

Evaluation of Sliding Windows Based on
Adaptive Disorder Control in Continuous Streams

Hyeon Gyu Kim1 Cheolgi Kim2 Myoung Ho Kim1
 1Korea Advanced Institute of 2Information and Communication
 Science and Technology Univerisity
 Daejeon, South Korea Daejeon, South Korea

 {hgkim,mhkim}@dbserver.kaist.ac.kr cheolgi@gmail.com

ABSTRACT
A sliding window is an important feature to process continuous
streams. Various stream management systems evaluate sliding
windows based on their estimation measures for disorder control.
However, most of the measures do not reflect characteristics of
input streams appropriately, and such lack of adaptivity may lead
to inaccurate or delayed query results. To address this issue, we
propose a method for evaluating sliding windows based on
adaptive disorder control. We first present a structure of window
operators using a 2-level index to handle tuples efficiently. Then,
we propose an adaptive method base on the estimation measure
that is derived from the distributions of tuple generation intervals
and network latencies. The structure of window operators and
estimation criteria for disorder control can be described
declaratively in a query specification. This helps users to control
the quality of query results such as accuracy or latency according
to application requirements. Our experimental results show that
the proposed measure provides better accuracy and stability than
the one used in the existing method.

1. INTRODUCTION
There has been substantial research in the problem of processing
continuous data streams based on the existing concepts of
relational databases [1, 2, 6]. These efforts result in the advent of
various stream management systems. The systems can be
regarded as generalized platforms to process continuous queries
over continuous streams in a real-time manner [7, 9]. Well-known
examples of the systems are Stanford’s STREAM [8], Berkeley’s
TelegraphCQ [15] and Aurora [13] / Borealis [14] from Brandeis,
Brown, and M.I.T.

In stream management systems, a sliding window is an important
feature of the continuous query [4, 5]. A window specifies a
moving view that decomposes an unbounded stream into finite
subsets called window extents. The window extents are commonly
defined based on timestamps of tuples [12, 17]. When processing
continuous streams, an extent can be viewed as a temporal
relation. Based on the relation, blocking operators [7] such as sort
or join, which are unable to start processing until an entire input is
seen, can produce the results.

There are a few issues on the efficient evaluation of the sliding
windows. First, since sliding windows are placed at the initial part

of query operator trees, window evaluation operators are required
to handle a huge amount of input tuples in a real-time manner.
Second, to achieve semantic correctness, the window operators
usually require that input tuples arrive in an increasing timestamp
order. But when tuples are transmitted from remote sources, they
may not arrive in the order they were sent due to various network
latencies. Such out-of-order arrival of tuples complicates the
process of determining the window extents. Disorder of tuples
may have a considerable effect on the quality of query results
such as accuracy or response time.

To resolve issues from disorder of tuples, the existing approaches
usually employ fixed-size buffers or simple estimations based on
the notion of punctuations [3]. The former case can be found in
Aurora project [13]. In their research, they assume that a bound of
network latency is known in advance, and from the assumption,
the buffer has a fixed size that is large enough to cover the bound.
The latter case is discussed in Jin Li’s work [4] and STREAM
project [8]. Briefly, a punctuation τ indicates that no more tuples
having a timestamp greater than τ will be seen in the stream. Thus,
when receiving τ, tuples having a timestamp less than or equal to τ
can be processed in sliding windows. The punctuation can be
either given by remote sources or estimated by a system.

However, there still remain some issues when applying the
existing approaches to real-world stream applications. In buffer-
based approaches, the bound of network latency may not be
known in advance, and the bound is usually fluctuated. In that
case, using a small-size buffer may cause too much tuples to be
dropped, while using an excessively large-size buffer may result
in high latency. In punctuation-based approaches, when the
punctuations are estimated by a system, the estimation is usually
conducted by ad hoc measures, not a theoretical one. In addition,
the punctuation itself can be disordered by network latencies
when given by remotes sources. Thus, it is also hard to expect
accurate query results.

This paper presents a structure and method for evaluating sliding
windows efficiently while resolving the stated issues by
supporting adaptive disorder control. The proposed structure of
window operators consists of the record store and the disorder
controller as depicted in Figure 1. The record store maintains
input tuples in an increasing timestamp order, and uses a 2-level
index to place tuples efficiently. The disorder controller estimates
the punctuations to decide a point of time to produce window
extents from the tuples in the record store. When estimating the
punctuations, the controller uses our measure that increases

Punctuation EstimatorPunctuation EstimatorExternal
punctuationτ

Input tuple r
(disordered)

r.attr >τ r.attr<=τ

…Index

Buffers
(Linked Lists)

Window
Extents
(r.attr<=τ)

…

τ

Disorder
Controller

Record
Store

adaptivity by reflecting characteristics of input streams
appropriately. The proposed measure is theoretically derived from
the distributions of tuple generation intervals and network
latencies. In addition, if prior information about the network
latency is available, the disorder controller can be configured to
use a fixed-size buffer.

In our approach, the structure of window operators and estimation
criteria for disorder control can be described declaratively in a
query specification. This helps users to control the quality of
query results according to application requirements. For example,
as a parameter for the estimation, users can describe a drop ratio
in the query specification, which denotes a percentage of tuple
drops permissible in run-time processing. There is a trade-off
between the drop ratio and the latency of the results, which will
be described detail in the later section.

The rest of this paper is organized as follows. After a short review
of related work in Section 2, Section 3 proposes a generalized
structure of window operators using a 2-level index. Section 4
describes query language features for disorder control, and
Section 5 explains derivation steps of the proposed measure for
adaptive estimation. Section 6 discusses a method for evaluating
sliding windows explicitly. Section 7 shows experimental results
of our estimation measure and Section 8 concludes our discussion.

2. RELATED WORK
To resolve issues from disorder, two common approaches have
been widely used. One is to maintain buffers to sort tuples, and
the other is to leverage punctuations [3]. The former case can be
found in Aurora [13]. The later case is discussed in Jin Li’s work
[4], STREAM [8] and NiagaraCQ [16].

In Aurora project [13], window operators simply ignore the out-
of-order tuples. Instead, they use a buffer called slack to save the
tuples by sorting them in the buffer. In their approach, they
assume that a bound of network latency is always known in
advance. From the assumption, the slack buffer has a fixed size of
n. Any tuples that are more than n positions out of order are
dropped. Note that, if a prior knowledge about the bound is not
available and the bound is fluctuated, it may result in undesirable
results.

In STREAM project [8], window operators do not have any
mechanism for disorder control. Instead, the control is supported
by external modules such as Input Manager [12] or prior
operators that transmit the tuples to the window operators. In the
Input Manager, the proposed solution for the control is based on
the heartbeats [12], which can be thought of as special types of
punctuations. When estimating the heartbeats, they use a simple
measure that reflects the maximum difference of latencies [11, 12].
But such a measure may also result in inaccurate or delayed
results from the lack of adaptivity.

Jin Li’s work [4] proposes an efficient evaluation method of
sliding windows for aggregate queries. And in their research,
disorder control is conducted explicitly using the external
punctuations given by remote sources. However, the external
punctuations can be disordered by network latencies. In addition,
their discussion of the evaluation method is only on aggregate
queries. For example, a buffer in the window operator maintains
only an intermediate result for aggregates, not an original tuples.
Thus it cannot be used for other general types of queries. There is

also an issue in efficiency if sliding windows are overlapped. If a
window has a range of 5 minutes and is slid every 1 minute, the
method requires 5 times of evaluation per every input tuples.

In NiagaraCQ [16], window operators leverage the external
punctuations transmitted from the remote sources or internal
punctuations estimated in the systems. However, if estimated
internally, the punctuations are generated based on simple notions
of the slack as in Aurora. Thus, there still remain same issues of
upper approaches.

3. WINDOW OPERATORS
This section proposes a structure of window operators using a 2-
level index to handle tuples efficiently. The proposed structure
consists of record store and disorder controller as depicted in
Figure 1. The record store maintains a number of buffers to place
the input tuples in an increasing order. And the disorder controller
estimates the punctuations to decide a point of time to produce
window extents from the tuples in the record store.

The record store uses an index to place input tuples into the
buffers in a constant time. In our approach, the index is simply an
array that maintains pointers to each buffer that has tuples of same
timestamps, and an array index is directly mapped to a timestamp
of the input tuples with a one-to-one correspondence. For example,
a tuple having the timestamp i is placed to a buffer pointed by
index[i]. From this configuration, the position of input tuples can
be decided immediately. Furthermore, it doesn’t need to sort
tuples based on their timestamp, since the array indexes are
already in an increasing order.

To illustrate the above process more detail, consider a query to
inform the vehicles that are over-speeded in the latest 5 minutes
from a highway. In this query, we suppose that each vehicle is
equipped with a sensor for sensing its speed, and relays its sensor
reading to a server every 30 seconds. And we assume that the
sensor reading has a schema of <vehID, speed, ts>, which
elements specify a vehicle ID, its speed, and the timestamp of the
sensor reading each other. Based on these assumptions, the query
can be described as Q1. In the query Q1, we use CQL-like
language [10] with window syntaxes proposed in the Jin Li’s
work [4], where RANGE stands for the length of the window,
SLIDE for the step by which the window moves, and WATTR for
the windowing attribute – the attribute over which RANGE and
SLIDE are specified.

Figure 1. A structure of window operators

 Q1: SELECT vehID, speed
 FROM Sensors [RANGE 300 seconds
 SLIDE 30 seconds
 WATTR ts]
 GROUP BY vehID
 HAVING AVG(speed) > 80

Figure 2 presents a detail scenario to show how to handle input
tuples using the index for the above query. The upper part of the
figure shows a number of input tuples, and the lower part presents
the record store that consists of the mapper, the index and a
number of the buffers. Whenever a tuple ri arrives, the mapper
calculates a difference between the timestamp of the tuple and a
starting point of the index, which is denoted as ts and start in the
figure. The difference determines an element of the index, which
has a pointer to a buffer. The buffer maintains a number of tuples
having the same timestamp and has a form of linked list. The
linked list always keeps a track to the last node to insert a tuple
without iteration.

The index has to be changed whenever it receives a tuple having a
timestamp larger than the end, which means that the timestamp of
the tuple exceeds the range covered by the index. In the example
of Figure 2, the restructuring procedure is triggered when
receiving a tuple having a timestamp larger than 384. The
procedure incurs a number of array copies. Note that these copies
may give a burden to the system if tuple arrivals are getting
increased rapidly. In addition, the same situation can be occurred
in case that the index is getting larger.

To resolve this problem, we propose a 2-level structure for the
index. In the structure, the lower level index points each buffer
and the upper level index indicates the lower level indexes. For
convenience, we denote the lower level index as p-node and the
upper level one as i-node. These two indexes are different in that
the p-node always has a fixed size (n = 128), while the i-node has
a variable size (n ≥ 8). Thus, whenever restructured, the p-node is
created or removed as an atomic unit, while the i-node is
dynamically increased or decreased through array copies.
However, the burden resulted from the array copies is negligible
since the i-node has significantly small size compared with the p-

node in our structure.

start(=256)

<B, 95, 287>
<C, 60, 286>
<A, 70, 286>

…

Index
(n≥128)

......

A
C

BDC
A

B

end(=384)

Buffers
(Linked
lists)

Index[ri.ts – start] riIndex[ri.ts – start] ri
Mapper

Record Store

Input Tuples
<A, 80, 256>
<B, 70, 257>
<C, 60, 256>
<D, 90, 258>

…

ri : <carID, speed, ts>

Figure 3 shows the algorithm for placing input tuples using the 2-
level index. In the algorithm, the step 1 and 2 calculate the array
indexes of i-node and p-node each other. The step 3 determines a
p-node from the calculated index of i-node. And the step 4 inserts
the given tuple into a buffer pointed by the p-node.

In our approach, a small size of our index can cover a relatively
large size of sliding windows. For example, if an i-node has a size
of 8, a p-node of 128 and a pointer of 4 bytes, then a total size of
the index is 544 bytes. With this index, we can cover a sliding
window having a range of 1024 epochs in the queries of sensor
networks. The index can also handle about 18 minutes of sliding
windows based on the timestamps.

4. QUERY SPECIFICATIONS
This section introduces query language features for disorder
control. More specifically, the language features are used to
specify the configuration of the disorder controller in our window
operators. In the disorder controller, there are two ways of
estimating punctuations using: 1) a slack buffer and 2) our
measure. As noted earlier, the slack buffer has a fixed size and is
used to sort input tuples in a bounded disorder. In case of using
the slack buffer, a timestamp presented from the buffer can
simply be regarded as a punctuation. When using our proposed
measure, the punctuations are estimated in more sophisticated
way. The details are described in the next section.

To describe the way of estimation in a query specification, we
define two optional parameters: SLACK and DRATIO. The former
denotes a size of the slack buffer and the latter a percentage of
tuple drops permissible in run-time processing. These parameters
are exclusive each other and can be defined in the window
specification. If the former parameter is defined, the disorder
controller conducts estimation using the slack buffer. In the other
case, the controller estimates the punctuations based on our
proposed measure.

As stated earlier, if a bound of network latencies is known in
advance, the SLACK can be used for estimation. In this case, the
value of the parameter is usually set to a large enough size to
cover the bound. By specifying the size, users can get accurate
query results without any tuple drops. The following shows how
to define the SLACK in the specification. As language features
for the window specification, we adopt syntaxes from the Jin Li’s
work [4].
 Q2: SELECT vehID, speed
 FROM Sensors [RANGE 300 seconds

Figure 2. Placing tuples using an index

Figure 3. An algorithm for inserting tuples using the
2-level index

insertTuple (Tuple ri) {

1. i-index (ri.attr – start) / sizeOf(P-Node)

2. p-index (ri.attr – start) % sizeOf(P-Node)

3. p-node i-node[i-index];

4. p-node[p-index] ri

}

 SLIDE 30 seconds
 WATTR ts
 SLACK 10]

If a prior knowledge of the network latencies is not available, it is
more appropriate to use the DRATIO for estimation. Compared
with the SLACK focusing only on accuracy, the DRATIO enables
users to control the quality of query results according to their
requirements. For example, if a small value of the drop ratio is
given in the specification, users can get accurate query results
with a small amount of tuple drops. Otherwise, users can obtain
low latency in the results. The next example shows how to define
the DRATIO.
 Q3: SELECT vehID, speed
 FROM Sensors [RANGE 300 seconds
 SLIDE 30 seconds
 WATTR ts
 DRATIO 1%]

In addition to define the parameters for estimating punctuations,
we support another optional parameter called BSIZE to specify a
limit on a total size of the buffers in the record store. The
parameter can be declared with either SLACK or DRATIO as
follows.
 Q4: SELECT vehID, speed
 FROM Sensors [RANGE 300 seconds
 SLIDE 30 seconds
 WATTR ts
 DRATIO 1%
 BSIZE 100]

If the BSIZE is used together with the one of SLACK or DRATIO,
it has a higher priority than the one in run-time estimation. That is,
in upper example, the disorder controller starts estimation based
on the given DRATIO of 1%. But if the total size of the buffers
exceeds the given BSIZE of 100, the size is fixed to 100. In this
case, the DRATIO has no effect on estimation until the size
returns to be smaller than 100.

5. ADAPTIVE ESTIMATION
This section describes derivation steps of our measure for
estimating punctuations. The section starts with preliminaries
such as problem statements and some assumptions, and then
explains derivation steps of the measure based on the assumptions.
At the end of this section, we give an algorithm for estimating
punctuations and discuss time and space complexities.

5.1. Preliminaries
In our approach, tuple drops are controlled by a drop ratio which
is defined in a query specification. A disorder controller should
carefully estimate punctuations to keep a total number of tuple
drops from violating the given drop ratio. Note that a tuple drop is
presented whenever the tuple carries a timestamp less than or
equal to a punctuation previously estimated.

Let τp be an application timestamp of the punctuation to be
estimated and Tn+1 be a random variable for an application
timestamp of tuple that will be arrived after the punctuation τp.
Then an expression to estimate the punctuation can be written as
follows.

{ τp ∈ max(T) | Pr(Tn+1 < T) < Prd for some T, Tn+1 ∈ T } … (5.1)

For convenience, in the remaining part of this paper, we use
conventions that Ti denotes a random variable for an application
timestamp of a tuple and Ti a variable for a system timestamp of
the tuple. All of the timestamps is assumed to be elements of a
discrete and ordered time domain T. In addition, Prd denotes a
drop ratio of the parameter DRATIO given in a specification.

In order to derive an estimation measure, we make two
assumptions such that an interval of tuple generations in stream
sources has an exponential distribution with a mean of θ (5.2),
and a transmission delay from different network latencies follows
a normal distribution with a mean of µ and a standard deviation of
σ (5.3).

 (Ti - Ti-1) ~ Exp(θ) … (5.2)

 (Ti - Ti) ~ N(µ, σ) … (5.3)

In above assumptions, the θ, µ and σ can be deducted by sensing a
number of latest tuples. For this purpose, we introduce a circular
list called VSeq, which accumulates timestamp information of the
latest tuples arrived at a disorder controller. The size of VSeq is
continuously changed according to estimation results for the upper
distributions, and in our approach, it is always larger than or equal
to 30.

Based on the information of VSeq, the θ can be calculated simply
by the following equation (5.4), where n specifies the size of
VSeq, T1 a system timestamp of the earliest tuple in VSeq, and Tn
a system timestamp of the latest one.

 θ = (Tn - T1) / n … (5.4)

The µ and σ can also be estimated from VSeq. The following
steps show how µ is estimated. It simply removes the earliest
delay and adds a new delay to get the sum of delays in VSeq, and
then divide the sum with n to get µ. The steps for estimating σ are
similar with these. In the below, tail and head denotes each
pointer indicating a tail node and a head node in the VSeq, and r
is the latest tuple arrived.

sum sum - (VSeq[tail].T - VSeq[tail].T) + (r.T - r.T);
µ sum / n;
VSeq[head].T r.T;
VSeq[head].T r.T;

5.2. Derivation of Our Measure
This part of the section explains derivation steps of our measure
for estimating punctuations based on above assumptions. Before
discussing the steps, we present the distribution of an interval
between the earliest system timestamp and the latest one. In the
below expression, T1 denotes the earliest one and Tn the latest one.

))1(,)1((~)(2
1 θθ ⋅−⋅−− nnNTTn

 … (5.5)

Derivation:

Let Vi be an interval (Ti - Ti-1) between system timestamps of
consequent tuples in VSeq, then Vi also has an exponential
distribution from the assumption (5.2). The mean θ of the
distribution can also be calculated by the equation (5.4).

Since number of Vi is equal to n-1 and the n is larger than or
equal to 30 in our approach, it is large enough to approximate

the sum of Vi to a normal distribution according to the Central
Limit Theorem [18]. In the distribution of the sum of Vi, that is
(Tn - T1), a mean of (Tn - T1) can be calculated as a mean of Vi
multiplied by n-1 because of the independence of Vi, and a
standard deviation of (Tn - T1) is obtained in a same way,
where the mean and the standard deviation of Vi is θ and θ2

each other since Vi follows an exponential distribution. □

Based on the distribution (5.5) and the previous assumptions, it
can be predicted whether a future tuple is dropped or not. When
predicting such a drop of the next tuple, we assume that the
generation interval and arrival of the tuple follow the current
distributions. That is, the future tuple is generated after θ from the
time that the last tuple is occurred and transferred to a system
after µ with the variance of σ, where the θ, µ and σ are the
parameters currently estimated.

The following equation is to estimate a drop ratio of the future
tuple based on the information of VSeq. In the below, Tn+1 is a
random variable for an application timestamp of the tuple and T1 a
variable for the earliest timestamp in VSeq, which is same as a
current punctuation Tp.

 Pr(Tn+1 < T1) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+ 222 θσ
θ

n
nZ … (5.6)

Derivation:

From the upper equation, the left term can be rewritten as
follows.

Pr(Tn+1 < T1) = Pr(Tn+1 - T1 < 0)

Again, Pr(Tn+1 - T1 < 0) can be decomposed with three sub
terms as shown in Figure 4. In the following, Ti is a system
timestamp corresponding to an application timestamp Ti.

(Tn+1 - T1) = (Tn+1 - Tn+1) + (Tn+1 - T1) + (T1 - T1)

In the decomposition, both random variables relevant to the
sub terms (Tn+1 - Tn+1) and (T1 - T1) follow a normal
distribution from the assumption (5.3).

 (Tn+1 - Tn+1) ~ N(-µ, σ) ... (5.6.1)

 (T1 - T1) ~ N(µ, σ) ... (5.6.2)

Also a random variable relevant to the sub term (Tn+1 - T1) has

a normal distribution from the derived distribution (5.5).

 (Tn+1 - T1) ~ N(n·θ, n·θ2) … (5.6.3)

Using the derived distributions from (5.6.1) to (5.6.3) and
MGF (Moment Generating Function) of a normal distribution
[18], The term (Tn+1 - T1) can be transformed as follows.

 MTn+1-T1(s) = MTn+1-Tn+1(s)·MTn+1-T1(s)·MT1-T1(s)

 = sssnsnss eee µδθθµδ ++− ⋅⋅)2/()2/()2/(222222

 = })2/{(})2/{(})2/{(222222 sssnsnsse µδθθµδ ++++−

 = }2/)2{(222 snsne θθδ ++

The result is again in the form of normal distribution MGF.
From this, a random variable (Tn+1 - T1) follows a normal
distribution such as:

(Tn+1 - T1) ~)2,(22 θσθ ⋅+⋅ nnN

After normalization of the above, we can finally obtain an
equation for estimating a probability of the future tuple drop.

Pr(Tn+1 < T1) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+ 222 θσ
θ

n
nZ □

Given VSeq, the equation (5.6) estimates a probability of the
future tuple drop. Observe that if we have a Prd from a query
specification, it is possible to obtain a size of VSeq after slight
modification of the equation (5.6). An equation to get the size has
a form of the following: In the right term of equation (5.6), n
becomes a variable intended to be estimated, while a given Prd
becomes a constant instead of the left term of the equation.

The next expression is to get the size of VSeq when Prd is given.
In the below, c is a constant which is a square of z-value
corresponding to the given Prd, and N denotes a set of natural
numbers.

 { np ∈ max(n) | n2 - c·n - 2·c·σ2 / θ2 < 0 for some n ∈ N } … (5.7)

Derivation:

As stated earlier, this is a form of an inequality that n becomes
a variable intended to be estimated in the equation (5.6). The
np denotes the maximum value of n which satisfies the above

Application
Timestamps
in a Stream Source

…T2T2 T3T3T1T1 Tn-1Tn-1 TnTn

System
Timestamps
in a Server

…T2T2 T3T3T1T1 Tn-1Tn-1 TnTn

µ

θ

…

(Tn+1 - Tn+1) ~ N(-µ, σ)

θ θ

Tn+1Tn+1

θ

Tn+1Tn+1

(T1 - Tn+1) ~ N(µ, σ)

(Tn+1 - T1) ~ N(n·θ, n·θ2)

Current time

Figure 4. Decomposition of (Tn+1 - T1)

expression.

)Pr(
2

 d22
Z

n
nZ <⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+ θσ
θ

)Pr(
2

 d22
Z

n
n

<
+ θσ

θ

 …)2()Pr()(222
d

2 θσθ nZn +<

The desired result can be obtained by derivations from the
above left-most inequality toward a right direction. □

From the size of VSeq satisfying the given Prd, a punctuation τp
can be easily obtained. The equation for this purpose is described
in the following. In the below equation, tn denotes the latest
system timestamp in VSeq.

 τp = τn - np·θ (τn = tn - µ) … (5.8)

Derivation:

Remind that an interval between all consequtive tuples in
VSeq is θ as discussed in earlier part. From this, given np, a
region satisfying the current Prd can be calculated by np·θ. In
addition, a maximum application timestamp τn can simply be
obtained by (tn - µ) from the assumption of network delay
(5.3). Consequently, the punctuation τp satisfying the Prd is
derived by subtracting the region np·θ from the maximum
application timestamp τn. □

5.3. Algorithm
In the previous part of this section, we explain derivation steps to
estimate punctuations based on the information maintained in
VSeq. In the derivation steps, the size of VSeq satisfying the
given Prd is calculated by the inequality (5.7), and from the size np,
the punctuation τp is simply obtained by the equation (5.8). These
two steps are continuously performed by a disorder controller
whenever a new tuple arrives.

The algorithm described in Figure 5 shows these steps written in
pseudo codes. In the algorithm, Eqn7 denotes a function playing a
role of the inequality (5.7) and Eqn8 a function of the equation
(5.8). In addition we denote a VSeq having a size of n as VSeq(n).

Whenever a new tuple comes in, timestamp information of the
tuple is accumulated in VSeq first, and then the function Ready
checks whether VSeq is filled up. If not so, an estimation process
is not activated and a previously calculated punctuation is simply
returned. These are described in steps 1 and 2.

If the VSeq is ready, the estimation process is performed using a
sequence of steps 3 to 6. The first step 3 is to estimate parameters
such as µ, σ and θ, which can be easily derived from VSeq in a
constant time, and already discussed in the first part of this section.
The step 4 calculates the size of VSeq satisfying the given Prd
using the inequality (5.7). To get the size np in a constant time, we
substitute the inequality with an equation mark and just apply a
floor function for a calculated np. After this, the punctuation τp is
obtained by the equation (5.8) using the np, which is described in
the step 5. The step also takes a constant time apparently.

The step 6 resizes the VSeq according to np calculated from the
step 4. Unfortunately, this step may have a time complexity of

O(n) in some cases. If the estimated size of np is larger than or
equal to the current size, there is only a processing effort to add
new nodes in the circular list. Furthermore, no estimation will be
occurred until the list is filled up. From these reasons, we can say
that it takes a constant time in this case. However, in a converse
case, a number of nodes should be removed one by one from the
list and a sum of the timestamps also be refreshed. Such a case
requires an iteration, which means a time complexity of O(n), and
may give a burden to a system when overloaded situations.

From the above perspective, the time complexity of our algorithm
is O(n) for any tuple arrival. In addition, since our algorithm only
uses VSeq having a size of np when estimating punctuations, a
space complexity is basically O(np). If a buffer is used to present
out-of-order tuples in an increasing order, the required space is
increased by an amount of the buffer size ns, thus the space
complexity is O(np + ns) in this case.

6. WINDOW EVALUATION
This section discusses a method for evaluating sliding windows
explicitly. More specifically, it is about decision of which window
extents can be produced from the tuples maintained in the record
store when given the estimated punctuations. In the section, we
first present a condition for explicit processing, and then discuss
some issues required for the processing.

Generally, a window extent can be presented from the window
operator when the minimum timestamp of the extent is larger than
the given punctuation. For example, given RANGE of n and
SLIDE of s, i-th window extent can be described as (6.1), and it
can be presented when the condition (6.2) is satisfied with the
given punctuation τp. In the below, R is a set of tuples, r a tuple in
the R and ts a timestamp of the tuple.

 extent(i) = { r ∈ R | (i+1)*s – n ≤ r.ts < (i+1)*s } … (6.1)

 τp ≤ (i+1)*s – n … (6.2)

In order to process window extents consistently based on the
condition (6.2), the punctuations has to be monotonously
increased. Otherwise, same extents can be produced multiple
times or dangling tuples, which are not included in any extents,
are occurred, since window operators usually ignore out-of-
ordered tuples having smaller timestamps than the “latest”
punctuation. This issue can be easily resolved by sending the

Figure 5. An algorithm for estimating punctuations
using our adaptive measure

Adaptive (tuple r)

1. VSeq(np) t and τ of r;

2. If (Ready(VSeq)==true) {

3. µ, σ and θ VSeq(np);

4. np Eqn7(c, σ, θ);

5. τp Eqn8(t, np, θ);

6. VSeq VSeq(np);

7.}

8. return τp;

punctuations in a monotonic way. That is, if the latest punctuation
is smaller than the previous one, the disorder controller just sends
the previous one.

In our approach, window extents can be presented only if the
condition (6.2) is satisfied. It is independent of the tuple arrivals.
If there is no disorder, it is natural to suppose that each extent can
be produced regularly based on the tuple arrivals or sliding
intervals. However, if input tuples are out-of-ordered, it is hard to
produce the extents regularly because some latency is required to
accumulate the out-of-ordered tuples and sort them.

Our window operators insert a special type of tuple called sync
tuple to the end of every window extents. A sync tuple denotes the
boundary of each window extent, so that other operators can
recognize each extent with it. The sync tuple can also be used to
produce meaningful results when joining multiple streams. To
illustrate the usage, suppose a query to decide whether to pay a
toll to vehicles in a highway according to its traffic condition.
Assume that the highway is congested if an average speed is less
than 40 mph, then vehicles in the highway pay a toll. Let each
vehicle have a sensor that relays its speed information every 30
seconds. Figure 6 shows a simplified plan tree for this query,
where each oval denotes an operator in the tree. In the figure,
OP_SRC denotes an operator to store input tuples, OP_WIN a
sliding window operator, OP_AVG an aggregate operator
calculating averages, and OP_JOIN a join operator.

In Figure 6, an upper part of the query tree is to get active
vehicles in the highway by maintaining tuples of the latest 30
seconds, and the lower part checks the traffic condition of the
highway. Thus, by joining these two streams, we can decide
whether to pay a toll to vehicles. However, if the two streams are
not synchronized, that means only one of the two streams is
continuously processed, undesirable situations can happen. For
example, the query can pay a toll to vehicles although the traffic
condition is not congested.

7. EXPERIMENTAL RESULTS
This section presents experimental results of our estimation
measure in terms of accuracy and stability. For this purpose, we
compared our measure with the existing approach where the
measure reflects the maximum difference of latencies for
estimating punctuations [12]. We conducted experiments in two
ways: 1) The first experiment compares drop ratios of each
measure in terms of accuracy, and 2) The second experiment
observes how significantly each measure is affected by
exceptional cases in terms of stability.

In order to conduct experiments, we implemented a window

operator as proposed in the paper and connected it to TinyDB [19]
for data generation. We varied the configuration of TinyDB to get
data from 16 to 20 sensors in every second, and collected a
number of data sets for each case. Among the data sets, we finally
selected 20 data sets in which network latencies follow a normal
distribution, since our estimation measure is derived based on
such an assumption as stated in Section 5.

Figure 7 compares experimental results from both measures in
terms of three parameters: buffer size, latency and drop ratio. The
first denotes an average size of the buffers in the window operator,
and the second is an average waiting time of tuples in the buffers.
The third means a resulting ratio of tuple drops per total number
of input tuples. In the bottom line of the figure, average values of
each column are presented.

As our experimental results, our measure shows a resulting drop
ratio of 0.51% when the DRATIO is given to 1% in a query
specification, while the existing measure shows a ratio of 1.10%.
In terms of buffer sizes and the latencies, the existing measure
shows a smaller size than our measure, but the differences are not
significant.

One notable thing from the results is that it is hard to use the
existing measure in applications that require strict criteria about
accuracy of query results. For example, consider an application
that only allows query results having tuple drops less than 1%. In
case of the existing measure, we observed 13 times of violation
that exceeds a drop ratio of 1% during the experiments. Moreover,
in the measure, there is no way to control the tuple drops that
makes the ratio be lower.

In order to test stability of both measures, we placed a number of
tuples having a large size of disorder in the early stage of the data
sets, and increased the size to observe relationships with the

OP_SRC

<carId, speed>

OP_WIN

OP_WIN

30 secs

5 mins

OP_AVG

OP_JOIN

If Congested (avg<40)
Then impose !!

OP_SRCOP_SRC

<carId, speed>

OP_WINOP_WIN

OP_WINOP_WIN

30 secs

5 mins

OP_AVGOP_AVG

OP_JOINOP_JOIN

If Congested (avg<40)
Then impose !!

Figure 6. A simplified query tree for paying a toll according to traffic conditions

Figure 7. Experimental results from the existing
measure and our measure

buffer sizes or the average waiting times. Figure 8 shows results
from the experiments. As shown in the figure, the existing
measure has a close relationship with the disorder sizes of the
early stage, while our measure is not affected by the exceptional
cases.

There have been also proposed an estimation measure to use an
average value of the maximum disorder to resolve problems from
the lack of adaptivity in the existing approaches [12]. However,
we observed that the resulting drop ratios are increased to more
than 3% in the measure, while it is not affected by the exceptional
cases so much. Therefore, it is also hard to use such a measure in
the applications that require strict accuracy.

8. CONCLUSION
This paper presents a structure and method for evaluating sliding
windows efficiently. The proposed structure consists of the record
store and the disorder controller. The record store maintains input
tuples in an increasing order and uses a 2-level index to place the
tuples in a constant time. The disorder controller estimates
punctuations to decide a point of time to produce window extents
from the tuples in the record store. The window structure and its
behavior can be described in a query specification using an SQL-
like language. For this purpose, we have introduced a few optional
parameters such as SLACK, DRATIO and BSIZE. Based on the
parameters given in the specification, run-time estimation is
conducted using our proposed measure which is derived
theoretically from the distributions of tuple generation intervals
and network latencies. To verify adaptivity of our method based
on the proposed measure, we have compared it with an existing
method in terms of accuracy and stability and have shown that our
method works better than the one proposed earlier.

Our estimation measure can be extended to cover various causes
of disorder in data streams such as merging unsynchronized
streams or data prioritization. We are planning to address these
issues to make our method more scalable and flexible.

9. REFERENCES
[1] Douglas Terry, David Goldberg, David Nichols, and Brian

Oki, Continuous Queries over Append-Only Databases.
ACM SIGMOD, 1992.

[2] Samuel R. Madden, Mehul A. Shah, Joseph M. Hellerstein
and Vijayshankar Raman, Continuously Adaptive Continuous

Queries over Streams. ACM SIGMOD Conference, Madison,
WI, June 2002

[3] Peter A. Tucker, David Maier, Time Sheard, Leonidas
Fegaras, Exploiting Punctuation Semantics in Continuous
Data Streams. IEEE Transactions on Knowledge and Data
Engineering, May/June 2003.

[4] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, Peter
A. Tucker, Semantics and Evaluation Techniques for
Window Aggregates in Data Streams. ACM SIGMOD 2005,

[5] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, Peter
A. Tucker, No Pane, No Gain: Efficient Evaluation of
Sliding Window Aggregates over Data Streams. SIGMOD
Record, Vol 34, No. 1, March 2005.

[6] S. Babu and J. Widom, Continuous Queries over Data
Streams. ACM SIGMOD Record, Sep. 2001.

[7] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,
Models and Issues in Data Stream Systems. Invited paper in
Proc. of the 2002 ACM Symp. on Principles of Database
Systems (PODS 2002), June 2002.

[8] Arvind Arasu et al, STREAM: The Stanford Data Stream
Management System. IEEE Data Engineering Bulletin, Vol.
26 No. 1, March 2003.

[9] Rajeev Motwani et al, Query Proessing, Resource
Management, and Approximation in a Data Stream
Management System. CIDR 2003, Jan. 2003.

[10] A. Arasu, S. Babu and J. Widom, The CQL Continuous
Query Language: Semantic Foundations and Query
Execution. Stanford University Technical Report, Oct. 2003.

[11] S. Babu, U. Srivastava and J. Widom, Exploiting k-
Constraints to Reduce Memory Overhead in Continuous
Queries over Data Streams. ACM TODS, Sep. 2004.

[12] U. Srivastava and J. Widom. Flexible Time Management in
Data Stream Systems. ACM PODS 2004, June 2004.

[13] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C.
Convey, S. Lee, M. Stonebraker, N. Tatbul, S. Zdonik.
Aurora: A New Model and Architecture for Data Stream
Management. VLDB Journal (12)2: 120-139, August 2003.

[14] D. Abadi at al, The Design of the Borealis Stream Process-
ing Engine. CIDR 2005, Asilomar, CA, January 2005.

Figure 8: Relationship between disorder sizes of an early stage and
(a) buffer sizes and (b) average waiting times

http://www.cs.berkeley.edu/~madden
http://www.cs.berkeley.edu/~mashah
http://db.cs.berkeley.edu/jmh
http://www.cs.berkeley.edu/~rshankar

[15] Sirish Chandrasekaran et al, TelegraphCQ: Continuous
Dataflow Processing for an Uncertain World. CIDR 2003.

[16] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A
scalable continuous query system for internet databases.
ACM SIGMOD pages 379–390, May 2000.

[17] Sujoe Bose and Leonidas Fegaras, Data Stream Management
for Historical XML Data, ACM SIGMOD, June 2004.

[18] Dimitry P. Bertsekas and John N. Tsitsiklis, Introduction to
Probability: International Edition, Athena Scientific,
Belmont, Massachusetts, 2002.

[19] TinyDB: http://www.tinyos.net.

http://www.cs.berkeley.edu/~sirish
http://www.tinyos.net/

	INTRODUCTION
	RELATED WORK
	WINDOW OPERATORS
	QUERY SPECIFICATIONS
	ADAPTIVE ESTIMATION
	Preliminaries
	Derivation of Our Measure
	Algorithm
	WINDOW EVALUATION
	EXPERIMENTAL RESULTS
	CONCLUSION
	REFERENCES

