
1

Development of analytic rules and
a support system for logical interface evaluation

Ho kyoung Ryu
IE Dept. KAIST, 373-1

Kusong-dong,Yusong-gu
Taejon , Korea

Tel: 82- 42- 869-3159
Email:hogg@cogsys.kaist.ac.kr

Wan Chul Yoon
IE Dept. KAIST,373-1

Kusong-dong, Yusong-gu
Taejon, Korea

Tel:82-42-869-3119
Email:wcyoon@sorak.kaist.ac.kr

Dongseok Lee
IE Dept. KAIST, 373-1

Kusong-dong,Yusong-gu
Taejon, Korea

Tel: 82- 42- 869-3159
Email: dslee@cogsys.kaist.ac.kr

ABSTRACT

Most of the previous user interface analyses have aimed at
evaluating logical complexity and consistency on user
interface. However, interface problems in real life are dealt
with by users whose knowledge plays a key role in
understanding and using interface. We need an analysis
method that could explicitly take user¡̄ s expect ati on or tas
knowledge into account. In this regard, Yoon proposed that
features in an interface should be matched with
corresponding task knowledge of users.
This study expands this viewpoint with an automatized
evaluation and a support system for it. The results are an easy
and objective analysis and evaluation on user interface.
The implemented system (Evaluation System for Task
Interface Matching ;ESTIM) explicitly represents a lot of
user¡̄ s kno wl edge andlogical procedures in the interface and
then matches the two using a rule-based system. The ESTIM
evaluates the logical characteristics that are defined within
the interface such as operation images, procedural
consistency, and matching with user¡s expectation.
The analytic method and ESTIM are demonstrated with a
practical appliance, pager. The example shows that the
implemented system has a good degree of explanatory power
and could be effective in practical interface analysis process.

KEYWORDS: Consistency, Congruity, User interface
analysis, and Task knowledge of users

INTRODUCTION

Our life is surrounded with intelligent products of more
complex and diverse function. In real situation, users would
use products in different ways that designers expect. In that
situation, on committing errors, users experience frustrations
and then resign their right to use high-cost function. So,
product designers should try to reflect user¡s needs into
implementing products. Up to present, in the studies on
analysis and evaluation, researchers have mainly studied the
logical consistency and complexity on interface in a product.
However, users feel discomfort when a product has different
behaviors with user¡s knowledge, so we need the cognitive
evaluation method based on user¡s knowledge for getting an
interface understood. Under this motivation, we have
developed a support system and novel evaluative rules based
on user¡s knowledge for analysis on logical interface.

In the following sections, we will explain and validate a
framework and support system through an example of pager.

METHODOLOGY FOR LOGICAL INTERFACE ANALYSIS
AND EVALUATION

The formal methods for analysis and evaluation on an
interface, heuristic evaluation and craft approach, would take
a lot of time and do not produce the consensus of result by
analysts. Therefore, we need a system which supports an
analysis of logical interface independent of analyst¡s ability.
The methodology presented in this study seeks to overcome
these difficulties.

Representation of logical interface
The first stage for analysis is representing of a logical

2

interface. Multiple approaches to formal specification of
interface have been suggested. Examples include state-
transition diagram, BNF, Petri nets, production systems,
logic programming, and temporal logic. In spite of this
extensive research activity, almost no formal specification is
currently used widely [3][4]. Therefore, we developed a new
model for specifying the logic of interface centered on user¡s
action. It is called OCD [1]. The OCD give the methods for
specifying cognitive process and representing users¡ action in
performing a task. The Figure 1 depicts the entities for
expressing task procedure in OCD and Figure 2 exemplifies
an OCD representation of task ¡Set date¡ in a pager.

Figure1: The entities in OCD.

M - Lo n g s 1

M

S s 2

M

S

W A IT(10)
M + S

W AIT(3)
M + S

TASK "S e t Tim e ".S1

Figure 2: OCD representation of task ¡Set date¡ in pager.

An operation is an elementary action by the user that
produces a system response or a state change. Some
operations are useful only for changing states but not for
getting system responses. Such navigational operations are
called control. A state is a situation which is distinguished
from another by the availability and behavior of operations in
it. A state header indicates that the subsequent state(s) is
altered from the preceding one(s) in some specified ways.
Also, some state headers require information generated in the
history of previous operations and called memory headers.
There are two types of clusters in OCD. An abstract

operation is a set of consecutive operations that is integrated
by a common function or goal. Once learned, an abstract
operation may seldom be dealt with in terms of its elements,
which is a benefit of abstraction. A state closure is a set of
contiguous states that allow the group of operations which
are semantically related. While an abstract operation and its
elementary operations typically have whole-part relationship,
the operations or subtasks contained in a state closure tend to
share semantic affinity [1].

Go into details of Figure 2, shown user¡s action sequences
for accomplishing a task ¡Set Date¡. Firstly, Button ¡M¡ is
pushed long, then menu icons appear in the LCD of pager.
This state is ¡S1¡ of task ¡Set Date¡. At ¡S1¡, user can select
a menu, ¡Date¡, with scrolling by button ¡M¡. Also, at ¡S1¡,
user can go ready-state for recovering their error or other
causes. For this behavior, user should wait for 3 seconds or
push button ¡M¡ and ¡S¡ at the same time. In this way, OCD
is designed to be visual and intuitive for one to identify a task
¡Set Date¡.

Also, Diagram as Figure 2 is converted automatically to a
script-based fact list for rule-based system in a support
system. The following box is a fact list corresponding to
Figure 2.

Representation of users¡ knowledge
We need to acquire user¡s prior-knowledge, metaphors or
analogies about a product for cognitive evaluation. In this
study, we divided the knowledge for users to employ into
four-level categories based on cognitive process: Means-end
structures of tasks, Organization of operations, User¡s
procedural knowledge, and Familiar patterns of controls [1].

Means-ends structures of tasks(MES)
The primary structure of user¡s task knowledge is means-
ends structure that can be drawn in the form of goal tree
[1][4]. Users have many goals in process of performing a
task and simultaneously a lot of methods to achieve them.
Especially, users will perform a novel action based on
difference between goal and present state. For example, the
task ¡Viewing¡ in the VCR has two subgoals: playing, and
searching. Searching is achieved by two methods: forward
scanning and backward scanning. From this structure, user
may expect that forward and backward searching have
similar behaviors. Therefore, the logical interfaces should
have reflection on MES which is one of expectation of users.

ϒ Procedural Facts ϒ Function Facts ϒ Response Facts
(Sleep ; M-Long ; SH(S1)) SHOW(MENU) SHOW(MENU) & BLINK(MENU)
(SH(S1) ; Wait(3)||M+S ; Sleep) CANCEL SLEEP
(SH(S1); M ; SH(S1)) CHANGE(MENU) CHANGE(MENU)
(SH(S1); S; SH(S2)) NEXT !BLINK(MENU) &
 SHOW(DATE) & BLINK(DATE)
(SH(S2); Wait(10)||M+S ; Sleep) CANCEL SLEEP
(SH(S2); M; SH(S2)) CHANGE(DATE) CHANGE(DATE)
(SH(S2); S ;Task ¡Set Time¡. S1) NEXT !SHOW(DATE) &
 !BLINK(DATE) & SHOW(HR) &
 BLINK(HR)

O p e r a tio n

S t a t e

C o n t r o l

S t a t e
h e a d e r

S t a t e
C lo s u r e

A b s t r a c t
o p e r a tio n

3

So, this viewpoint should be a measure for interface
evaluation.

Organization of operations.
The primitive operations are understood by the user mainly
in terms of two types of organization [1]: semantic affinity of
tasks and whole-part relationship. Affinity between subtasks
and operations make a user expect two aspects from the
interface. First, the members with closer affinity should share
more similar grammatical behavior. Second, the family may
well be included into a cluster. If an interface is not designed
for fitting this behaviors, then user may memorize each task
procedure in a cluster with separation. Therefore, this task
knowledge of user should be reflected in a logical interface.

Users have whole-part relationships among operations to be
implemented in an interface. Users will often memorize the
consecution of operations as semantic units based on their
knowledge with implication. Accordingly, system responses
which are distanced from user¡s expectation will prevent
users from making relationship of operations.

User¡s procedural knowledge
Users know some natural orders of operations that are more
or less generic to the task or got through interaction with
different products or systems. There are three important
procedural knowledge structures: Sequence, branch and loop.
In Automatic Teller Machine example, when a user sends
money, the user may have the sequence knowledge that after
typing an account of receipt, key in an amount of money.
Also, users may want to send money to several accounts
without having to key in your account number each time.
This is the loop knowledge of users.

Familiar patterns of controls
There is a few well-known control patterns in logical
interface. Toggle button is one of them. Among others there
are on and off switch, one-to-one correspondence between
operations and responses, mutually exclusive radio button
states, and resetting to a ready-state whenever the current
state is unclear.

In summary, users do not memorize complicated procedures
by rote. It would be not only hard to achieve but also prone
to error. The user first tries to chunk the operations into
clusters, abstract operations and state closures, then into the
simplified procedure, applying some typical control patterns.
If same pattern does not fit everything, sibling and relatives
among operations are identified using the means-ends
structure to account for the deviations.

Outline of analysis and evaluation for logical interface

Analysis and evaluation on logical interface can be
performed from diverse viewpoints. For example, Nielsen
argued that usability problems tend to fall into the following
categories: Navigation, terminology, feedback, consistency,

modality, redundancies, user control, and match with user
tasks [4]. These diverse viewpoints may produce inconsistent
analyses or take a long time to complete an evaluation on
interface. Thus, Yoon proposed an effective and cost-
efficient cognitive approach including the above viewpoints,
which called Task-Interface Matching, based on OCD and
task knowledge of users [1]. The following Figure 3 is shown
the framework of TIM.

S h o r t c u t a m o n g t a s k s

A b s tra c tio n
G n e r a liz a t i o n

O p e r a t io n im a g e

In t e r f a c e D e s c r i p t i o n
(O C D /O C S)

T a s k k n o w le d g e o f u s e r s
- M e a n s - e n d s s t r u c t u r e
- O r g a n i z a t i o n o f o p e r a t i o n s
- U s e r p r o c e d u ra l k n o w le d g e
- F a m ilia r p a t t e r n o f c o n t r o l s

F e e d b a c k

C o n s is t e n c y C o n g r u i t y

M e n u g r o u p in g

 Ta s k p r o c e d u r e

C o n tro l a v a ila b i l i t y

In f o r m a t i o n a v a ila b i l i t y

Figure 3:Framework of cognitive evaluation.

ESTIM: EVALUATION SYSTEM FOR TASK-INTERFACE
MATCHING SYSTEM

Representation of logical interface in ESTIM
We developed the system for supporting the analysis
framework in Figure 3, ESTIM. In ESTIM, interface
representations are depicted in Figure 4. In Figure 4, OCD
can be expressed through diagram format or form-filling
editor. And, users tend to understand a procedure of tasks by
operation level when they meet with an unfamiliar device.
But, after they are accustomed to using the device, or
originally they have the skill in that domain, they will usually
memorize procedure by abstract level. Therefore we should
consider the two levels of interface representation based on
task knowledge of users. For example, in pager example, task
¡°Set Dat e¡± can represented in Figure 2 as primitive level
and in Figure 5 as abstract level. In ESTIM, abstraction and
generalization process is depicted in Figure 6. Users can
select operations, states, and state headers for making a
abstract operation or state closure. And then, the selected
entities are endowed with a name and function(s).

4

Also, each operation produces a change of system response
and has particular function. In ESTIM, figure 7 represents a
form of expression on system response(s) and function(s).

Figure 4:The window of OCD drawing or form-filling in
ESTIM

S e t M e n u
(d a t e)

M
lo n g

s S e t(d a te)

w a it(3),
M + S

w a it(10)
,M + S

Ta s k "S e t tim e ".s 1O p tio n a l

Figure 5: Abstract level of task ¡Set Date¡

Figure 6: Abstraction and generalization process in ESTIM.

Figure 7: A form of expression about system response(s)
 and function(s)

Representation of users¡ knowledge in ESTIM
Users have a lot of knowledge for using intelligent products.
We should use these knowledge to evaluate a user interface.
These knowledge can be gathered by various methods and
have different forms [4]. In ESTIM, there are various forms
of expression of user¡s knowledge. Representation of MES is
given in Figure 8. Especially, in USINE [6], Lecerof
proposed that temporal relationship of tasks is classified into
interleaving, synchronizing, enabling, enabling with
information processing, choice, deactivation, and iteration. In
this study, we proposed that temporal relationship of tasks
which users think falls into 4 categories and 2 properties:
unordered, parallel, sequential, alternative categories and
optional, compulsory properties.

Figure 8: MES of task ¡ Set Date and Time¡ in pager
example.

5

Also, in ESTIM, it is designed a modified clustering analysis
for getting an affinity index between tasks in terms of data in
Figure 9 [10][11]. These data is acquired by grading as 3-
point scale(Low, Medium, High related) on each task pair.
After getting data, through formulas we can calculate the
semantic affinity index between tasks. For example, when we
acquire data in Figure 10, with following formulas it will be
calculated that semantic affinity index between task 1 and 2
is 0.6, task 1 and 3 is 0.73, task 2 and 3 is 0.55. Especially,
this result is visualized by graphical type in Figure 11. In
ESTIM, this semantic affinity index of task will be utilized
for evaluating a congruity of menu structure and selection of
tasks which should have similar grammatical behaviors.

Figure 9: Comparison data among task in ESTIM

Task 1 Task 2 Task 3
Task 1 3 1 1
Task 2 2 3 0
Task 3 2 1 3

Figure 10: Table of comparison among tasks. 3 represents
high-related, 2 does intermediate-related, 1 does low-related.
The formulas for calculating above data are following.

2

1

/

if ,

i task score of Sum:
j and iin task similarity of Score:

jiij
ij

iijij

j

ljkjljkjkl

i

ij

TDTDtyTaskAffini

SDifferenceTD

PPPPDifference

S
P

+−=

=

>−= α

Figure 11: A graphical type presentation of semantic
affinty index in ESTIM.

In ESTIM, we proposed a function diagram for representing
the user¡s procedural knowledge. This is based on function
analysis which describes the events that must occur for users
to achieve their intended results. It doesn¡t describe physical
actions that users will take or specify system actions. A
function analysis obtains information on [15]:
l The relationship of the task to other tasks
l The events required in completing a task
l The functions that would need to be provided to support

a task
Function diagram is made up of ¡Function¡, ¡Decision node¡,
and ¡®Ti m flow¡. For example, in the pager, function diagram
of task ¡Set ALARM ON¡ will be represented as following
Figure 12.

SET(M E N U) SET(H R) SET(M IN)
SET

(A M /P M)
S E T

(O N /O F F)
S E T

(M E L O D Y)

Figure 12: User¡s procedural knowledge of task ¡Set
ALARM ON¡

In ESTIM there is a window for drawing a function diagram
as Figure 13. However, we do not have useful manner to
acquire a user¡s procedural knowledge. The formal methods
are the interview technique or task analysis method. We
think that ¡Users do not have the task knowledge perfectly in
advance, but interacting with the interface, we form the
knowledge more concretely¡. Therefore, we will give users
the function-oriented item, AO, SC, and operation in ESTIM.
And then, users manipulate adequately these items to
represent their own procedural knowledge. After all, these
user¡s procedural knowledge diagram may serve as reference
materials to enhance the understanding of human-system
interaction, or they can be used directly to identify training
needs and contents [15].

6

Figure 13: A window for drawing the user¡s procedural
knowledge in ESTIM

There is a few well-known control patterns in an interface.
We need to evaluate these in harmony with user¡s knowledge.
Therefore, contents about pattern must be expressed. And
then using this, check whether the operations are congruent
with user¡s expression. This study uses a simple tabular
format to represent the familiar pattern of controls.

Methodology for interface analysis and evaluation with
ESTIM and rule-based system
Two perspectives of interface analysis are the consistency
and congruity. Consistency is the most widely used measure
for goodness of user interface. This is because that
consistency greatly reduces complexity of required
knowledge, and can be measured relatively objective. In case
of TAG, it tries to measure the consistency of procedure, but
it does not consider the system response[3]. Since users
expect the same responses for the same operation at a similar
situation, consistency test of tasks should include system
response. Also, it is needed to consider the function-oriented
consistency of operations. Because operation has peculiar
function(s) as means to achieve the goal, each operation
should have same function(s) in task space. Otherwise, users
may be confused by interpreting a function in every action.
And, similar tasks need to have a similar procedure, because
user will understand the interface as simplified procedures.

The following analysis process is performed based on OCDs ,
corresponding scripts, and a lot of task knowledge with
ESTIM and analytic rules.

Operation image
Operations are classified into two categories. One is a
primitive operation for reaching to a particular goal in

performing task. The other is a navigational operation, so-
called control, for reaching to a particular situation.
Therefore, we have two types of operation image: primitive
operation image, navigational operation image. Moreover,
primitive operation image is divided into two categories from
the orientation-viewpoint: function-oriented, state/response
oriented. Function-oriented operation image is an analysis
whether function and operation are consistent about
following issues:
l Is a particular function corresponding with an

operation?
l Is a way of performing a function consistent in entire

task space?
We have implemented analytic rules and system to evaluate a
function-oriented operation image. Figure 14 and 15 depict a
function-oriented operation image in a pager by ESTIM and
LISP, Figure 16 represents a control-operation image in
pager by LISP.
In Figure 14,15, we can identify an inconsistency that press
button ¡M¡ for changing date in task ¡Set Date¡, but button
¡S¡ for changing Hr, AM/PM, MENU in task ¡Set Time¡.
That is, an action ¡changing¡ is performed by different
operations in task space. We can identify an operation image
in this way

Figure 14: An example of function-oriented operation
image analysis in ESTIM

--
¡Set Date¡± Opearti onanalysis

(M -> CHANGE(X)).
(M+S -> CANCEL(X)).
(WAIT(X) -> CANCEL(X)).
(M-Long -> SHOW(X)).
(S -> Set Time (X)OR NEXT using --> Inconsistency).

¡Set Time¡± Opearti onanalysis

(M+S -> CANCEL(X)).
(WAIT(X) -> CANCEL(X)).
(M-Long -> SHOW(X)).
(S -> NEXTOR CHANGE(X) using --> Inconsistency).
(M -> CHANGE(X)OR NEXT using --> Inconsistency).
 (M -> CORRECT(X)OR CHANGE(X) using --> Inconsistency).

Figure 15: An example of function-oriented operation
image analysis in LISP

7

Abstract Operation: 'Set MIN'
Task Entering Finishing Exiting Exiting-State
AUTOON NONE NONE (WAIT 10 OR M+S) SLEEP
ALARM NONE NONE (WAIT 10 OR M+S) SLEEP
 = = = M X1
TIME NONE NONE (WAIT 5 OR M+S) SLEEP

<<< Consistency Check in AO 'Set MIN' >>>
ENTERING :: CONSISTENCY
FINISHING :: CONSISTENCY
EXITING-STATE :: INCONSISTENCY
- Task 'TIME', 'ALARM', 'AUTOON'--> 'AO: Set MIN' 's EXITING-STATE is
'SLEEP'
- Task 'ALARM'--> 'AO: Set MIN' 's EXITING-STATE is 'X1'
Exiting INCONSISTENCY: Exiting operation's number is different in Task!
Exiting operation's parameter INCONSISTENCY: operation 'WAIT' 's
parameter is different!

Figure 16 : An example of control operation image in LISP.

Procedural consistency of similar tasks
Similarities between tasks make user expect the similar
procedures or grammatical behaviors. Therefore, we need to
evaluate whether the similar tasks have the similar behaviors
or procedures or not. We have to focus on a following point:
l Are procedures of selected tasks alike? For example, in

VCR, if users think task ¡Forward scanning¡ and
¡Backward scanning¡ is alike, then the procedures
should have similarity. That is, in two tasks, we should
evaluate whether the two tasks have similar operation
orders and situations which are not analyzed in
operation image, whether the entering and finishing
operation are same, and so on.

In ESTIM, we use a cluster analysis for specifying the
similar tasks, the result is depicted in left part of Figure 17.
And supporting tools are shown for evaluating procedural
consistency in Figure 18.

Figure 17: Selection of tasks to be similar by semantic
affinity in pager

Figure 18: Supporting tools for evaluating the procedure
consistency.

Users may have some procedures or goal tree or other prior
knowledge about tasks that are more or less generic. We
called this ¡task knowledge of users¡. This stage, in congruity
analysis, shows that how well logical interface is in harmony
with the task knowledge of users.

Matching a logical procedure with task knowledge of users
The first step in congruity analysis is to check whether
procedural knowledge of users is in harmony with the
procedure of logical interface or not. For example, in pager,
we can acquire a result of procedural congruity with function
diagrams and OCDs. The matching result appears in Figure
19.

TASK ¡SET ALARM ON¡
 <User¡s expectation>
(SLEEP -> (SET MENU (ALARMON)) -> ONOFF -> SET_TIME ->
SET_MIN -> SET_AMPM-> (TASK SET MELODY))
 <System behavior>
(SLEEP -> (SET MENU (ALARMON)) -> SET_TIME -> SET_MIN ->
SET_AMPM -> ONOFF)
 <User¡s expectation> <System behavior>

 (ONOFF-> SET_TIME) (NO)
 (ONOFF-> SET_MIN) (NO)
(ONOFF-> SET_AMPM) (NO)

Figure 19: An example of incongruent procedure with
user¡s expectation in pager by LISP

There are three important matching structures in procedural
congruity : sequence, branch, and loop matching [1]
l Sequence matching: In pager example, task ¡Set TIME¡

is composed of four function: Set(MENU), Set(HR).
Set(MIN), Set(AM/PM). We assume that sequence of
these functions are in turn Set(MENU), Set(AM/PM),
Set(HR), Set(MIN), Set(AM/PM) in real system.
However if user¡s procedural knowledge differs from a
designed sequence, then it is easy to commit errors in
that point which mismatches user¡s expectation. It is the
reason why investigate sequence of user¡s expectation
and system.

l Branch matching: In performing a task, users may

8

decide to select one of the actions for reaching the goal.
They often plan ahead courses and care not to commit
errors of selecting one of others. Therefore, if the
options given to user at a branching point are different
from user¡s expectation, the interface is not natural or
intuitive to users. The branching options in an interface
should be matched to the expected options of users. The
order of branching points should also match the natural
order of decisions as the user expects.

l Loop matching: For example, we can send money to
several accounts without having to key in your account
number each time. It would be exasperating experience
to deal with the loops in an interface procedure that do
not match those of user¡s task knowledge.

These three matching structures are evaluated by ESTIM and
analytic rules with much procedural knowledge and OCDs.

Control availability
The mismatching between user¡s knowledge and logical
interface will make error in performing tasks. Especially,
when users expect a particular operation to accomplish the
task in a specific situation, however not implemented in a
real system, this may invoke problems. Therefore,
availability of operations in the particular situation is an
important issue in the error-prevention of interface. For
example, in Figure 20, Users think that after ¡Selecting
Menu: Alarm on ¡, ¡Selecting ON/OFF¡ is shown. But, in
real system, ¡Selecting ON/OFF¡ is shown at last time.
Therefore, it is natural that users are prone to error in that
point of control unavailability.

TASK ¡SET ALARM ON¡

Control Availability Test

User expectation: ((SET MENU (ALARMON)) -> ONOFF)
System behavior: (((SET MENU (ALARMON)) -> SET_TIME -> SET_MIN
-> SET_AMPM -> ONOFF))
Result: INCONSISTENCY

User expectation: (ONOFF -> (SET MENU (ALARMON)))
System behavior: ((ONOFF -> SLEEP -> (SET MENU (ALARMON))))
Result: INCONSISTENCY
User expectation: (ONOFF -> SET_TIME)
System behavior: ((ONOFF -> SLEEP -> (SET MENU (ALARMON)) -> SET_TIME))
Result: INCONSISTENCY

User expectation: (SET_TIME -> ONOFF)
System behavior: ((SET_TIME -> SET_MIN -> SET_AMPM -> ONOFF))
Result: INCONSISTENCY

User expectation: (SET_AMPM -> SET_MIN)
System behavior: ((SET_AMPM -> SLEEP -> (SET MENU (ALARMON)) ->
SET_TIME -> SET_MIN))
Result: INCONSISTENCY

User expectation: (SET_AMPM -> (TASK SET MELODY))
System behavior: NO PATH
Result: INCONSISTENCY

Figure 20: Control availability test of task ¡SET ALARM ON¡ in pager

Shortcut among tasks
We can say that users may have an idea of necessity for tasks
to be linked. In pager example, in case that users will set up
receiving method as MELODY, users will usually want to
decide MELODY TYPE. That is, users think that two tasks
are closely connected by higher level goal. Therefore, we
implemented an analytic rule so as to evaluate the differences
with user¡s expectation in navigational availability. The
result of this step is shown Figure 21.

TASK ¡SET ALARM ON¡

ShortCut TEST

User expectation: ShortCut(SET_AMPM-> (TASK SET MELODY))
System behavior: NO PATH

Figure 21: A navigational availability in pager

The above script-formed result is performed through ESTIM
and LISP. OCDs and task knowledge of user in ESTIM is
converted to fact lists which fit LISP syntax. Then, we load
the fact lists to analyze in LISP. The main implemented form
appears in Figure 22

Figure 22: Logical interface analysis on LISP

Menu grouping
Nowadays, the greater part of electronic or software system
is a menu-based system. In these system, required behavior
to complete a task is how to select menu item, how to
recognize where the item is located. Thus, a sufficient
condition of good interface is a menu structure to match the
user¡s expectation. In this study, task affinity index is
designed, then menu structure is evaluated through these
indices. The result of this step is shown in Figure 23. From
this Figure 23, we can identify that users expect that task
¡Set ALARM OFF¡ is located in a different group. However,
it is included a menu group in interface.

9

Figure 23: Example of comparison between menu
structure of interface and user¡s knowledge

CONCLUSION AND FUTURE WORKS
In this study, the drawbacks of theory-based methods and
experimental methods were identified. Then we have
progressed in development of novel method for analysis for
logical interface. Ultimately, the most important perspective
on interface design is congruity with task knowledge of users
as well as consistency. Thus we should have an expression
for user knowledge and logical interface. Also, we have
implemented a support system, called ESTIM, and analytic
rules to support these process. We can validate that the
results through a support system and rule-based system are
equivalent to manual analysis under task-interface matching
framework.

In future, through a novel acquisition and representation
method about user knowledge and exquisiteness of inference
engine, this study will be expanded to a total interface
analysis tool. Also, embedded on interface design toolkits,
ESTIM will be expanded as user interface management
system(UIMS).

REFERENCES
1. Wan C. Yoon, Jisoo. Park, User interface design and

evaluation based on task analysis, In Proceedings of
ICPR¡97 pp. 598-601.

2. Wan C. Yoon, Jisoo. Park, An interface model for
evaluating Task-Interface congruity, In proceeding of
HCI international¡97, 1997, 295-298

3. Harrison. M and Thimbleby. H, Formal methods in
Human-Computer Interaction, Cambridge, 1988

4. Nielsen. J, Usability Engineering, American Press, 1993

5. Johnson. P, Task-related knowledge structure in People

and Computer IV, Cambridge, 1988

6. Byrne. M.D, Wood. S.D, Foley.J.D, Automating
interface evaluation, In Proceedings of ACM/CHI ¡94 ,
pp232-237

7. Lecerof.A, Paterno.F, Automatic support for usability
evaluation, IEEE Tran. On Software, 24, 10(Oct. 1988),
863-888

8. Kieras. D.E, Wood. S.D, Meyer. D.E, Predictive
Engineering models based on EPIC architecture for
multimodal high-performance human-computer
interaction task, ACM Tran. On Computer-Human
Interaction, 4, 9 (Sep. 1997), 230-275

9. Kieras. D.E, Wood. S.D, Abotel. K, Hornof. A,
GLEAN: A computer-based tool for rapid GOMS model
usability evaluation of user interface designs, In
Proceeding of ACM/UIST ¡95 ,pp91-100

10. McDonald. J.E, Dayton. J.T, McDonald. D.R, Adapting
menu layout to tasks, New Mexico State university,
1986

11. McDonald. J.E, Stone. J.D, Liebelt. L.S, Searching for
items in menus : The effects of organization and type of
target. In proceedings of the 27th Annual Meeting of
Human Factors Society, 834-837

12. Pangoli. S, Paterno.F, Automatic generation of task-
oriented help, In proceeding ACM/UIST ¡95, 181-187

13. Treu. S, User interface design ? A structured approach,
Plenum press, 1994

14. Treu. S, User interface evaluation ? A structured
approach, Plenum press, 1994

15. Williams E, Rideout. T, Task analysis in the product
design, Hewlett Packard

