
A Multi-level Case-based Design Aid for User Interface Designers

Huhn Kim1 and Wan Chul Yoon2

1S/W Development Dept., CDMA Handsets Laboratory, LG Electronics; huhnking@lge.com
2Department of Industrial Engineering, KAIST; wcyoon@mail.kaist.ac.kr

Designing modern user interfaces is a complex task that designers should optimize the interaction between the user
and the interface considering user goals, preferences, capabilities, and available interface means. It has been
recommended that the design procedure follows the task-based analytic process, which starts from eliciting the
user’s task needs and task knowledge, goes through a conceptual interaction design, and ends with a concrete,
physical design of the interface. In practice, however, designers are seldom observed to undertake interface design in
a top-down sequential process. Instead, they frequently manifest opportunistic search behavior in finding and
choosing reusable design solutions. These strategies have advantages in utilizing the designer’s previous work
experience and existing interfaces and thus provides working designs very efficiently. In many practical cases, this
efficiency advantage outweighs the prospect quality advantage promised by more rigorous design processes.
This paper proposes a design support system that aims to aid the abovementioned practical cognitive process and
strategies of designers in designing user interfaces. The system provides the inventory of existing and socially well-
accepted interface means. The task requirements can be identified and described as to be useful for finding and
determining the most appropriate interface means. The task-interface matching follows a natural path and is
explicitly described. The design aid system achieved these requirements by using a case base in which cases are
related across multiple abstraction levels. The system provides tools and models so that the knowledge at each level
can be explicitly described but be easily related with other levels through a consistent representation.

INTRODUCTION

Designing modern user interfaces (UIs) is becoming a
complex task due to the increasing needs of functionality
and convenience that challenge the constrained cognitive
capability of users. The designer should optimize the
interaction between the user and the interface considering
user goals, preferences, capabilities, and available interface
means. It has been recommended that the design procedure
follows the task-based analytic process, which starts from
eliciting the user’s task needs and task knowledge, goes
through a conceptual interaction design, and ends with a
concrete, physical design of the interface (Wilson and
Johnson, 1996). In practice, however, designers are seldom
observed to undertake interface design in a top-down
sequential process. Instead, they frequently manifest
opportunistic search behavior in finding and choosing
reusable design solutions (Guindon, 1992; Rasmussen,
Pejtersen and Goodstein, 1994; Visser, 1996). These
strategies have advantages in utilizing the designer’s
previous work experience and existing interfaces and thus
provides working designs very efficiently.

This paper proposes a design support system that aims
to aid the abovementioned practical cognitive process and
strategies of designers in designing UIs. The need of support
system is obvious for two reasons. First, the UI design is a
cognitively intense work and requires vast knowledge in the
domain. Second, for an organizational purpose, the
rationales behind an UI design and the decision problems
solved during the design process should be described in a

well-ordered way as to become public and reusable
knowledge.

To support the designer harmoniously and hence
effectively, the cognitive process and difficulties that
designers experience in design practice should be considered.
The problem solving is not only restricted by the designer’s
limited knowledge and deficient memory retrieval but also
by the cognitive complexity of the decision making itself. To
aid, the system in this paper provides the inventory of
existing and socially well-accepted interface means. The
task requirements can be identified and described as to be
useful for finding and determining the most appropriate
interface means. The task-interface matching follows a
natural path and is explicitly described. The design aid
system achieved these requirements by using a case base in
which cases are related across multiple abstraction levels:
task, operation and physical interface. The three abstraction
levels are adopted because designers generally view and
analyze the domain or task from the three perspectives
(Yoon, 2001; Benyon, 2002). Cases at the task level include
structural and temporal relationships between user tasks.
Cases at the operation level provide the knowledge about
sequences and similarities between operations that are
necessary for accomplishing each task defined at the task
level. The physical interface level is concerned with
interface means such as interface shapes and layouts
required for the operations or tasks. In the design aid, the
cases at each level are explicitly described and are easily
related with other levels through a model called HOCD
(Hierarchical Operation and Control Diagram).

B
the de
questi
menti
What
Why
other
(what
releva
freely
abstra
system
behav

To as
repres
while
be re
develo
mode
interfa
the
hierar
and o
simpl
called
of the
person
are sh
develo
transf

M

The case-based design aid in this paper provides relevant
cases at multiple levels of abstractions, similar to an HOCD
drawn by designers as a query. For effective case retrieval,
the followings are necessary. First, the indices, of the
operations or tasks in the HOCD models for representing
design cases at the task and operation levels, are required to
measure similarity between two tasks or operations. Second,
an efficient algorithm, which can measure similarities
between HOCD models in the case base by using the indices
and retrieve the most similar HOCD to a designers’ query, is
needed. Third, adaptation rules, that can be applied to
modify a retrieved case to the context reflected in a
designer’s query, are required.

Similarity between Two Tasks/Operations

Each task or operation has inherent properties that affect
relationships with other tasks or operations as well as the
Figure 1. Notations and an example of HOCD
y employing represented knowledge at multiple levels,
sign aid can provide proper answers to three types of
ons, that can be raised at each level of abstraction,
oned by Rasmussen, Pejtersen and Goodstein (1994):
tasks, operations or physical means are available?

are these required? How can these be achieved? In
words, the aid can provide not only a case at one level
 question), but also related cases at other levels
nt to the why and how questions. Thus, designers can
 navigate between design cases at the three levels of
ction. It enables the design process supported by the
 to be compatible with the opportunistic search

ior of designers.

A CASE REPRESENTATION MODEL

sist the designers, a model to design artifacts and to
ent cases at the task and operation levels is necessary,
 artifacts and cases at the physical interface level can
presented by pictures or storyboards. The OCD,
ped by Yoon, Park and Lee (1996), is a diagrammatic

l that represents the interaction between a user and an
ce. The original OCD is suitable to represent cases at

operation level. However, it cannot represent
chical task trees. To represent all knowledge at the task
peration levels, the diagram is adapted by adding a
e tree and the concept of hierarchy. This model is
 HOCD. Figure 1 shows the notations and an example
 HOCD in which the tasks and operations related to
al information management (PIM) in a mobile phone
own. In addition, to communicate with computer, we
ped OCS (Operation and Control Script) that can be

ormed exactly into HOCD without loss of semantics.

ETHODS FOR EFFECTIVE RETRIEVAL OF
MULTI-LEVEL DESIGN CASES

decisions of proper interface objects or means. Usually, the
properties of a task or an operation can be defined as the
combination of the following aspects: their names, types,
target types, and target attributes. For example, “Select” is a
type of operation and whether the selection should be unique
or not is an attribute of the target. By this distinction, either
a group of radio-type option buttons or a group of check
boxes is preferred as the interface object.
 By performing task analyses at each domain, we
classified the types of tasks or operations that applied to the
design domain of such things as Web applications, software
and mobile phones: Input, Find/Scan, Get, Confirm/Verify,
Process/Transmit, Store/Add/Create, Rearrange, Compare,
Select, Determine, Revise, Delete, Move/Join, Cancel/Exit.
The data types and attributes suggested by Vanderdonckt
(1993) were adapted and then used as the targets and their
attributes. In the aid, the similarity between two tasks or
operations is measured by the degree of equality of the
properties.

Similarity between two HOCDs

Operation sequences or task flows represented by the
HOCD can be transformed into a graph form mapping
operations to nodes and states to edges. At this time, the
similarities among graph nodes can be measured by the
method mentioned in previous section. Furthermore, the
similarities between design cases and a designer’s query can
be calculated by well-known graph-matching algorithms. In
this paper we employed Messmer (1996)’s algorithm that
can efficiently search a case graph with minimal total cost of
edit actions for being identical with a query graph.

The Rules for Adapting Prior Cases

When designers pose a query, the design aid with the graph-
matching algorithm can provide similar prior cases to the
query. The retrieved cases, however, cannot coincide with
the designers’ query but may have some differences with the

query. Thus, to reuse the retrieved cases, the designers
should adapt the cases to their own query through an
analysis of the differences and similarities between the two.
This adaptation is assisted by the aid with several adaptation
rules. The new case, that is the one derived from applying
the adaptation rules, is then evaluated to determine if it is
proper for the current context. Designers perform the
evaluation and revise the adapted case to fit with their
design context. Once the evaluation and revision ends, the
resulting artifact is stored as a new case in the case base.

A PROTOTYPE OF THE AID AND
DESIGN EXAMPLE

Through applying the abovementioned methods, we
developed a prototype of the multi-level case-based design
aid. The prototype is called MCBDS (Multi-level Case-
Based Design Support). The MCBDS provides design cases
similar to a designer’s query represented by the OCS. Figure
2 shows a screen copy of the MCBDS developed using
Allegro Common Lisp 5.0.1 for Windows. The prototype
interacts with designers by the OCS of a grammatical form,
instead of the HOCD of a diagrammatic form. However, it is
still meaningful to verify the effectivness of the proposed
aiding framework with the OCD interface since, except for
the modest training requirement to use OCS, the cognitive
process of designing user interfaces in cooperation with the
support system remains basically the same.

A Design Example Using MCBDS

In this paper, we tried to solve various design problems in
diverse domains to show the effectiveness of the MCBDS.
More than one hundred design cases related to mobile

phones, camcorders, and Web applications were stored in
the case base of the MCBDS. The test results from various
design queries showed that the algorithm could retrieve
design cases that were similar to the requested ones, and the
results of the case studies revealed that the proposed design
aid was useful for interaction design of the UI.

Cases at operation level. A simple example of the
achieved case studies is as follows: the designer, who should
design an interface for managing personal information in a
mobile phone, requests a query for alarm design, as in the
box A of Figure 2; the designer should also input the
properties of each operation as explained in previous section.
The designer’s OCS query, shown in Figure 2, is
transformed into the corresponding HOCD located at the
center of Figure 3. The HOCD of the derived design case,
shown in the box D of Figure 2, is equal to Case 3 in Figure
3. Figure 3 also shows four design cases that were retrieved
with low cost when compared to the designer’s query about
operation sequences of an alarm in a mobile phone. In

Figure 3. Design cases retrieved from the design query
in Figure 2

Figure 4. Design cases at the task and physical interface
levels connected to HOCDs in Figure 3 Figure 2. A screen copy of the CASES prototype

Figure 3, Case 1 and Case 3 describe the operation
sequences for setting an alarm, Case 2 is for setting a
morning call and, lastly, Case 4 is for adding an anniversary.

Cases at task and physical interface levels. When the
designer requests the query, the MCBDS supplies design
cases at the same level of the query, as in Figure 3, together
with the related cases of the task and physical interface
levels, as in Figure 4. From the retrieved cases, the designer
can directly refer to other design cases, such as “Manage
Schedule”, “Reserved Call” and “Manage Anniversary” that
are related to PIM. In addition, we can easily recognize that
an alarm in a mobile phone must have a consistent structure
with the alarm included in the interface for managing the
morning call and anniversary, as in Figures 3 and 4.

Case Adaptations. Differences between the designer's
query and the retrieved cases can be marked on the diagrams
as in Figure 3 according to the adaptation rules, even if the
marking function is not yet implemented in the prototype.
By using the marks, the designer can easily identify
differences between his or her own query and the retrieved
cases, thereby readily determining which parts of those
cases can or should be used.

Implications. The retrieved design cases in Figure 3
provide complete operation sequences that are more detailed
than the query. In other words, the designer may give a
rough OCS or describe only a part of the wanted interaction
as the query to get the fuller and complete cases. In the
example, the operations to set the number of repetitions of
the alarm and select the alarm sound are included in Case 1
and 3, which may remind the designer of the necessity of
such extra features. In this way, MCBDS helps designers to
easily accomplish their work with more reliable quality.
Moreover, when changing a design at the operation level
into a specific physical interface, the designer can refer to
several design cases at the physical interface level that
correspond to each case at the operation level. Thus, the
designer can easily embody their interface by combining or
refining the cases.

CONCLUSIONS

During UI design, designers tend to behave in opportunistic
fashions. Furthermore, their behavior is usually guided by
their prior experience on proper matching between user
tasks and interface means, rather than by an orderly analytic
process. Designers, however, cannot accommodate all prior
experiences due to constrained cognitive capabilities. Thus,
they persistently adhere to their initial solution and neglect
the opportunity to consider better alternatives (Visser, 1996).

In this paper we proposed the case-based design aid that
makes it possible for designers to effectively reuse prior
design cases. In the aid, design cases had three different
levels of abstraction: task, operation and physical interface.
Cases at the task and operation levels were represented by
the HOCD. The HOCD is not only effective in representing
and reusing a design case, but it is also effective as a model
for task-based interaction design. With the HOCD, the aid

can provide design cases at an abstraction level that
corresponds to their focused design stage, based on case-
based reasoning technique in terms of a graph-matching
algorithm. At the same time, designers can acquire design
cases at all the other levels that are related to cases at the
focused level. Furthermore, designers can evaluate interim
artifacts by comparing them with the design cases retrieved
by the aid. In this manner, designers can easily move
downward or upward along the levels of abstraction, and
jump around the levels opportunistically.

Many case studies performed with the prototype system
showed that the proposed aid was useful for assisting
designers in UI design. The prototype, however, used the
script language as a means of communicating with designers.
Thus, to input task or operation sequences as a query was
somewhat difficult. For the support to become a real
application, we are now revising the prototype so that
designers can represent, retrieve and store design cases by
the HOCD. Moreover, if the case base does not have enough
cases, designers may not be able to acquire a satisfactory
design case. Thus, the aid should have the capability to be
used as a design tool; the interim and final artifacts
produced by utilizing the aid while designing an UI should
be constantly reflected in the case base. This process may
secure the effectiveness of the aid as time goes on.

REFERENCES

Benyon, D. 2002. Representations in human-computer systems

development. Cognition, Technology & Work, 4, 180-196.
Guindon, R. 1992. Requirements and design of DesignVision, an object-

oriented graphical interface to an intelligent software design assistant, In
Proceedings of CHI’92 (pp. 499-506). New York: ACM Press.

Messmer, B.T. 1996. Efficient graph matching algorithms for preprocessed
model graphs. Unpublished doctoral dissertation, Institute of Computer
Science and Applied Mathematics (IAM).

Rasmussen, J., Pejtersen, A.M., & Goodstein, L.P. 1994. Cognitive systems
engineering. New York: Wiley.

Vanderdonckt, J. 1993. A corpus of selection rules for choosing interaction
objects. Technical report 93/3, Institut d’Informatique, Namur.

Visser, W 1996. Use of episodic knowledge and information in design
problem solving. In N. Cross, H. Christiaans, and K. Dorst (Ed.),
Analysing Design Activity (pp.271-289). New York: Wiley.

Wilson, S. and Johnson, P. 1996. Bridging the generation gap: From work
tasks to user interface design. In Proceedings of the 2nd International
Workshop on Computer-Aided Design of User Interfaces (CADUI ’96)
(pp. 77-94). Belgium: Presses Universitaires de Namur.

Yoon, W.C., Park, J. and Lee, S.H. 1996. A diagrammatic model for
representing user’s interface knowledge of task procedures. In H.
Yoshikawa & E. Hollnagel (Ed.), Proceedings of Cognitive Systems
Engineering in Process Control (CSEPC’96) (pp. 276-284). Kyoto, Japan.

Yoon, W.C. 2001. Identifying, organizing and exploring problem space for
interaction design. In G. Johannsen (Ed.), 8th IFAC/IFIP/IFORS/IEA
Symposium on Analysis, Design, and Evaluation of Human-Machine
Systems (pp.81-86). Kassel, Germany.

	Main Menu
	Title Search
	Author Search
	Subject Search
	Text Search

