A High Dynamic Range CMOS Power Amplifier

Changkun Park, Younsuk Kim, Jeonghu Han, Dongho Lee, *Donghyun Baek, and Songcheol Hong

Korea Advanced Institute of Science and Technology(KAIST)

*Samsung Electronics Co., Republic of Korea

A 1.9 GHz CMOS differential power amplifier for polar transmitter applications is implemented with 0.25 μ m RFCMOS process. All of matching components, input transformer and output transformer are fully integrated with 50- Ω input and output matching. The each power transistor in an each differential branch are again split and controlled separately to have a high power mode and a low power mode. It achieves a drain efficiency of 32 % at the maximum output power. The maximum output power is 29.5 dBm at 3.3 V supply voltage. The dynamic range is measured about 27.5 dB with the Vdd range of 0.7 V ~ 3.3 V.

To satisfy the GSM standard, the dynamic range of Pout must be above 20 dB. For the given range of Vdd which is presented in the output of LDO or DC-DC converter, it is very important to find the way to increase the dynamic range of a power amplifier especially for polar transmitter applications. The proposed power amplifier shows high dynamic range using split topology, and is implemented with 0.25 μ m CMOS process.

A single turn transformer (STT) is used as the output transformer, which has a direct influence on the output power and efficiency of power amplifiers. The STT is composed of high-Q coupled slab inductors to minimize the loss of output transformer [1]. In Fig. 1, the schematic of STT structure is shown. With an additional shunt MIM capacitor, which has higher Q than the slab inductor of STT, the output matching network is fully integrated.

The conventional cascode structure of Class-E is shown in Fig. 2 (a). Theoretically, the dynamic range of cascode Class-E power amplifier is also 13.5 dB for the Vdd range of $0.7 \text{ V} \sim 3.3 \text{ V}$. To get the higher dynamic range of power amplifier, the gate voltage of the common gate MOSFET (M1) is bound to Vdd as shown in Fig. 2 (b).

The second method to increase the dynamic range is to split the power-stage. In high power mode, all the power transistors are turned on. In low power mode, a part of power transistors are turned off. The previous work uses additional switch in the power stage to turn on and off a part of power transistors, as shown in Fig. 3. The additional switch may reduce the efficiency of power amplifier during a maximum output power.

ACKNOWLEDGEMENT

This work was supported in part by the university IT research center program of the government of Korea

REFERENCES

 Ichiro Aoki, Scott D. Kee, David B. Rutledge, and Ali Hajimiri, "Distributed active transformer – A new power-combining and impedance-transformation technique," *IEEE Transactions on microwave theory and techniques*, pp. 316-331, vol. 50, January. 2002.

Fig. 1. Schematic of output transformer - single turn transformer (STT).

Fig. 2. (a) Conventional Class-E power amplifier (b) Class-E power amplifier where Vgs of common gate

Fig. 3. Conventional power-controllable structure of Class-

E.

Fig. 5. Dynamic range of a conventional and the proposed

Fig. 4. Schematic of the proposed power amplifier.

Fig. 6. Drain efficiency vs. Pout of high power mode

Fig. 7. Chip photograph of proposed power amplifier.