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Abstract 
Developing software f o r  distributed Computing systems 
is challenging due t o  lack of effective software develop- 
ment methodologies and iools. In particular, because 
many errors in ihe source code can be traced to  the er- 
rors in the requiremenis specification, it i s  especially im- 
portant to  have effeciive verification techniques f o r  the 
requiremenis specification. In this paper, an approach 
io verificaiion of objeci-oriented requiremenis specifica- 
tion (OORS) in software development for distribuied 
compuiing systems is presenied. In our approach, ihe 
requirements specification generated by object-oriented 
analysis i s  described using a formal specification lan- 
guage, which i s  transformed into an informaiion tree. 
Then, the completeness and consistency of the require- 
ments specification ezpressed in terms of the informa- 
lion tree i s  verified b y  comparing it with the original 
requiremenis staiement. 
Keywords: distributed computing sysiems, object- 
oriented requirements verification, object-oriented soft- 
ware development, requiremenis verification. 

1 Introduction 
As VLSI and communication technologies advance, dis- 
tributed computing systems become more cost effective 
for various applications. Developing software for dis- 
tributed computing systems is more challenging than 
the centralized computing systems due to the addi- 
tional complications of interprocessor communication, 
synchronization, etc.[l, 2 Object-oriented software de- 

it is more understandable to consider a software sys- 
tem as a set of cooperating objects and the concept 
of classes and objects and the organization of objects 
naturally reflect the structure of software systems, es- 
pecially for distributed computing applications. Object- 
oriented analysis (OOA) [6 - 81 is the process of enerat- 
ing object-oriented requirements specification fOORS) 
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velopment [3 - 51 is rapi d ly gaining popularity because 

*This work is supported under the collaborative agreement 

t Formerly with Computer and Information Sciences Depart- 

from the requirements statements in a natural language 
to support object-oriented software development. Since 
distributed computing systems are used in a wide vari- 
ety of critical applications, the development of reliable 
distributed computin systems has become a very im- 
portant problem [4, 5f. Verification is an essential part 
in the overall software life cycle. It is closely tied to 
the individual steps in the software development. The 
verification executed in each phase of the software de- 
velopment must assure that the software requirements 
specification is implemented in the design expressed in 
the software design description and further in the code. 
This should include compliance with any standards or 
codes of practice which have been adopted [9 The 

ware behaves in accordance with its requirements spec- 
ification. Considering that many errors found in the 
source code stem from inconsistent or incomplete re- 
quirements specification, the requirements verification 
is a very important part in developing reliable software 
for distributed computing environment. 

Although much research in the requirements verifica- 
tion has been done [lo - 131, the verification of OOES 
for distributed computing systems has not been stud- 
ied. In order to realize the full potential of object- 
oriented software development, we need to develop an 
effective verification approach for OORS. In this paper, 
we will present an approach to verification of the OORS 
in software development for distributed computing sys- 
tems. In our approach, we transform OORS into formal 
requirements specification with a graphical representa- 
tion expressed in terms of an information tree, and then 
check its completeness and consistency with the origi- 
nal requirements statements. We will illustrate our a p  
proach using an Automated Teller Machine (ATM) ex- 
ample. 

2 Overview of our approach 
In our approach, the verification of requirements specifi- 
cation is done by checking the completeness and consis- 
tency between the requirements statements in a natural 
language and the OORS, which is expressed in terms of 
the object model [SI and dynamic model [SI generated 

overall verification process determines whether t k e soft- 
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Figure 1: Verification approach using information tree 

by OOA. To do so, we transform the OORS into a for- 
mal specification using a formal specification langua e, 
which is then transformed to a graphic form called t fe  
information tree, and then verify the completeness and 
consistency of the requirements specification by com- 
paring the information in the information tree with the 
given requirements statements in the natural language. 
Our overall approach can be depicted as shown in Fig- 
ure 1. 

The input of our approach is 1) OORS expressed in 
terms of the object model and dynamic model, and 2) 
the requirements statements in the natural language 
given by the client. The object model is the static 
model which specifies the objects, classes, and their 
various relationships. It is represented by the object 
diagrams with classes and their structure which are de- 
rived from the given requirements statements and d e  
main knowledge. It can be generated by identifying ob- 
ject classes, associations between classes, attributes and 
inheritance. The dynamic model specifies class states, 
state transitions, class behavior and objects interaction. 
The dynamic model is represented graphically with the 
state diagrams. Each state diagram shows the state 
and event sequences in a system for one class of ob- 
jects. Each model describes one aspect of the system, 
but contains references to the other models. The object 
model describes the data structure that the dynamic 
model operates on. The operations in the object model 
correspond to events in the dynamic model. The dy- 
namic model describes the control structure of objects. 
It shows which decisions depend on object values and 
which actions change object values. 

The goal of our approach is to identify the incon- 
sistency and/or incompleteness between the OORS and 
the requirements statements, if any. The requirements 
statements are high-level description of a software s y s  
tem in a natural language. The OORS describes a soft- 

ware system’s external behavior - what the system will 
interact with its outside world. During the OOA, we ex- 
pand the OORS using the domain knowledge and ignore 
redundant or unnecessary information from the given 
requirements statements. There may exist some differ- 
ences between requirements statements and OORS be- 
cause these are at different levels of details in specifying 
the requirements of the system. Thus, such differences 
should be identified and their effects on the system are 
evaluated during the verification of OORS. Our verifi- 
cation approach will identify the missing information in 
the OORS which may be deleted as unnecessary infor- 
mation and the information in the OORS which is not 
specified in the requirements statements. Such informa- 
tion may be created from the domain knowledge or as 
a result of mistakes or features introduced during the 
OOA. 

Our verification approach can be summarized as fol- 
lows: 

Step 1 Transform the derived OORS into a formal 
requirements specification described by a formal 
specification language. 

Step 2 Build an information tree from the formal spec- 
ification obtained in Step 1. 

Step 3 Apply the top-down and bottom-up approaches 
to check the completeness and consistency between 
requirements statements and OORS. 

3 Formal requirements specification 
The formal specification language to describe OORS 
must have the following characteristics: 

0 It supports an abstract data type. That is, a class 
represents an abstract data type. 

0 It supports the inheritance mechanism. In order to 
fully support an object-orientation, it can specify 
the inheritance relationship among classes. It al- 
lows sin@e and multiple inheritances. For instance, 
if we write 

class spec C is . . . inherits D . 
we mean the operation “add all features of D to the 
features of C”. These features comprise attributes 
and methods. 

0 The attributes of a class are generic with their given 
types as parameters. That means that a class can 
serve as a template for other classes, in which the 
template may be parameterized by other classes, 
objects, and/or methods. A eneric class must be 
instantiated (its parameters fibed in) before objects 
are created. The attribute consists of constants, 
variables and their types. Attributes also are rep- 
resented with constraints which restrict the value 
or the range of that attribute. 

0 The specification of input and output parameters 
for each method includes local variables as well as 
class variables. 
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m : S x  I - S x O  
S: class variable ( representing class state ) 

The appropriate output may not be just a function 
of the input; it may also be a function of the current 
state of the class. In other words, the method must 
establish a complete mapping S x Z - S x 0. 

The formal specification language we use for describ- 
ing OORS is an extension of that by Breu [14]. In 
order to support parameterized classes, we extend the 
attribute part in [14] with genericity features. The 
specification of input and output parameters for each 
method includes class variable to represent the class 
state. It combines algebraic specifications and object- 
oriented specifications such as classes. 

The OORS Spec[Sys] of a software system Sys can 
be described by the specification Spec[Ci] of classes 
Ci, i = 1,2,  -, n. Let a software system Sys consist 
ofclasses Cj,i= 1 , 2 , . - . , n .  We have 

Spec[Sys] = Spec[Cl , C2, . . . , Cn] 

A class specification Spec[Ci] is defined as follows: 

= Spec[Cl] + Spec[Cz] + . . . + Spec[C,] 

class spec Ci is 
inherits 11,  I2, . . . ,Zl 
attribute A I ,  A2, . . . , A, 
methods MI,  M2,. . . , Mp 
axioms A q ,  Az2, . . . , Az, 

end class spec 

where 

Ci, 1 5 i 5 n represents the name of a class. 
Zi, 1 5 i 5 I represents the name of a superclass. 
Ai, 1 5 i 5 m represents the class variable and 

its type, the constant, the local variable and 
its type. 

i 5 p represents the name of a method, 
its type of parameters and operation of its 
method. create method is also involved. 

Azi, 1 5 i 5 q represents the axiom based on 
the dynamic behavior showing the events the 
object receives and sends. 

Our formal specification language uses an algebraic 
specification to describe the behavior of the system. The 
axiom parts in the class specification represent the alge- 
braic specification. The algebraic specification describes 
a data type from a purely external viewpoint by stat- 
ing the properties of their operations methods. In other 
words, it does not contain any internal representation. 
In the algebraic specification, an object is specified in 
terms of the relationships among the operations that 
act on that object. The algebraic specification has two 
kinds of operations: constructor operations that create 
or modify entities which are defined in the specification 
and inspection operations that evaluate attributes which 
are defined in the specification. Each axiom may have a 
guard which is a predicate. When the guard is true, the 
axiom is said to be enabled for them. When the guard is 
false, its operation is delayed until it is true. The guard 
is given after the keyword when. 

Mi, 1 

4 nansformation of OORS into formal 
specification 

In this section, we will present the transformation tech- 
nique from the OORS to the formal specification written 
in the formal specification language. The technique can 
be described in the following steps. 

Step 1.1 Specify class name, inheritance, and local 
variables. 
The object model contains classes, including class 
name, attributes and operations in the class, and 
their relationship. The class name can be written 
in the following format. 

class spec Class-name is end class spec 

Inheritance classes are put in the inherits part in 
the formal specification. We convert the attributes 
of each class from the object model into local vari- 
ables of a.class and identify their types. Their types 
are generic. 

Step 1.2 Specify methods of each class and constraints 
of attributes. 
We determine the domain and range types of a 
method, and define constraints of each attribute 
if necessary. 

We define the relationship between every pair of 
methods from the dynamic model, and then make 
axioms to represent all the sequences of methods 
of a system that are concerned with time. That is, 
all the sequences of events that occur during the 
execution of a system are represented. 

Step 1.3 Define axioms. 

5 Building the information tree 
We build an information tree from the formal specifi- 
cation written in the formal specification language. We 
can explore all information in OORS by traversing the 
information tree. However, the current notations used 
in the information tree does not represent all dynamic 
behavior, most of which come from the domain knowl- 
edge. 

The root of the tree represents the system. The sys- 
tem consists of classes and each class has functions. 
Each function has attributes and constraints. A path in 
the information tree starts from the root node and tra- 
verses the tree through the class, function, attribute and 
constraint nodes. A relationship among classes repre- 
sents a physical or conceptual connection among classes. 
The relationships among classes in the information tree 
are represented by dashed lines, that is, the invocation 
of a function in another class is represented by a dashed 
arrow line from the invoking class to the invoked class. 
A typical structure of an information tree is shown in 
Figure 2. 

The information tree can be built as follows. 

Step 2.1 Identify classes and their communication re- 
lationship from the formal specification. Classes 
are identified from the class name in the formal re- 
quirements specification. We can identify the com- 
munication among classes from the method invoca- 
tion of a class to other classes. 
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Figure 2: The structure of an information tree 

Step 2.2 Identify the functions for each class from the 
methods part of the formal specification. Functions 
are “what” of a product, describing what the prod- 
uct is to accomplish. We capture all functions and 
understand those functions and make them children 
of the class in the information tree. 

Step 2.3 Identify the attributes of each function from 
the attribute part in the formal specification. The 
attributes are characteristics which are required by 
the user or the client, and are data values held 
by each object. They are represented as the 10- 
cal variables or as the formal parameters of a func- 
tion. There may be a relationship between differ- 
ent attributes. Thus, different attributes may be 
interrelated and dependent. The attributes of each 
function are attributes of the entire software sys- 
tem and the same attribute may qualify more than 
one function. 

Step 2.4 Identify the constraints of an attribute if 
exist. We identify the constraints of attributes 
from the attribute part in the formal specifica- 
tion. The constraints of an attribute appear be- 
tween the parenthesis following an attribute vari- 
able in the formal specification. Constraints repre- 
sent mandatory or boundary conditions placed on 
the attribute. The constraints of an attribute must 
be satisfied in the software development. 

6 Checking the completeness and con- 
sistency of the requirements specifi- 
cation 

In this section, we will discuss how to apply the t o p  
down and bottom-up approaches to verify the complete- 
ness and consistency between the given requirements 
statements and the OORS. The OORS is represented 

as an information tree with two kinds of information: 
operations in the class and relationships among classes. 

Step 3.1 Top-down approach 
For each statement in the original requirements 
statements, 

Step 3.1.1 Identify the statement either as an op- 
eration statement or a relationship statement. 

Step 3.1.2 Find the component in the informa- 
tion tree corresponding to each requirements 
statement. For an operation statement, we 
find a path starting from the root of the infor- 
mation tree and search for the corresponding 
class, function, attribute and constraint. For 
a relationship statement, we search for the re- 
lationship among classes represented by the 
dashed lines among the class nodes. 

Step 3.1.3 Check for consistency and complete- 
ness. We compare the given requirements 
statement with the information represented by 
its corresponding path or relationship for con- 
sistency. If we do not find the correspond- 
ing path in the information tree, then we con- 
clude that there is a missing function in the 
OORS. If we do not find the corresponding 
relationship among classes in the information 
tree, then we conclude that there is a miss- 
ing relationship among classes in the OORS. If 
we find a path or relationship in the informa- 
tion tree, but it is not equivalent to the given 
statement, then we find an inconsistency. We 
also verify the completeness by repeating the 
above steps for all statements in the require- 
ments statements. 

Step 3.2 Bottom-up approach. 

Step 3.2.1 Construct the statement or the enu- 
meration of the words representing a path 
from the root to leaf node or a relationship 
among classes in the information tree. When 
we construct the statement for a path from 
the root to a leaf node, the root node rep- 
resents the software system we develop, the 
class node can be a subject, the function can 
be a verb, the attribute can be a noun and 
the constraint can be an adjective or adverb. 
However, sometimes we cannot make a state- 
ment in English, but may still make an enu- 
meration of the words from the class name, 
function name, attribute name and constraint 
name. 

S t e p  3.2.2 Check for consistency and complete- 
ness. We search for a statement in the original 
requirements statements corresponding to the 
statement made in Step 3,2.1. If we do not 
find the equivalent statement in the require- 
ments statements, we determine whether this 
information is from the domain knowledge by 
checking against the domain knowledge added 
during OOA. Otherwise, we have an inconsis- 
tent error in OORS. We repeat the above steps 
for all paths and relationships among classes 
in the information tree to verify the complete- 
ness of the 0 0 s .  
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Figure 3: The object diagram for the ATM system 

7 An example: an automated teller ma- 
chine (ATM) system 

In this section, we will use a simplified ATM system as 
an example to illustrate our verification approach. Our 
approach starts from the given requirements statements 
and the OORS expressed in terms of the object model 
and dynamic model enerated by OOA. We will use the 
OOA approach devefoped by Rumbaugh et a1 [SI. 

The requirements statement of the ATM system is 
given as follows: 
Develop the software t o  support a computerized banking 
system with automatic teller machines (ATMs) to be 
shared by a consortium of banks. Each bank has i ts  own 
computer to  maintain i ts  accounts and make updates to  
accounts. A T M s  communicate with a central computer 
of a consortium. A n  A T M  accepts a bank card, interacts 
with the user, communicates with the central computer 
to  process transactions, and/or dispenses cash. 

The object model shows the static structure of the 
anticipated software system and organizes it into work- 
able pieces. It also describes the object classes and the 
relationship among them. The object diagram of the 
ATM system is shown in Figure 3. The dynamic model 
shows the timedependent behavior of the system and its 
objects. It is implemented by preparing a state diagram 
for each object class with dynamic behavior showing the 
events the object receives and sends. For example, the 
state transition diagram of the class A T M  is shown in 
Figure 4. Once we have the object model and dynamic 
model, we show how to apply our verification approach 
by the following steps. 
Step 1: Transform OORS into formal specifica- 
tion 

The first step of our verification approach is to trans- 
form the OORS into the corresponding formal specifi- 
cation. The following shows the transformation for the 
class A T M .  
Step 1.1 Specify the class name, inheritance, and local 
variables as follows: 

attribute 
cash: cash-type 
transactionsuccess: boolean 

end class spec 

Step 1.2 Specify the methods of each class and the 
constraints of local variables. For the class ATM, we 
have 

class spec ATM is 
at tribute 

cash: cashfype (5 200) 
transactionsuccess: boolean 

request-password ( ATM x card 4 ATM ) 
verifyaccount ( ATM x password + ATM ) 
requestkind ( ATM + ATM ) 
request-amount ( ATM x kind -+ ATM ) 
process-transaction ( ATM x amount 

dispense-cash ( ATM x transactionsuccess 

eject-card ( ATM -+ ATM x card ) 
displaymainscreen ( ATM -+ ATM ) 

method 

+ ATM x transactionsuccess ) 

-+ ATM x cash ) 

end class spec 

class spec ATM is 
Step 1.3 Define the axioms for each class. For the class 
A T M ,  we have 
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Figure 5:  The information tree after adding class infor- 
mation (step 2.1) 

Figure 6: The information tree after identifying func- 
tions in each class (step 2.2) 

class spec ATM is 
at tribute 

cash: cash-type (5 200) 
transactionsuccess: boolean 

request-password ( ATM x card -+ ATM ) 
verifyaccount ( ATM x password + ATM ) 
requestlind ( ATM + ATM ) 
request-amount ( ATM x kind + ATM ) 
process-transaction ( ATM x amount 

dispense-cash ( ATM x transactionsuccess 

eject-card ( ATM + ATM x card ) 
displaymainscreen ( ATM + ATM ) 

request-password ( ATM, insert-card(User) ) 
verifyaccount ( ATM, enter-password(User) ) 
requestkind ( ATM, account-ok(Consortium) ) 
request-amount ( ATM, enter-kind(User) ) 
process-transaction ( ATM, enter-amount(User) ) 
dispensemoney ( ATM, 

eject-card ( ATM ) 
displaymainscreen ( ATM ) 

method 

4 ATM x transactionsuccess ) 

+ ATM x cash ) 

axioms 

transactionsucceed(Consortium) ) 

end class spec 

Step 2: Building the information tree 
Next, we build an information tree from the formal 

specification. When we build the information tree, we 
add information such as object classes, functions for 
each class, attributes of a function and constraints for 
attributes as sequences. The information tree after in- 
cluding such information for the object classes is shown 
in Figure 5 ,  and after including the information for the 
function in each class is shown in Figure 6. We add the 
information for the attributes of each function and con- 
straints for the attributes if any as shown in Figure 7. 
Step 3: Checking the completeness and consis- 
tency 

For each statement in the given requirements state- 
ments, we apply the topdown approach. For instance, 
ATM dispenses cash. 

Step 3.1.1 This statement is classified as an operation 
statement. 

'I \ 

Figure 7: The information tree for the ATM syst #em 

Step 3.1.2 The corresponding path of this statement 
in the information tree is identified by selecting 
nodes such as ATM, dispense-cash, cash and 5 200 
as shown with arrows in Figure 7. 

Step 3.1.3 We compare this path and the statement 
for the consistency. As a result, we find an incon- 
sistency, 5 200, in the OORS 

We apply the bottom-up approach as follows: 
Consider the path in the information tree, ATM, dis- 

pense-cash, cash, and less than o r  equal t o  $200, as an 
example. 

Step 3.2.1 We make the statement or the enumeration 
of words for that path as follows: 
ATM dispenses cash (less than or equal to $200). 

Step 3.2.2 We search a statement in the require- 
ments statements matched with the statement rep- 
resented by that path. We find the statement in 
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ori inal requirements statement, “ATM dispenses 
cas%”. We determine that less than o r  equal to  
$200 is from the domain knowledge or a mistake 
made during OOA. Comparing it with the domain 
knowledge added during OOA, we find that “less 
than or equal to $200” IS from the domain knowl- 
edge. 

8 Discussions 
We have presented an approach to object-oriented re- 
quirements verification in software development for dis- 
tributed computing systems. In our approach, we ver- 
ify the completeness and consistency between the origi- 
nal requirements statements and OORS. By represent- 
ing the OORS as an information tree, it is very con- 
venient for the software developer to understand and 
check the requirements specification, and it is easy to 
visualize the structure of the software system under de- 
velopment. Our approach can also be automated be- 
cause we can systematically compare the requirements 
statements with the OORS through the steps in our ap- 
proach. The software tools and environment to support 
our approach, such as automatically transforming the 
OORS to the formal specification and graphically rep- 
resentin the information tree, will be developed in the 
future afong with an interactive software development 
environment. 

Currently, we assume that the requirements state- 
ments are unambiguous. Ambiguities in the require- 
ments statements may lead to different interpretations 
of the software system, thus making the verification 
more difficult. Further research is needed to deal with 
the verification of requirements statements containing 
ambiguities. 

The current notations used in the information tree 
can be used to represent the simple relationship among 
the nodes in the information tree such as an operation 
with single attribute in a class and communication re- 
lationships among classes, and does not describe all the 
dynamic behavior, most of which come from the d e  
main knowledge. The information tree can be extended 
to represent more complex control information such as 
and and or relationship among the nodes in the informa- 
tion tree so that our approach can also represent com- 
plex software systems and describe all information in 
OORS, especially the dynamic behavior of the system 
. In addition, by extending the information tree with 
hierarchical structure, our approach can be applied to 
the requirements verification of large-scale software for 
distributed computing systems. 
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