class of the quantum converters which are 
found to be a kind of resonant converters are suggested [1-3]. Since 
their switching frequency and phase are fixed to resonant frequency 
and zero degrees, respectively, the controls of them are performed 
by the time domain selection of discrete pulses. The name quantunt 
stems from the quantized output level and quantized time domain 
control. Since they operate at either current or voltage zero switch- 
ing points, their switching loss and stress are negligible, which is 
crucial feature necessary for high frequency application. 

It has been verified that the quantum DC/DC converters are 
equivalent to the conventional PWM Dc/DC converters [2]. It is 
natural to expect the equivalent conventional converters for the 
quantum rectifier-inverters also. 

In this paper an easy way to analyze the quantum converters, 
quoitrum trortsforntcuion is proposed, such that the complex unfami- 
liar quantum converters can be regarded as the simple and familiar 
conventional converters. And the method to determine the switching 
patterns for the control of the quantum converters are suggested. 
Finally the recently proposed circuit DQ transformation [4] is used 
to analyze the equivalent converters with ease. 

I1 OUANTUM TRANSFORMATION 

The systems to be modeled are shown in Fig. 1 and Fig. 2 
which are named as Quantum Parallel-link Recrifier-lnverrer 
(QPFU) and Quonlunt Series-link Rectifier- Inverter (QSN), 
respectively. It is assumed that all circuit elements are linear, 
switches are ideal bidirectional, and switching harmonics are negligi- 
ble. 

A. Preliminaries 

Consider first the resonant circuit shown in Fig. 3. The 
transfer function of Fig. 3 (a) is 

sc 
(1) can be used to determine the iL from the given vs as shown in 
Fig.4 . However this is improper to determine the envelope of iL , 
which is practically meaningful. What we want to know is the aver- 

Fig. 1 Quantum parallel link rectifier-invertcr. 

Fig. 2 Quantum series link rectifier-inverter. 

age value of modulated iL for given modulated vs as shown in Fig.4. 
The frequency of source voltage is set to the resonant fre- 

quency, 
1 0  1 
T 2 7 ~  - 

f =-=-= 
1 

2Tr(L C ) 2  
Then during the period A of Fig. 4(b) the energy of resonant tank 
increases, during B that is kept constant, and during C that 
decreases. The inductor current is computed as follows [l] : 

1 
c -  kT 

L 2 
iL =[I , ,  ( k - l ) + 2 S  (-)’ V,]q(t).sino(t--) 

kT k + l  

2 2 
for - < t < -T , S = l  for A ,  

S=O for B ,  S=-1 for C 

where 
(3) 

I,, (k ) =  Peak of [ i L  d t ) l  

q(t)= -1 +2u(t ) -2u(t - - )+- .  
T 

2 
(4) 

u(t) is unit step function. Now the quantum transformation is 
defined for arbitrary variable x(t) as 

2(k+WzT 

x*(t)Eq(t).xm=q(t) x(t)dt 
kTl2 

kT k+l 

2 2 
for - < t < -T (5 )  
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where 

L'= $)'L =25L . (11) 
2 

The circuit reconstruction of (10) is Fig. 3(b). The transfer func- 
tion of it is I/ 

(b) equivalent circuit. 
(a) original circuit. 

Fig. 3 Equivalent series resonant tank. 

(c) quantum function. 

(d) modulated voltage. 

(e) modulated current. 

I I - (f) averaged current. 

t 

A B  

Fig. 4 Waveforms of Fig. 3. 

Then the quantum transformed voltage and inductor current become 

Applying (8) to (6b) results in 

Then the derivative of the current is 
* I  * I  

iL It=*. - iL It--, 1 
.I 2 =--S(-)2Vs 2 4  c -  
iL = 

Ti2  T n  L 

(9) 

I, ( S ) *  1 

v, ( S ) .  SL' 
G,(s )  = -= - 

Comparing (12) with (l), it can be seen that the transfer function is 
changed in large scale by the quantum transformation. 

By similar manipulation the parallel resonant circuit becomes a 
capacitor by the quantum transformation as shown in Fig. 5 .  The 
equivalent capacitor is 

C'=(")'C . (13) 
2 

B. Quantum Transformation of QPRI. 

Using the results of the preliminary the circuit shown in Fig. 1 

The system equation is found to be 
is transformed to an equivalent circuit in this section. 

L ,irN = vfl - sN (t)vc 

Loid =wN (t)vc - iaRL 

3 

i;=q(t)iT=q(t) sN(t)ifl 
N = l  

3 

= 2 Si(t)i, 
N = l  

3 
j =  ;-q(t)iT= 2 wi(t)i,,,., , for N = l ,  2, 3 , (16) 

The approximation is used when it is required to ignore the 
high frequency harmonics. Considering the result of Fig. 5 the cir- 
cuit reconstruction of (16) is Fig. 6 ,  which is the quantum 
transformed equivalent circuit of Fig. 1. The dotted lines of Fig. 1 
and Fig. 6 indicate the portion where the quantum transformation is 
taken. 

N = l  

(a) original circuit. (b) equivalent circuit. 

Fig. 5 Equivalent parallel resonant tank. 
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F. I I  I In I1 I (a) given existence function, 
' t  

'i 

odulation function. 

r (e )  3: side voltage in Flg. 6 

I 

- ( f )  capacitor voltage in Fig. 1 

--t 

I 

Fig. 7 The relationship between Fig. 1 and Fig. 6. 

The existence functions are as follows: 
s;(t)=/z; -h;'==q(t)sN(t)=q(t) [ h N 4  

g N  for q(t)=l --.. 
g N =  [g; for q ( t ) = - l  

for N= 1, 2, 3 (17b) 
(17) can be used to find the appropriate h N  for giveh h i  as shown 
in Fig.7 . If any wanted existence function h is given then it is 
truncated as shown in  fig.'^ (b). And it is modulated and then the 
quantum existence function, h, is generated as follows: 

If the DC side voltage of Fig. 6 is given as shown in Fig. 
7(e) then the capacitor voltage can be predicted considering the 
quantum transformation as shown in Fig. 7(f). 

Fig. 8 Quantum transformed QSRI. 

C. Quantum Transformation of QSRI 

By similar procedure the QSRI as shown in Fig. 2 can be 
The existence functions quantum transformed as shown in Fig. 8 .  

are, however, a little different. 
Since it is found from Fig. 2 that 

3 3 

"I= I: (h,-h,+3)vfl= I: S N W f l  (194 
N = l  N=l 

3 3 

v;=9(t)vl=9(t) s,(t)vfl = E s;(t)Vfl (19b) 

s h ) =  h N  -h,+3 = 4(t)SN(t)= 9(t)[hN-llN+31 ( 2 0 4 ,  

N = l  N = l  

it can be seen that 
. I  

* [ 6 + 3  for q(t)=1 
h ,  for q( t )= - l  - '"+3 = 

What we want to do is to determine the switch pattern of Fig. 2 
when that of Fig. 8 is given. This can be accomplished using (20) 

D. Logic Gate For The Switch Pattern Generation. 

When the switch pattern of conventional rectifier-inverter is 
given that of quantum rectifier-inverter can be generated by an 
appropriate logic gate. 

Observing (17) and (20) it can be seen that the logic gate 
shown 'in Fig. 9 works as the appropriate pattern generator. 

The inputs are as follows: 
[hN h J  for QPRI 

[ha'hb1= [ [hN,hN+3] for QSRI 
1 for q(t)=l 

[ 0 for q(t)=-1 

The logic gate has the property that input output switch pat- 
terns can be exchanged by the same gate; that is, if the input is 
[haw,hil then the output becomes [h,,hb] . 

Fig. 9 Switching pattern generator. 
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111. CIRCUIT DQ TRANSFORMATION 

The conventional rectifier-inverters as shown in Fig. 6 and Fig. 
8 can be easily analyzed by a new analysis technique, circuit DQ 
transformation [4]. The equivalent circuits are drawn as shown in 
Fig. 10 and Fig. 11. 

The AC transfer functions can be derived from Fig. 10 and 
Fig. 11. Those who are interested in the procedure of this, please 
see the reference [4]. 

In this paper only DC analysis is suggested though AC 
analysis is also possible. The DC circuits of Fig. 10 and Fig. 11 
are Fig. 12 and Fig. 13, respectively. 

v ,=qLo13=02L,-  'd (22) 

RL 

is the phase difference between the source voltage and input 
side fundamental switching function. From (22) it can be seen that 
the DC transfer function C, becomes 

1 - 
v, [Vd2+V,2]2 

G, E-= 
v s  "S 

D I  sin+ 0 2 L  L 

D 2  OILs RL 
RL . [ 1 + ( 2 ) 2 ] 2  (23) 

=-- 

By similar procedure the DC transfer function of Fig. 13 
becomes 

1 - D l  

D2 
Cv=-~os+[1+(WRL )2]2 (24) 

Fig. 10 Circuit DQ transformation of Fig. 6. 

U 

Fig. 11 Circuit DQ transformation of Fig. 8. 

Fig. 12 DC circuit of Fig. 10. 

Fig. 13 DC circuit of Fig. 11. 

, 

J 

R L = 5 n  ) Fig. 14 Simulated waveforms of Fig. 1 and Fig. 6. 
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It can be seen from (23) and (24) the output voltage can be 
controlled by switch patterns: D , , D ,  and 0. The dependencies of 0 
on QSRI and QPRI are, however, quite different. (23) and (24) can 
be used to determine the operating point when load conditions are 
given. The output voltage ranges from zero to its maximum. And it 
is certainly possible to vary the input power factor though this is 
not proved here. 

IV. SIMULATION 

To verify the quantum transformation the circuits of Fig. 1 
and Fig. 6 are compared through simulation. The circuit parameters 
are selected practically as follows: 

V,=lOO V ,  O,=O2=1207r radsec 
P 

f,=2160 H z ,  +-- 
6 

The switch pattern is let be just the same as Fig. 7 and it 
is assumed that three phases are balanced. The simulation is done 
by direct computation of (14). (16) and resonant circuit equations 

Figs. 14-15 show that how the operation of the quantum con- 
verter is connected with that of the corresponding conventional con- 
verter assuming zero initial conditions. As can be seen from the 
figures, the PWM patterns of the quantum converter are not easily 
recognizable, however they are merely the switching patterns of the 
conventional converter multiplied by the quantum function q(t) as 
can be identified from the figures. And the output waveforms of 
the quantum converter are nearly the same as those of the conven- 
tional converter except only the very small portion of the high fre- 
quency harmonics. 

It can be seen from the simulation that the quantum transfor- 
mation is very useful for the envelope prediction and switch pattern 
generation of the quantum converters as well as the analysis of 
them. 

PI. 

V. CONCLUSION 

A new concept, quartrum transformaion, by which the 
equivalent conventional circuits are derived from the QPRI and the 
QSRI is proposed in this paper. It is found that the role of a paral- 
lel (or series) resonant link in the quantum converter is just the 
same as that of a capacitor (or inductor) in the conventional con- 
verter by the transformation. The switch patterns of the quantum 
converters which are highly confusing in fact are now easily deter- 
mined by a simple logic gate which is composed of only two 
EXOR gates when the switch patterns of the equivalent conven- 
tional converters are know. 

Now the analyses of the quantum converters become merely 
those of conventional converters by the proposed transformation. 
The analysis based on the circuit D Q  transformation of the quan- 
tum transformed circuits also shows that the outputs of the quantum 
converters can be controlled from zero to their maximums by 
moderate switching patterns. 

+ 
i 
! 

141 
Fig. 15 Simulated waveforms of Fig. 1 and Fig. 6. 

( L , = 2 0 m H ,  L , = 1 0 m H ,  C = 2 m p F ,  R L = 2 L I  ) 
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