## 7.4 A Single-Inductor Step-Up DC-DC Switching Converter with Bipolar Outputs for Active Matrix OLED Mobile Display Panels

Chang-Seok Chae', Hanh-Phuc Le', Kwang-Chan Lee', Min-Chul Lee', Gyu-Hyeong Cho', Gyu-Ha Cho<sup>2</sup>

<sup>1</sup>KAIST, Daejeon, Korea <sup>2</sup>JDA Technology, Daejeon, Korea

Of the different flat panel displays that can meet the increasing requirements of customers, the active matrix OLED (AMOLED) display is a strong candidate for mobile applications owing to its high resolution, low power consumption and low cost. AMOLED panels, however, usually require multiple power supplies with different regulated voltages. Therefore, step-up switching converters that can supply multiple outputs for this application are important.

A single inductor bipolar output (SIBO) converter, shown in Fig. 7.4.1, is presented in this paper to power an AMOLED display for TDMA (GSM) mobile sets, which requires both positive and negative voltages with a gap of 10 to 12V. This converter reduces the overall size and cost of a mobile set. The most critical specification for this application is the line transient response of the positive supply,  $V_{OP}$ , which can seriously affect the display by changing  $V_{gs}$  of  $M_{p4}$  if it is not fast enough, thus changing the current  $I_{OP}$  through the AMOLED. Based on experimentally verified data, the average variation of  $V_{OP}$  should be strictly less than 4mV within 51.2 $\mu$ s of a 0.5V fluctuation in the battery voltage,  $V_g$ , to avoid visible flicker on the display as illustrated in Fig. 7.4.1. Its switching ripple should also be under 30mV for a clean image. However, for the negative output  $V_{ON}$ , its variation only affects  $V_{ds}$  of  $M_{p4}$ , and hence, its line transient and ripple specifications are not as severe. Because of the stringent requirements for  $V_{OP}$ , some chipmakers have attempted to obtain the  $V_{\mathit{OP}}$  with an LDO [1] regulator, which creates a trade-off between reduced efficiency and increased cost and area.

The converter in Fig. 7.4.1 is a combination of two converters:  $V_{OP}$ is obtained from a boost operation employing modified comparator control (MCC) and  $V_{\mathit{ON}}$  from a charge-pump circuit with PIcontrol. The control of the power switches is simplified compared to the topologies reported in [2] by delivering charge to all outputs at every switching cycle with priority given to  $V_{OP}$ . The charge remaining after transferring charge to  $V_{\mathit{OP}}$  is used to control the PWM signal for M<sub>n1</sub>. Therefore, the effect of battery voltage fluctuations can be seen on  $V_{\mathit{ON}}$  but is very small on  $V_{\mathit{OP}}$  since  $V_{\mathit{OP}}$  is controlled by a comparator while  $V_{\mathit{ON}}$  is controlled by a PI loop. An additional high voltage output  $V_H$  (=  $|V_{ON}| + V_{D1}$ ) is intentionally generated to supply all gate drivers and to bias the bodies of the power PMOS transistors to reduce the sizes of the switches. The freewheeling switch M<sub>D3</sub> is active in the discontinuous-conduction mode (DCM) with the zero-inductor-current detection technique reported in [3]. Consequently, the size and the conduction loss of  $M_{\tiny D3}$  are smaller than those of the one in the converter of [4].

Figure 7.4.2 shows the timing diagram for SIBO operation. In DCM, during  $D_1T$ , the NMOS switch  $M_{n1}$  is conducting and the inductor current  $I_L$  increases. During  $D_2T$ ,  $M_{n1}$  is off and the PMOS switch  $M_{p1}$  is on to divert  $I_L$  into  $C_{OP}$ . During  $D_3T$ , the NMOS switch  $M_{n2}$  and the PMOS switch  $M_{p2}$  are conducting at the same time to divert the rest of  $I_L$  into the output capacitor  $C_{OH}$  and the capacitor  $C_F$  until  $I_L$  is zero. During  $D_4T$ ,  $M_{p3}$  is conducting and  $I_L$  remains at zero until the end of the cycle. The negative output capacitor  $C_{ON}$  is negatively charged through  $D_1$  from  $C_F$  during the next  $D_1T$  in the charge-pump operation. In continuous-conduction mode (CCM) operation, the switching sequence is the same as in DCM except for  $M_{p3}$ . In this mode, the switches  $M_{n2}$  and  $M_{p2}$  are turned off at the end of a cycle and  $M_{p3}$  is inactivated since  $I_L$  does not go to zero.

Figure 7.4.3 shows the peak current sensing method used in this converter. The circuit can accurately sense the peak inductor current  $I_{peak}$  both in DCM and CCM. Normally,  $I_{peak}$  is obtained from the on-voltage across  $\mathbf{M}_{\mathrm{n}1}$  (in Fig. 7.4.1). However, in this SIBO, the current in  $M_{n1}$  is  $I_{MN1} = I_{peak} + I_{neg}$ , where  $I_{neg}$  models the negative-charge-transfer current during  $D_1T$ . Therefore,  $I_{neg}$  should be removed from  $I_{MN1}$  to obtain  $I_{peak}$ . In this circuit,  $I_{neg}$  is generated from the current trimming block by modeling the charge and discharge currents in the charge-pump operation producing  $V_{ON}$ using the real inductor current shape  $I_{ac}$ , capacitor  $C_{eq}$  and resistor  $R_{eq}$ . In this modeling,  $C_{eq}$  and  $R_{eq}$  act like  $C_F$  and the on-resistance of  $M_{n1}$ , respectively.  $I_{ac}$  is derived from  $V_{ac}$  by the AC\_current sense block, which senses the exact shape of  $I_L$  as reported in [3].  $I_{neg}$  is obtained using  $I_{CFM}$ , which models the charge current of  $C_F$ during  $D_3T$ , as illustrated in Fig. 7.4.3. In  $D_3T$ , since  $S_{MN}$  is low and  $S_{VP}$  and  $S_{VN}$  are high,  $I_{CFM}$  flows through  $M_1$ ,  $M_2$ ,  $C_{eq}$  and  $M_3$  to store charge in  $C_{eq}$ , modeling  $I_L$  diverting charge to  $C_F$ . During  $D_{\scriptscriptstyle 1}T$  when  $S_{\scriptscriptstyle VN}$  is low and  $S_{\scriptscriptstyle MN}$  and  $S_{\scriptscriptstyle VP}$  are high, the discharge current of  $C_{eq}$  flows through  $M_4$ ,  $M_6$ ,  $C_{eq}$ ,  $R_{eq}$  and  $M_8$  to AC\_gnd, which is a constant voltage, modeling the negative-charge current from  $C_{\mathit{ON}}$  through  $\mathrm{D_1}$  to  $C_{\mathit{F}}$ . This current is  $I_{\mathit{neg}}$ , converted from  $I_{\mathit{CFM}}$  by the equivalent time constant  $R_{eq} \cdot C_{eq}$  of  $R_{on}(M_{n1}) \cdot C_F$ .  $M_8$  is used to reset the charge across  $C_{eq}$  during  $\overline{\mathrm{D}}_2\mathrm{T}$  to make  $I_{neg}$  accurate.

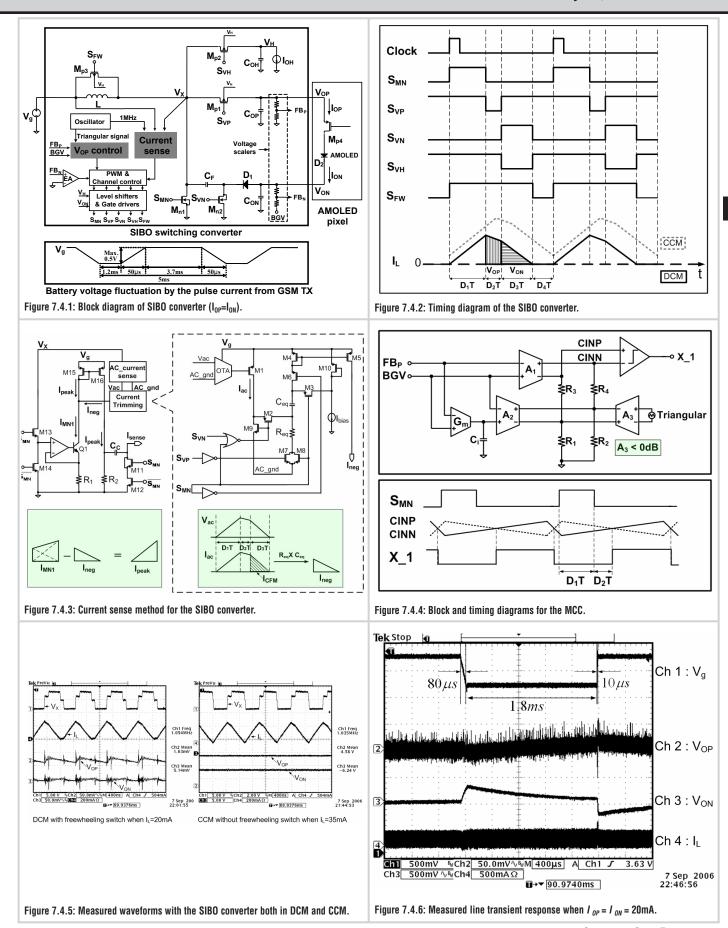
Using the information contained in  $I_{MN1}$  and  $I_{neg}$  from this circuit,  $I_{peak}$  through the inductor is obtained. The capacitor  $C_C$  is used with switches  $\mathbf{M}_{11}$  and  $\mathbf{M}_{12}$  to sample a voltage proportional to the peak inductor current,  $I_{sense}$ , during  $\mathbf{D}_1\mathbf{T}$ . Offset and clock feedthrough cancellation techniques are used.

Figure 7.4.4 shows the MCC structure used to generate a robust  $V_{OP}$ . The structure is necessary because a simple comparator cannot maintain a regular duty cycle for M<sub>p1</sub> since it is seriously affected by output noise. The noise would cause M<sub>n1</sub> to switch unpredictably and produce a large switching ripple at  $V_{OP}$ . Whereas, the MCC senses the average of  $V_{\mathit{OP}}$ , rather than output ripple, by adding some triangular signals at the inputs of the comparator. This enables the PWM channel control to switch every cycle and generate a new PWM signal (X\_1). The duty-cycle of X\_1 is controlled by OTA  $A_1$ ,  $A_2$  and the  $G_m$ - $C_i$  integrator. Abrupt errors in the feedback voltage  $FB_P$  of  $V_{OP}$  are quickly corrected by OTA  $A_1$ . Steady-state errors are corrected by the  $G_m$ - $C_i$ integrator with OTA A2. Therefore, the input offset voltage of the comparator is also corrected because the integrator only controls the difference between the band-gap voltage (BGV) and FBp. The operation of the MCC is illustrated by the timing diagram in Fig.

This converter was fabricated in a 0.5µm power BiCMOS process and occupies a die area of 4.1mm². It operates at a switching frequency of 1MHz with an inductor of 4.7µH having an ESR of 320mΩ. The input battery voltage varies from 2.7 to 4.5V, and  $V_{\mathit{OP}}$  and  $V_{\mathit{ON}}$  are regulated to 4.58V and -6.24V with ripple voltages of 15mV and 5mV, respectively. Figures 7.4.5 and 7.4.6 show experimental results. Figure 7.4.5 shows CCM and DCM operations and Fig. 7.4.6 shows the line transient response of  $V_{\mathit{OP}}$ . The maximum output power is 1.1W, and the maximum efficiency is 82.3% at an output power of 330mW.

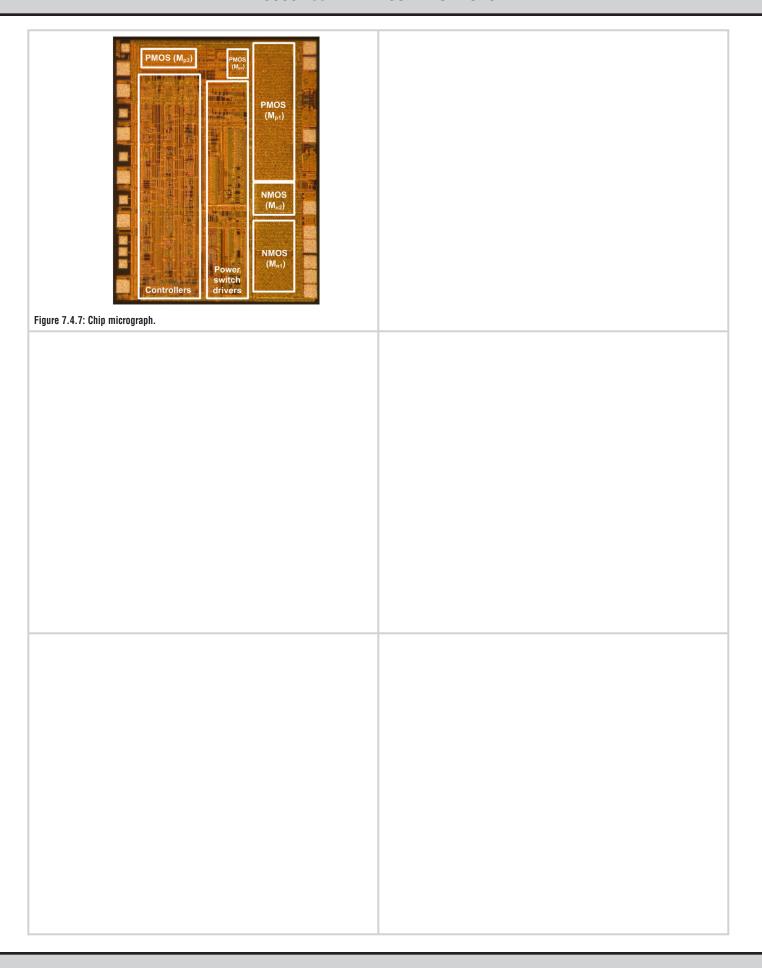
Acknowledgement:

This work is supported by JDA and ITRC of KOREA.


References:

[1] "TPS65120: Single-Inductor Quadruple-Output TFT LCD Power Supply," 2004, http://www.ti.com/

[2] W. H. Ki and D. Ma, "Single-Inductor Multiple-Output Switching Converters," *IEEE Power Elec. Specialists Conf.*, pp.226-231, Vancouver, Canada, June, 2001.


[3] L. H. Phuc et al., "Integrated Zero-Inductor-Current Detection Circuit for Step-Up DC-DC Converters," *Electron. Leters.*, Vol. 42, no. 16, pp. 943-944. Aug., 2006.

[4] D. Ma, W. H. Ki, C. Y. Tsui and P. Mok, "A Pseudo-CCM/DCM SIMO Switching Converter With Freewheel Switching," *IEEE J. Solid-State Circuits*, pp.1007-1014, June, 2003.



Continued on Page 592

## **ISSCC 2007 PAPER CONTINUATIONS**

