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ABSTRACT 
A sliding window is an important feature to process continuous 
streams. Various stream management systems evaluate sliding 
windows based on their estimation measures for disorder control. 
However, most of the measures do not reflect characteristics of 
input streams appropriately, and such lack of adaptivity may lead 
to inaccurate or delayed query results. To address this issue, we 
propose a method for evaluating sliding windows based on 
adaptive disorder control. We first present a structure of window 
operators using a 2-level index to handle tuples efficiently. Then, 
we propose an adaptive method base on the estimation measure 
that is derived from the distributions of tuple generation intervals 
and network latencies. The structure of window operators and 
estimation criteria for disorder control can be described 
declaratively in a query specification. This helps users to control 
the quality of query results such as accuracy or latency according 
to application requirements. Our experimental results show that 
the proposed measure provides better accuracy and stability than 
the one used in the existing method. 

 

1. INTRODUCTION 
There has been substantial research in the problem of processing 
continuous data streams based on the existing concepts of 
relational databases [1, 2, 6]. These efforts result in the advent of 
various stream management systems. The systems can be 
regarded as generalized platforms to process continuous queries 
over continuous streams in a real-time manner [7, 9]. Well-known 
examples of the systems are Stanford’s STREAM [8], Berkeley’s 
TelegraphCQ [15] and Aurora [13] / Borealis [14] from Brandeis, 
Brown, and M.I.T. 

In stream management systems, a sliding window is an important 
feature of the continuous query [4, 5]. A window specifies a 
moving view that decomposes an unbounded stream into finite 
subsets called window extents. The window extents are commonly 
defined based on timestamps of tuples [12, 17]. When processing 
continuous streams, an extent can be viewed as a temporal 
relation. Based on the relation, blocking operators [7] such as sort 
or join, which are unable to start processing until an entire input is 
seen, can produce the results. 

There are a few issues on the efficient evaluation of the sliding 
windows. First, since sliding windows are placed at the initial part 

of query operator trees, window evaluation operators are required 
to handle a huge amount of input tuples in a real-time manner. 
Second, to achieve semantic correctness, the window operators 
usually require that input tuples arrive in an increasing timestamp 
order. But when tuples are transmitted from remote sources, they 
may not arrive in the order they were sent due to various network 
latencies. Such out-of-order arrival of tuples complicates the 
process of determining the window extents. Disorder of tuples 
may have a considerable effect on the quality of query results 
such as accuracy or response time. 

To resolve issues from disorder of tuples, the existing approaches 
usually employ fixed-size buffers or simple estimations based on 
the notion of punctuations [3]. The former case can be found in 
Aurora project [13]. In their research, they assume that a bound of 
network latency is known in advance, and from the assumption, 
the buffer has a fixed size that is large enough to cover the bound. 
The latter case is discussed in Jin Li’s work [4] and STREAM 
project [8]. Briefly, a punctuation τ indicates that no more tuples 
having a timestamp greater than τ will be seen in the stream. Thus, 
when receiving τ, tuples having a timestamp less than or equal to τ 
can be processed in sliding windows. The punctuation can be 
either given by remote sources or estimated by a system. 

However, there still remain some issues when applying the 
existing approaches to real-world stream applications. In buffer-
based approaches, the bound of network latency may not be 
known in advance, and the bound is usually fluctuated. In that 
case, using a small-size buffer may cause too much tuples to be 
dropped, while using an excessively large-size buffer may result 
in high latency. In punctuation-based approaches, when the 
punctuations are estimated by a system, the estimation is usually 
conducted by ad hoc measures, not a theoretical one. In addition, 
the punctuation itself can be disordered by network latencies 
when given by remotes sources. Thus, it is also hard to expect 
accurate query results. 

This paper presents a structure and method for evaluating sliding 
windows efficiently while resolving the stated issues by 
supporting adaptive disorder control. The proposed structure of 
window operators consists of the record store and the disorder 
controller as depicted in Figure 1. The record store maintains 
input tuples in an increasing timestamp order, and uses a 2-level 
index to place tuples efficiently. The disorder controller estimates 
the punctuations to decide a point of time to produce window 
extents from the tuples in the record store. When estimating the 
punctuations, the controller uses our measure that increases  
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adaptivity by reflecting characteristics of input streams 
appropriately. The proposed measure is theoretically derived from 
the distributions of tuple generation intervals and network 
latencies. In addition, if prior information about the network 
latency is available, the disorder controller can be configured to 
use a fixed-size buffer. 

In our approach, the structure of window operators and estimation 
criteria for disorder control can be described declaratively in a 
query specification. This helps users to control the quality of 
query results according to application requirements. For example, 
as a parameter for the estimation, users can describe a drop ratio 
in the query specification, which denotes a percentage of tuple 
drops permissible in run-time processing. There is a trade-off 
between the drop ratio and the latency of the results, which will 
be described detail in the later section. 

The rest of this paper is organized as follows. After a short review 
of related work in Section 2, Section 3 proposes a generalized 
structure of window operators using a 2-level index. Section 4 
describes query language features for disorder control, and 
Section 5 explains derivation steps of the proposed measure for 
adaptive estimation. Section 6 discusses a method for evaluating 
sliding windows explicitly. Section 7 shows experimental results 
of our estimation measure and Section 8 concludes our discussion. 

2. RELATED WORK 
To resolve issues from disorder, two common approaches have 
been widely used. One is to maintain buffers to sort tuples, and 
the other is to leverage punctuations [3]. The former case can be 
found in Aurora [13]. The later case is discussed in Jin Li’s work 
[4], STREAM [8] and NiagaraCQ [16]. 

In Aurora project [13], window operators simply ignore the out-
of-order tuples. Instead, they use a buffer called slack to save the 
tuples by sorting them in the buffer. In their approach, they 
assume that a bound of network latency is always known in 
advance. From the assumption, the slack buffer has a fixed size of 
n. Any tuples that are more than n positions out of order are 
dropped. Note that, if a prior knowledge about the bound is not 
available and the bound is fluctuated, it may result in undesirable 
results. 

In STREAM project [8], window operators do not have any 
mechanism for disorder control. Instead, the control is supported 
by external modules such as Input Manager [12] or prior 
operators that transmit the tuples to the window operators. In the 
Input Manager, the proposed solution for the control is based on 
the heartbeats [12], which can be thought of as special types of 
punctuations. When estimating the heartbeats, they use a simple 
measure that reflects the maximum difference of latencies [11, 12]. 
But such a measure may also result in inaccurate or delayed 
results from the lack of adaptivity. 

Jin Li’s work [4] proposes an efficient evaluation method of 
sliding windows for aggregate queries. And in their research, 
disorder control is conducted explicitly using the external 
punctuations given by remote sources. However, the external 
punctuations can be disordered by network latencies. In addition, 
their discussion of the evaluation method is only on aggregate 
queries. For example, a buffer in the window operator maintains 
only an intermediate result for aggregates, not an original tuples. 
Thus it cannot be used for other general types of queries. There is 

also an issue in efficiency if sliding windows are overlapped. If a 
window has a range of 5 minutes and is slid every 1 minute, the 
method requires 5 times of evaluation per every input tuples. 

In NiagaraCQ [16], window operators leverage the external 
punctuations transmitted from the remote sources or internal 
punctuations estimated in the systems. However, if estimated 
internally, the punctuations are generated based on simple notions 
of the slack as in Aurora. Thus, there still remain same issues of 
upper approaches. 

3. WINDOW OPERATORS 
This section proposes a structure of window operators using a 2-
level index to handle tuples efficiently. The proposed structure 
consists of record store and disorder controller as depicted in 
Figure 1. The record store maintains a number of buffers to place 
the input tuples in an increasing order. And the disorder controller 
estimates the punctuations to decide a point of time to produce 
window extents from the tuples in the record store. 

The record store uses an index to place input tuples into the 
buffers in a constant time. In our approach, the index is simply an 
array that maintains pointers to each buffer that has tuples of same 
timestamps, and an array index is directly mapped to a timestamp 
of the input tuples with a one-to-one correspondence. For example, 
a tuple having the timestamp i is placed to a buffer pointed by 
index[i]. From this configuration, the position of input tuples can 
be decided immediately. Furthermore, it doesn’t need to sort 
tuples based on their timestamp, since the array indexes are 
already in an increasing order. 

To illustrate the above process more detail, consider a query to 
inform the vehicles that are over-speeded in the latest 5 minutes 
from a highway. In this query, we suppose that each vehicle is 
equipped with a sensor for sensing its speed, and relays its sensor 
reading to a server every 30 seconds. And we assume that the 
sensor reading has a schema of <vehID, speed, ts>, which 
elements specify a vehicle ID, its speed, and the timestamp of the 
sensor reading each other. Based on these assumptions, the query 
can be described as Q1. In the query Q1, we use CQL-like 
language [10] with window syntaxes proposed in the Jin Li’s 
work [4], where RANGE stands for the length of the window, 
SLIDE for the step by which the window moves, and WATTR for 
the windowing attribute – the attribute over which RANGE and 
SLIDE are specified. 

Figure 1. A structure of window operators 



 Q1: SELECT vehID, speed 
     FROM Sensors [RANGE 300 seconds 
                   SLIDE 30 seconds 
                   WATTR ts] 
     GROUP BY vehID 
     HAVING AVG(speed) > 80 

Figure 2 presents a detail scenario to show how to handle input 
tuples using the index for the above query. The upper part of the 
figure shows a number of input tuples, and the lower part presents 
the record store that consists of the mapper, the index and a 
number of the buffers. Whenever a tuple ri arrives, the mapper 
calculates a difference between the timestamp of the tuple and a 
starting point of the index, which is denoted as ts and start in the 
figure. The difference determines an element of the index, which 
has a pointer to a buffer. The buffer maintains a number of tuples 
having the same timestamp and has a form of linked list. The 
linked list always keeps a track to the last node to insert a tuple 
without iteration. 

The index has to be changed whenever it receives a tuple having a 
timestamp larger than the end, which means that the timestamp of 
the tuple exceeds the range covered by the index. In the example 
of Figure 2, the restructuring procedure is triggered when 
receiving a tuple having a timestamp larger than 384. The 
procedure incurs a number of array copies. Note that these copies 
may give a burden to the system if tuple arrivals are getting 
increased rapidly. In addition, the same situation can be occurred 
in case that the index is getting larger. 

To resolve this problem, we propose a 2-level structure for the 
index. In the structure, the lower level index points each buffer 
and the upper level index indicates the lower level indexes. For 
convenience, we denote the lower level index as p-node and the 
upper level one as i-node. These two indexes are different in that 
the p-node always has a fixed size (n = 128), while the i-node has 
a variable size (n ≥ 8). Thus, whenever restructured, the p-node is 
created or removed as an atomic unit, while the i-node is 
dynamically increased or decreased through array copies. 
However, the burden resulted from the array copies is negligible 
since the i-node has significantly small size compared with the p-

node in our structure. 
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Figure 3 shows the algorithm for placing input tuples using the 2-
level index. In the algorithm, the step 1 and 2 calculate the array 
indexes of i-node and p-node each other. The step 3 determines a 
p-node from the calculated index of i-node. And the step 4 inserts 
the given tuple into a buffer pointed by the p-node. 

In our approach, a small size of our index can cover a relatively 
large size of sliding windows. For example, if an i-node has a size 
of 8, a p-node of 128 and a pointer of 4 bytes, then a total size of 
the index is 544 bytes. With this index, we can cover a sliding 
window having a range of 1024 epochs in the queries of sensor 
networks. The index can also handle about 18 minutes of sliding 
windows based on the timestamps. 

4. QUERY SPECIFICATIONS 
This section introduces query language features for disorder 
control. More specifically, the language features are used to 
specify the configuration of the disorder controller in our window 
operators. In the disorder controller, there are two ways of 
estimating punctuations using: 1) a slack buffer and 2) our 
measure. As noted earlier, the slack buffer has a fixed size and is 
used to sort input tuples in a bounded disorder. In case of using 
the slack buffer, a timestamp presented from the buffer can 
simply be regarded as a punctuation. When using our proposed 
measure, the punctuations are estimated in more sophisticated 
way. The details are described in the next section. 

To describe the way of estimation in a query specification, we 
define two optional parameters: SLACK and DRATIO. The former 
denotes a size of the slack buffer and the latter a percentage of 
tuple drops permissible in run-time processing. These parameters 
are exclusive each other and can be defined in the window 
specification. If the former parameter is defined, the disorder 
controller conducts estimation using the slack buffer. In the other 
case, the controller estimates the punctuations based on our 
proposed measure. 

As stated earlier, if a bound of network latencies is known in 
advance, the SLACK can be used for estimation. In this case, the 
value of the parameter is usually set to a large enough size to 
cover the bound. By specifying the size, users can get accurate 
query results without any tuple drops. The following shows how 
to define the SLACK in the specification. As language features 
for the window specification, we adopt syntaxes from the Jin Li’s 
work [4]. 
 Q2: SELECT vehID, speed 
     FROM Sensors [RANGE 300 seconds 

 

Figure 2. Placing tuples using an index 

Figure 3. An algorithm for inserting tuples using the 
2-level index 

insertTuple ( Tuple ri ) { 

1.  i-index  ( ri.attr – start ) / sizeOf( P-Node ) 

2.  p-index  ( ri.attr – start ) % sizeOf( P-Node ) 

3.  p-node  i-node[i-index]; 

4.  p-node[p-index]  ri  

} 



                   SLIDE 30 seconds 
                   WATTR ts 
                   SLACK 10] 

If a prior knowledge of the network latencies is not available, it is 
more appropriate to use the DRATIO for estimation. Compared 
with the SLACK focusing only on accuracy, the DRATIO enables 
users to control the quality of query results according to their 
requirements. For example, if a small value of the drop ratio is 
given in the specification, users can get accurate query results 
with a small amount of tuple drops. Otherwise, users can obtain 
low latency in the results. The next example shows how to define 
the DRATIO. 
 Q3: SELECT vehID, speed 
     FROM Sensors [RANGE 300 seconds 
                   SLIDE 30 seconds 
                   WATTR ts 
                   DRATIO 1%] 

In addition to define the parameters for estimating punctuations, 
we support another optional parameter called BSIZE to specify a 
limit on a total size of the buffers in the record store. The 
parameter can be declared with either SLACK or DRATIO as 
follows.  
 Q4: SELECT vehID, speed 
     FROM Sensors [RANGE 300 seconds 
                   SLIDE 30 seconds 
                   WATTR ts 
                   DRATIO 1% 
                   BSIZE 100] 

If the BSIZE is used together with the one of SLACK or DRATIO, 
it has a higher priority than the one in run-time estimation. That is, 
in upper example, the disorder controller starts estimation based 
on the given DRATIO of 1%. But if the total size of the buffers 
exceeds the given BSIZE of 100, the size is fixed to 100. In this 
case, the DRATIO has no effect on estimation until the size 
returns to be smaller than 100. 

5. ADAPTIVE ESTIMATION 
This section describes derivation steps of our measure for 
estimating punctuations. The section starts with preliminaries 
such as problem statements and some assumptions, and then 
explains derivation steps of the measure based on the assumptions. 
At the end of this section, we give an algorithm for estimating 
punctuations and discuss time and space complexities. 

5.1.  Preliminaries 
In our approach, tuple drops are controlled by a drop ratio which 
is defined in a query specification. A disorder controller should 
carefully estimate punctuations to keep a total number of tuple 
drops from violating the given drop ratio. Note that a tuple drop is 
presented whenever the tuple carries a timestamp less than or 
equal to a punctuation previously estimated.  

Let τp be an application timestamp of the punctuation to be 
estimated and Tn+1 be a random variable for an application 
timestamp of tuple that will be arrived after the punctuation τp. 
Then an expression to estimate the punctuation can be written as 
follows. 

{ τp ∈ max(T ) | Pr(Tn+1 < T) < Prd for some T, Tn+1 ∈ T } … (5.1) 

For convenience, in the remaining part of this paper, we use 
conventions that Ti denotes a random variable for an application 
timestamp of a tuple and Ti a variable for a system timestamp of 
the tuple. All of the timestamps is assumed to be elements of a 
discrete and ordered time domain T. In addition, Prd denotes a 
drop ratio of the parameter DRATIO given in a specification.  

In order to derive an estimation measure, we make two 
assumptions such that an interval of tuple generations in stream 
sources has an exponential distribution with a mean of θ (5.2), 
and a transmission delay from different network latencies follows 
a normal distribution with a mean of µ and a standard deviation of 
σ (5.3). 

 (Ti - Ti-1) ~ Exp(θ)  … (5.2) 

 (Ti - Ti) ~ N(µ, σ) … (5.3) 

In above assumptions, the θ, µ and σ can be deducted by sensing a 
number of latest tuples. For this purpose, we introduce a circular 
list called VSeq, which accumulates timestamp information of the 
latest tuples arrived at a disorder controller. The size of VSeq is 
continuously changed according to estimation results for the upper 
distributions, and in our approach, it is always larger than or equal 
to 30. 

Based on the information of VSeq, the θ can be calculated simply 
by the following equation (5.4), where n specifies the size of 
VSeq, T1 a system timestamp of the earliest tuple in VSeq, and Tn 
a system timestamp of the latest one. 

 θ = (Tn - T1) / n  … (5.4) 

The µ and σ can also be estimated from VSeq. The following 
steps show how µ is estimated. It simply removes the earliest 
delay and adds a new delay to get the sum of delays in VSeq, and 
then divide the sum with n to get µ. The steps for estimating σ are 
similar with these. In the below, tail and head denotes each 
pointer indicating a tail node and a head node in the VSeq, and r 
is the latest tuple arrived. 

sum  sum - (VSeq[tail].T - VSeq[tail].T) + (r.T - r.T); 
µ  sum / n; 
VSeq[head].T  r.T; 
VSeq[head].T  r.T; 

5.2.  Derivation of Our Measure 
This part of the section explains derivation steps of our measure 
for estimating punctuations based on above assumptions. Before 
discussing the steps, we present the distribution of an interval 
between the earliest system timestamp and the latest one. In the 
below expression, T1 denotes the earliest one and Tn the latest one. 

 ))1(,)1((~)( 2
1 θθ ⋅−⋅−− nnNTTn

  … (5.5) 

Derivation: 

Let Vi be an interval (Ti - Ti-1) between system timestamps of 
consequent tuples in VSeq, then Vi also has an exponential 
distribution from the assumption (5.2). The mean θ of the 
distribution can also be calculated by the equation (5.4).  

Since number of Vi is equal to n-1 and the n is larger than or 
equal to 30 in our approach, it is large enough to approximate 



the sum of Vi to a normal distribution according to the Central 
Limit Theorem [18]. In the distribution of the sum of Vi, that is 
(Tn - T1), a mean of (Tn - T1) can be calculated as a mean of Vi 
multiplied by n-1 because of the independence of Vi, and a 
standard deviation of (Tn - T1) is obtained in a same way, 
where the mean and the standard deviation of Vi is θ and θ2 

each other since Vi follows an exponential distribution. □  

Based on the distribution (5.5) and the previous assumptions, it 
can be predicted whether a future tuple is dropped or not. When 
predicting such a drop of the next tuple, we assume that the 
generation interval and arrival of the tuple follow the current 
distributions. That is, the future tuple is generated after θ from the 
time that the last tuple is occurred and transferred to a system 
after µ with the variance of σ, where the θ, µ and σ are the 
parameters currently estimated. 

The following equation is to estimate a drop ratio of the future 
tuple based on the information of VSeq. In the below, Tn+1 is a 
random variable for an application timestamp of the tuple and T1 a 
variable for the earliest timestamp in VSeq, which is same as a 
current punctuation Tp. 

 Pr(Tn+1 < T1) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+ 222 θσ
θ

n
nZ   … (5.6) 

Derivation: 

From the upper equation, the left term can be rewritten as 
follows. 

Pr(Tn+1 < T1) = Pr(Tn+1 - T1 < 0) 

Again, Pr(Tn+1 - T1 < 0) can be decomposed with three sub 
terms as shown in Figure 4. In the following, Ti is a system 
timestamp corresponding to an application timestamp Ti. 

(Tn+1 - T1) = (Tn+1 - Tn+1) + (Tn+1 - T1) + (T1 - T1) 

In the decomposition, both random variables relevant to the 
sub terms (Tn+1 - Tn+1) and (T1 - T1) follow a normal 
distribution from the assumption (5.3). 

 (Tn+1 - Tn+1) ~ N(-µ, σ)  ... (5.6.1) 

 (T1 - T1) ~ N(µ, σ)  ... (5.6.2) 

Also a random variable relevant to the sub term (Tn+1 - T1) has 

a normal distribution from the derived distribution (5.5). 

 (Tn+1 - T1) ~ N( n·θ, n·θ2 )  … (5.6.3) 

Using the derived distributions from (5.6.1) to (5.6.3) and 
MGF (Moment Generating Function) of a normal distribution 
[18], The term (Tn+1 - T1) can be transformed as follows. 

      MTn+1-T1(s) = MTn+1-Tn+1(s)·MTn+1-T1(s)·MT1-T1(s) 

 =  sssnsnss eee µδθθµδ ++− ⋅⋅ )2/()2/()2/( 222222

 =  })2/{(})2/{(})2/{( 222222 sssnsnsse µδθθµδ ++++−

 =  }2/)2{( 222 snsne θθδ ++

The result is again in the form of normal distribution MGF. 
From this, a random variable (Tn+1 - T1) follows a normal 
distribution such as: 

(Tn+1 - T1) ~ )2,( 22 θσθ ⋅+⋅ nnN  

After normalization of the above, we can finally obtain an 
equation for estimating a probability of the future tuple drop. 

Pr(Tn+1 < T1) = ⎟⎟
⎠
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Given VSeq, the equation (5.6) estimates a probability of the 
future tuple drop. Observe that if we have a Prd from a query 
specification, it is possible to obtain a size of VSeq after slight 
modification of the equation (5.6). An equation to get the size has 
a form of the following: In the right term of equation (5.6), n 
becomes a variable intended to be estimated, while a given Prd 
becomes a constant instead of the left term of the equation. 

The next expression is to get the size of VSeq when Prd is given. 
In the below, c is a constant which is a square of z-value 
corresponding to the given Prd, and N denotes a set of natural 
numbers. 

 { np ∈ max(n) | n2 - c·n - 2·c·σ2 / θ2 < 0 for some n ∈ N } … (5.7) 

Derivation: 

As stated earlier, this is a form of an inequality that n becomes 
a variable intended to be estimated in the equation (5.6). The 
np denotes the maximum value of n which satisfies the above 
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The desired result can be obtained by derivations from the 
above left-most inequality toward a right direction. □  

From the size of VSeq satisfying the given Prd, a punctuation τp 
can be easily obtained. The equation for this purpose is described 
in the following. In the below equation, tn denotes the latest 
system timestamp in VSeq. 

 τp = τn - np·θ  ( τn = tn - µ )  … (5.8) 

Derivation: 

Remind that an interval between all consequtive tuples in 
VSeq is θ as discussed in earlier part. From this, given np, a 
region satisfying the current Prd can be calculated by np·θ. In 
addition, a maximum application timestamp τn can simply be 
obtained by (tn - µ) from the assumption of network delay 
(5.3). Consequently, the punctuation τp satisfying the Prd is 
derived by subtracting the region np·θ from the maximum 
application timestamp τn. □  

5.3.  Algorithm 
In the previous part of this section, we explain derivation steps to 
estimate punctuations based on the information maintained in 
VSeq. In the derivation steps, the size of VSeq satisfying the 
given Prd is calculated by the inequality (5.7), and from the size np, 
the punctuation τp is simply obtained by the equation (5.8). These 
two steps are continuously performed by a disorder controller 
whenever a new tuple arrives. 

The algorithm described in Figure 5 shows these steps written in 
pseudo codes. In the algorithm, Eqn7 denotes a function playing a 
role of the inequality (5.7) and Eqn8 a function of the equation 
(5.8). In addition we denote a VSeq having a size of n as VSeq(n). 

Whenever a new tuple comes in, timestamp information of the 
tuple is accumulated in VSeq first, and then the function Ready 
checks whether VSeq is filled up. If not so, an estimation process 
is not activated and a previously calculated punctuation is simply 
returned. These are described in steps 1 and 2. 

If the VSeq is ready, the estimation process is performed using a 
sequence of steps 3 to 6. The first step 3 is to estimate parameters 
such as µ, σ and θ, which can be easily derived from VSeq in a 
constant time, and already discussed in the first part of this section. 
The step 4 calculates the size of VSeq satisfying the given Prd 
using the inequality (5.7). To get the size np in a constant time, we 
substitute the inequality with an equation mark and just apply a 
floor function for a calculated np. After this, the punctuation τp is 
obtained by the equation (5.8) using the np, which is described in 
the step 5. The step also takes a constant time apparently.  

The step 6 resizes the VSeq according to np calculated from the 
step 4. Unfortunately, this step may have a time complexity of 

O(n) in some cases. If the estimated size of np is larger than or 
equal to the current size, there is only a processing effort to add 
new nodes in the circular list. Furthermore, no estimation will be 
occurred until the list is filled up. From these reasons, we can say 
that it takes a constant time in this case. However, in a converse 
case, a number of nodes should be removed one by one from the 
list and a sum of the timestamps also be refreshed. Such a case 
requires an iteration, which means a time complexity of O(n), and 
may give a burden to a system when overloaded situations. 

From the above perspective, the time complexity of our algorithm 
is O(n) for any tuple arrival. In addition, since our algorithm only 
uses VSeq having a size of np when estimating punctuations, a 
space complexity is basically O(np). If a buffer is used to present 
out-of-order tuples in an increasing order, the required space is 
increased by an amount of the buffer size ns, thus the space 
complexity is O(np + ns) in this case. 

6. WINDOW EVALUATION 
This section discusses a method for evaluating sliding windows 
explicitly. More specifically, it is about decision of which window 
extents can be produced from the tuples maintained in the record 
store when given the estimated punctuations. In the section, we 
first present a condition for explicit processing, and then discuss 
some issues required for the processing. 

Generally, a window extent can be presented from the window 
operator when the minimum timestamp of the extent is larger than 
the given punctuation. For example, given RANGE of n and 
SLIDE of s, i-th window extent can be described as (6.1), and it 
can be presented when the condition (6.2) is satisfied with the 
given punctuation τp. In the below, R is a set of tuples, r a tuple in 
the R and ts a timestamp of the tuple. 

 extent(i) = { r ∈ R | (i+1)*s –  n ≤ r.ts < (i+1)*s } … (6.1) 

 τp ≤ (i+1)*s –  n  … (6.2) 

In order to process window extents consistently based on the 
condition (6.2), the punctuations has to be monotonously 
increased. Otherwise, same extents can be produced multiple 
times or dangling tuples, which are not included in any extents, 
are occurred, since window operators usually ignore out-of-
ordered tuples having smaller timestamps than the “latest” 
punctuation. This issue can be easily resolved by sending the 

Figure 5. An algorithm for estimating punctuations 
using our adaptive measure 

Adaptive (tuple r) 

1. VSeq(np)  t and τ of r;  

2. If (Ready(VSeq)==true) { 

3. µ, σ and θ  VSeq(np); 

4. np  Eqn7(c, σ, θ); 

5. τp  Eqn8(t, np, θ); 

6. VSeq  VSeq(np); 

7.} 

8. return τp; 



punctuations in a monotonic way. That is, if the latest punctuation 
is smaller than the previous one, the disorder controller just sends 
the previous one. 

In our approach, window extents can be presented only if the 
condition (6.2) is satisfied. It is independent of the tuple arrivals. 
If there is no disorder, it is natural to suppose that each extent can 
be produced regularly based on the tuple arrivals or sliding 
intervals. However, if input tuples are out-of-ordered, it is hard to 
produce the extents regularly because some latency is required to 
accumulate the out-of-ordered tuples and sort them. 

Our window operators insert a special type of tuple called sync 
tuple to the end of every window extents. A sync tuple denotes the 
boundary of each window extent, so that other operators can 
recognize each extent with it. The sync tuple can also be used to 
produce meaningful results when joining multiple streams. To 
illustrate the usage, suppose a query to decide whether to pay a 
toll to vehicles in a highway according to its traffic condition. 
Assume that the highway is congested if an average speed is less 
than 40 mph, then vehicles in the highway pay a toll. Let each 
vehicle have a sensor that relays its speed information every 30 
seconds. Figure 6 shows a simplified plan tree for this query, 
where each oval denotes an operator in the tree. In the figure, 
OP_SRC denotes an operator to store input tuples, OP_WIN a 
sliding window operator, OP_AVG an aggregate operator 
calculating averages, and OP_JOIN a join operator. 

In Figure 6, an upper part of the query tree is to get active 
vehicles in the highway by maintaining tuples of the latest 30 
seconds, and the lower part checks the traffic condition of the 
highway. Thus, by joining these two streams, we can decide 
whether to pay a toll to vehicles. However, if the two streams are 
not synchronized, that means only one of the two streams is 
continuously processed, undesirable situations can happen. For 
example, the query can pay a toll to vehicles although the traffic 
condition is not congested. 

7. EXPERIMENTAL RESULTS 
This section presents experimental results of our estimation 
measure in terms of accuracy and stability. For this purpose, we 
compared our measure with the existing approach where the 
measure reflects the maximum difference of latencies for 
estimating punctuations [12]. We conducted experiments in two 
ways: 1) The first experiment compares drop ratios of each 
measure in terms of accuracy, and 2) The second experiment 
observes how significantly each measure is affected by 
exceptional cases in terms of stability. 

In order to conduct experiments, we implemented a window 

operator as proposed in the paper and connected it to TinyDB [19] 
for data generation. We varied the configuration of TinyDB to get 
data from 16 to 20 sensors in every second, and collected a 
number of data sets for each case. Among the data sets, we finally 
selected 20 data sets in which network latencies follow a normal 
distribution, since our estimation measure is derived based on 
such an assumption as stated in Section 5. 

Figure 7 compares experimental results from both measures in 
terms of three parameters: buffer size, latency and drop ratio. The 
first denotes an average size of the buffers in the window operator, 
and the second is an average waiting time of tuples in the buffers. 
The third means a resulting ratio of tuple drops per total number 
of input tuples. In the bottom line of the figure, average values of 
each column are presented.  

As our experimental results, our measure shows a resulting drop 
ratio of 0.51% when the DRATIO is given to 1% in a query 
specification, while the existing measure shows a ratio of 1.10%. 
In terms of buffer sizes and the latencies, the existing measure 
shows a smaller size than our measure, but the differences are not 
significant. 

One notable thing from the results is that it is hard to use the 
existing measure in applications that require strict criteria about 
accuracy of query results. For example, consider an application 
that only allows query results having tuple drops less than 1%. In 
case of the existing measure, we observed 13 times of violation 
that exceeds a drop ratio of 1% during the experiments. Moreover, 
in the measure, there is no way to control the tuple drops that 
makes the ratio be lower. 

In order to test stability of both measures, we placed a number of 
tuples having a large size of disorder in the early stage of the data 
sets, and increased the size to observe relationships with the 
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Figure 6. A simplified query tree for paying a toll according to traffic conditions 

Figure 7. Experimental results from the existing 
measure and our measure 



buffer sizes or the average waiting times. Figure 8 shows results 
from the experiments. As shown in the figure, the existing 
measure has a close relationship with the disorder sizes of the 
early stage, while our measure is not affected by the exceptional 
cases. 

There have been also proposed an estimation measure to use an 
average value of the maximum disorder to resolve problems from 
the lack of adaptivity in the existing approaches [12]. However, 
we observed that the resulting drop ratios are increased to more 
than 3% in the measure, while it is not affected by the exceptional 
cases so much. Therefore, it is also hard to use such a measure in 
the applications that require strict accuracy. 

8. CONCLUSION 
This paper presents a structure and method for evaluating sliding 
windows efficiently. The proposed structure consists of the record 
store and the disorder controller. The record store maintains input 
tuples in an increasing order and uses a 2-level index to place the 
tuples in a constant time. The disorder controller estimates 
punctuations to decide a point of time to produce window extents 
from the tuples in the record store. The window structure and its 
behavior can be described in a query specification using an SQL-
like language. For this purpose, we have introduced a few optional 
parameters such as SLACK, DRATIO and BSIZE. Based on the 
parameters given in the specification, run-time estimation is 
conducted using our proposed measure which is derived 
theoretically from the distributions of tuple generation intervals 
and network latencies. To verify adaptivity of our method based 
on the proposed measure, we have compared it with an existing 
method in terms of accuracy and stability and have shown that our 
method works better than the one proposed earlier.  

Our estimation measure can be extended to cover various causes 
of disorder in data streams such as merging unsynchronized 
streams or data prioritization. We are planning to address these 
issues to make our method more scalable and flexible. 

9. REFERENCES 
[1] Douglas Terry, David Goldberg, David Nichols, and Brian 

Oki, Continuous Queries over Append-Only Databases. 
ACM SIGMOD, 1992. 

[2] Samuel R. Madden, Mehul A. Shah, Joseph M. Hellerstein 
and Vijayshankar Raman, Continuously Adaptive Continuous 

Queries over Streams. ACM SIGMOD Conference, Madison, 
WI, June 2002 

[3] Peter A. Tucker, David Maier, Time Sheard, Leonidas 
Fegaras, Exploiting Punctuation Semantics in Continuous 
Data Streams. IEEE Transactions on Knowledge and Data 
Engineering, May/June 2003. 

[4] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, Peter 
A. Tucker, Semantics and Evaluation Techniques for 
Window Aggregates in Data Streams. ACM SIGMOD 2005,  

[5] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, Peter 
A. Tucker, No Pane, No Gain: Efficient Evaluation of 
Sliding Window Aggregates over Data Streams. SIGMOD 
Record, Vol 34, No. 1, March 2005. 

[6] S. Babu and J. Widom, Continuous Queries over Data 
Streams. ACM SIGMOD Record, Sep. 2001. 

[7] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, 
Models and Issues in Data Stream Systems. Invited paper in 
Proc. of the 2002 ACM Symp. on Principles of Database 
Systems (PODS 2002), June 2002. 

[8] Arvind Arasu et al, STREAM: The Stanford Data Stream 
Management System. IEEE Data Engineering Bulletin, Vol. 
26 No. 1, March 2003. 

[9] Rajeev Motwani et al, Query Proessing, Resource 
Management, and Approximation in a Data Stream 
Management System. CIDR 2003, Jan. 2003. 

[10] A. Arasu, S. Babu and J. Widom, The CQL Continuous 
Query Language: Semantic Foundations and Query 
Execution. Stanford University Technical Report, Oct. 2003. 

[11] S. Babu, U. Srivastava and J. Widom, Exploiting k-
Constraints to Reduce Memory Overhead in Continuous 
Queries over Data Streams. ACM TODS, Sep. 2004. 

[12] U. Srivastava and J. Widom. Flexible Time Management in 
Data Stream Systems. ACM PODS 2004, June 2004. 

[13] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. 
Convey, S. Lee, M. Stonebraker, N. Tatbul, S. Zdonik. 
Aurora: A New Model and Architecture for Data Stream 
Management. VLDB Journal (12)2: 120-139, August 2003. 

[14] D. Abadi at al, The Design of the Borealis Stream Process-
ing Engine. CIDR 2005, Asilomar, CA, January 2005. 

Figure 8: Relationship between disorder sizes of an early stage and  
(a) buffer sizes and (b) average waiting times 

http://www.cs.berkeley.edu/~madden
http://www.cs.berkeley.edu/~mashah
http://db.cs.berkeley.edu/jmh
http://www.cs.berkeley.edu/~rshankar


[15] Sirish Chandrasekaran et al, TelegraphCQ: Continuous 
Dataflow Processing for an Uncertain World. CIDR 2003. 

[16] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A 
scalable continuous query system for internet databases. 
ACM SIGMOD pages 379–390, May 2000. 

[17] Sujoe Bose and Leonidas Fegaras, Data Stream Management 
for Historical XML Data, ACM SIGMOD, June 2004. 

[18] Dimitry P. Bertsekas and John N. Tsitsiklis, Introduction to 
Probability: International Edition, Athena Scientific, 
Belmont, Massachusetts, 2002. 

[19] TinyDB: http://www.tinyos.net. 

http://www.cs.berkeley.edu/~sirish
http://www.tinyos.net/

	INTRODUCTION
	RELATED WORK
	WINDOW OPERATORS
	QUERY SPECIFICATIONS
	ADAPTIVE ESTIMATION
	Preliminaries
	Derivation of Our Measure
	Algorithm
	WINDOW EVALUATION
	EXPERIMENTAL RESULTS
	CONCLUSION
	REFERENCES

