
An Approach to Object-Oriented Requirements Verification in
Software Development for Distributed Computing Systems*

Stephen S. Yaut
Department of Computer Science and Engineering

Arizona State University
Tempe, AZ 85287-5406, USA

Doo-Hwan Bae and Keunhyuk Yeom
Computer and Information Sciences Department

University of Florida
Gainesville, FL 32611-6120, USA

Abstract
Developing software f o r distributed Computing systems
is challenging due t o lack of effective software develop-
ment methodologies and iools. In particular, because
many errors in ihe source code can be traced to the er-
rors in the requiremenis specification, it i s especially im-
portant to have effeciive verification techniques f o r the
requiremenis specification. In this paper, an approach
io verificaiion of objeci-oriented requiremenis specifica-
tion (OORS) in software development for distribuied
compuiing systems is presenied. In our approach, ihe
requirements specification generated by object-oriented
analysis i s described using a formal specification lan-
guage, which i s transformed into an informaiion tree.
Then, the completeness and consistency of the require-
ments specification ezpressed in terms of the informa-
lion tree i s verified b y comparing it with the original
requiremenis staiement.
Keywords: distributed computing sysiems, object-
oriented requirements verification, object-oriented soft-
ware development, requiremenis verification.

1 Introduction
As VLSI and communication technologies advance, dis-
tributed computing systems become more cost effective
for various applications. Developing software for dis-
tributed computing systems is more challenging than
the centralized computing systems due to the addi-
tional complications of interprocessor communication,
synchronization, etc.[l, 2 Object-oriented software de-

it is more understandable to consider a software sys-
tem as a set of cooperating objects and the concept
of classes and objects and the organization of objects
naturally reflect the structure of software systems, es-
pecially for distributed computing applications. Object-
oriented analysis (OOA) [6 - 81 is the process of enerat-
ing object-oriented requirements specification fOORS)

between the University of Florida and Hitachi, Ltd.

ment, University of Florida, Gainesville, FL 32611-6120

velopment [3 - 51 is rapi d ly gaining popularity because

*This work is supported under the collaborative agreement

t Formerly with Computer and Information Sciences Depart-

from the requirements statements in a natural language
to support object-oriented software development. Since
distributed computing systems are used in a wide vari-
ety of critical applications, the development of reliable
distributed computin systems has become a very im-
portant problem [4, 5f. Verification is an essential part
in the overall software life cycle. It is closely tied to
the individual steps in the software development. The
verification executed in each phase of the software de-
velopment must assure that the software requirements
specification is implemented in the design expressed in
the software design description and further in the code.
This should include compliance with any standards or
codes of practice which have been adopted [9 The

ware behaves in accordance with its requirements spec-
ification. Considering that many errors found in the
source code stem from inconsistent or incomplete re-
quirements specification, the requirements verification
is a very important part in developing reliable software
for distributed computing environment.

Although much research in the requirements verifica-
tion has been done [lo - 131, the verification of OOES
for distributed computing systems has not been stud-
ied. In order to realize the full potential of object-
oriented software development, we need to develop an
effective verification approach for OORS. In this paper,
we will present an approach to verification of the OORS
in software development for distributed computing sys-
tems. In our approach, we transform OORS into formal
requirements specification with a graphical representa-
tion expressed in terms of an information tree, and then
check its completeness and consistency with the origi-
nal requirements statements. We will illustrate our a p
proach using an Automated Teller Machine (ATM) ex-
ample.

2 Overview of our approach
In our approach, the verification of requirements specifi-
cation is done by checking the completeness and consis-
tency between the requirements statements in a natural
language and the OORS, which is expressed in terms of
the object model [SI and dynamic model [SI generated

overall verification process determines whether t k e soft-

96
0730-3 157194 $04.00 0 1994 IEEE

T
4
I

Figure 1: Verification approach using information tree

by OOA. To do so, we transform the OORS into a for-
mal specification using a formal specification langua e,
which is then transformed to a graphic form called t fe
information tree, and then verify the completeness and
consistency of the requirements specification by com-
paring the information in the information tree with the
given requirements statements in the natural language.
Our overall approach can be depicted as shown in Fig-
ure 1.

The input of our approach is 1) OORS expressed in
terms of the object model and dynamic model, and 2)
the requirements statements in the natural language
given by the client. The object model is the static
model which specifies the objects, classes, and their
various relationships. It is represented by the object
diagrams with classes and their structure which are de-
rived from the given requirements statements and d e
main knowledge. It can be generated by identifying ob-
ject classes, associations between classes, attributes and
inheritance. The dynamic model specifies class states,
state transitions, class behavior and objects interaction.
The dynamic model is represented graphically with the
state diagrams. Each state diagram shows the state
and event sequences in a system for one class of ob-
jects. Each model describes one aspect of the system,
but contains references to the other models. The object
model describes the data structure that the dynamic
model operates on. The operations in the object model
correspond to events in the dynamic model. The dy-
namic model describes the control structure of objects.
It shows which decisions depend on object values and
which actions change object values.

The goal of our approach is to identify the incon-
sistency and/or incompleteness between the OORS and
the requirements statements, if any. The requirements
statements are high-level description of a software s y s
tem in a natural language. The OORS describes a soft-

ware system’s external behavior - what the system will
interact with its outside world. During the OOA, we ex-
pand the OORS using the domain knowledge and ignore
redundant or unnecessary information from the given
requirements statements. There may exist some differ-
ences between requirements statements and OORS be-
cause these are at different levels of details in specifying
the requirements of the system. Thus, such differences
should be identified and their effects on the system are
evaluated during the verification of OORS. Our verifi-
cation approach will identify the missing information in
the OORS which may be deleted as unnecessary infor-
mation and the information in the OORS which is not
specified in the requirements statements. Such informa-
tion may be created from the domain knowledge or as
a result of mistakes or features introduced during the
OOA.

Our verification approach can be summarized as fol-
lows:

Step 1 Transform the derived OORS into a formal
requirements specification described by a formal
specification language.

Step 2 Build an information tree from the formal spec-
ification obtained in Step 1.

Step 3 Apply the top-down and bottom-up approaches
to check the completeness and consistency between
requirements statements and OORS.

3 Formal requirements specification
The formal specification language to describe OORS
must have the following characteristics:

0 It supports an abstract data type. That is, a class
represents an abstract data type.

0 It supports the inheritance mechanism. In order to
fully support an object-orientation, it can specify
the inheritance relationship among classes. It al-
lows sin@e and multiple inheritances. For instance,
if we write

class spec C is . . . inherits D .
we mean the operation “add all features of D to the
features of C”. These features comprise attributes
and methods.

0 The attributes of a class are generic with their given
types as parameters. That means that a class can
serve as a template for other classes, in which the
template may be parameterized by other classes,
objects, and/or methods. A eneric class must be
instantiated (its parameters fibed in) before objects
are created. The attribute consists of constants,
variables and their types. Attributes also are rep-
resented with constraints which restrict the value
or the range of that attribute.

0 The specification of input and output parameters
for each method includes local variables as well as
class variables.

97

m : S x I - S x O
S: class variable (representing class state)

The appropriate output may not be just a function
of the input; it may also be a function of the current
state of the class. In other words, the method must
establish a complete mapping S x Z - S x 0.

The formal specification language we use for describ-
ing OORS is an extension of that by Breu [14]. In
order to support parameterized classes, we extend the
attribute part in [14] with genericity features. The
specification of input and output parameters for each
method includes class variable to represent the class
state. It combines algebraic specifications and object-
oriented specifications such as classes.

The OORS Spec[Sys] of a software system Sys can
be described by the specification Spec[Ci] of classes
Ci, i = 1,2, -, n. Let a software system Sys consist
ofclasses Cj,i= 1 , 2 , . - . , n . We have

Spec[Sys] = Spec[Cl , C2, . . . , Cn]

A class specification Spec[Ci] is defined as follows:

= Spec[Cl] + Spec[Cz] + . . . + Spec[C,]

class spec Ci is
inherits 11, I2, . . . ,Zl
attribute A I , A2, . . . , A,
methods MI, M2,. . . , Mp
axioms A q , Az2, . . . , Az,

end class spec

where

Ci, 1 5 i 5 n represents the name of a class.
Zi, 1 5 i 5 I represents the name of a superclass.
Ai, 1 5 i 5 m represents the class variable and

its type, the constant, the local variable and
its type.

i 5 p represents the name of a method,
its type of parameters and operation of its
method. create method is also involved.

Azi, 1 5 i 5 q represents the axiom based on
the dynamic behavior showing the events the
object receives and sends.

Our formal specification language uses an algebraic
specification to describe the behavior of the system. The
axiom parts in the class specification represent the alge-
braic specification. The algebraic specification describes
a data type from a purely external viewpoint by stat-
ing the properties of their operations methods. In other
words, it does not contain any internal representation.
In the algebraic specification, an object is specified in
terms of the relationships among the operations that
act on that object. The algebraic specification has two
kinds of operations: constructor operations that create
or modify entities which are defined in the specification
and inspection operations that evaluate attributes which
are defined in the specification. Each axiom may have a
guard which is a predicate. When the guard is true, the
axiom is said to be enabled for them. When the guard is
false, its operation is delayed until it is true. The guard
is given after the keyword when.

Mi, 1

4 nansformation of OORS into formal
specification

In this section, we will present the transformation tech-
nique from the OORS to the formal specification written
in the formal specification language. The technique can
be described in the following steps.

Step 1.1 Specify class name, inheritance, and local
variables.
The object model contains classes, including class
name, attributes and operations in the class, and
their relationship. The class name can be written
in the following format.

class spec Class-name is end class spec

Inheritance classes are put in the inherits part in
the formal specification. We convert the attributes
of each class from the object model into local vari-
ables of a.class and identify their types. Their types
are generic.

Step 1.2 Specify methods of each class and constraints
of attributes.
We determine the domain and range types of a
method, and define constraints of each attribute
if necessary.

We define the relationship between every pair of
methods from the dynamic model, and then make
axioms to represent all the sequences of methods
of a system that are concerned with time. That is,
all the sequences of events that occur during the
execution of a system are represented.

Step 1.3 Define axioms.

5 Building the information tree
We build an information tree from the formal specifi-
cation written in the formal specification language. We
can explore all information in OORS by traversing the
information tree. However, the current notations used
in the information tree does not represent all dynamic
behavior, most of which come from the domain knowl-
edge.

The root of the tree represents the system. The sys-
tem consists of classes and each class has functions.
Each function has attributes and constraints. A path in
the information tree starts from the root node and tra-
verses the tree through the class, function, attribute and
constraint nodes. A relationship among classes repre-
sents a physical or conceptual connection among classes.
The relationships among classes in the information tree
are represented by dashed lines, that is, the invocation
of a function in another class is represented by a dashed
arrow line from the invoking class to the invoked class.
A typical structure of an information tree is shown in
Figure 2.

The information tree can be built as follows.

Step 2.1 Identify classes and their communication re-
lationship from the formal specification. Classes
are identified from the class name in the formal re-
quirements specification. We can identify the com-
munication among classes from the method invoca-
tion of a class to other classes.

98

Figure 2: The structure of an information tree

Step 2.2 Identify the functions for each class from the
methods part of the formal specification. Functions
are “what” of a product, describing what the prod-
uct is to accomplish. We capture all functions and
understand those functions and make them children
of the class in the information tree.

Step 2.3 Identify the attributes of each function from
the attribute part in the formal specification. The
attributes are characteristics which are required by
the user or the client, and are data values held
by each object. They are represented as the 10-
cal variables or as the formal parameters of a func-
tion. There may be a relationship between differ-
ent attributes. Thus, different attributes may be
interrelated and dependent. The attributes of each
function are attributes of the entire software sys-
tem and the same attribute may qualify more than
one function.

Step 2.4 Identify the constraints of an attribute if
exist. We identify the constraints of attributes
from the attribute part in the formal specifica-
tion. The constraints of an attribute appear be-
tween the parenthesis following an attribute vari-
able in the formal specification. Constraints repre-
sent mandatory or boundary conditions placed on
the attribute. The constraints of an attribute must
be satisfied in the software development.

6 Checking the completeness and con-
sistency of the requirements specifi-
cation

In this section, we will discuss how to apply the t o p
down and bottom-up approaches to verify the complete-
ness and consistency between the given requirements
statements and the OORS. The OORS is represented

as an information tree with two kinds of information:
operations in the class and relationships among classes.

Step 3.1 Top-down approach
For each statement in the original requirements
statements,

Step 3.1.1 Identify the statement either as an op-
eration statement or a relationship statement.

Step 3.1.2 Find the component in the informa-
tion tree corresponding to each requirements
statement. For an operation statement, we
find a path starting from the root of the infor-
mation tree and search for the corresponding
class, function, attribute and constraint. For
a relationship statement, we search for the re-
lationship among classes represented by the
dashed lines among the class nodes.

Step 3.1.3 Check for consistency and complete-
ness. We compare the given requirements
statement with the information represented by
its corresponding path or relationship for con-
sistency. If we do not find the correspond-
ing path in the information tree, then we con-
clude that there is a missing function in the
OORS. If we do not find the corresponding
relationship among classes in the information
tree, then we conclude that there is a miss-
ing relationship among classes in the OORS. If
we find a path or relationship in the informa-
tion tree, but it is not equivalent to the given
statement, then we find an inconsistency. We
also verify the completeness by repeating the
above steps for all statements in the require-
ments statements.

Step 3.2 Bottom-up approach.

Step 3.2.1 Construct the statement or the enu-
meration of the words representing a path
from the root to leaf node or a relationship
among classes in the information tree. When
we construct the statement for a path from
the root to a leaf node, the root node rep-
resents the software system we develop, the
class node can be a subject, the function can
be a verb, the attribute can be a noun and
the constraint can be an adjective or adverb.
However, sometimes we cannot make a state-
ment in English, but may still make an enu-
meration of the words from the class name,
function name, attribute name and constraint
name.

S t e p 3.2.2 Check for consistency and complete-
ness. We search for a statement in the original
requirements statements corresponding to the
statement made in Step 3,2.1. If we do not
find the equivalent statement in the require-
ments statements, we determine whether this
information is from the domain knowledge by
checking against the domain knowledge added
during OOA. Otherwise, we have an inconsis-
tent error in OORS. We repeat the above steps
for all paths and relationships among classes
in the information tree to verify the complete-
ness of the 0 0 s .

99

7 8 , Issues ,

consists
of

U

Figure 3: The object diagram for the ATM system

7 An example: an automated teller ma-
chine (ATM) system

In this section, we will use a simplified ATM system as
an example to illustrate our verification approach. Our
approach starts from the given requirements statements
and the OORS expressed in terms of the object model
and dynamic model enerated by OOA. We will use the
OOA approach devefoped by Rumbaugh et a1 [SI.

The requirements statement of the ATM system is
given as follows:
Develop the software t o support a computerized banking
system with automatic teller machines (ATMs) to be
shared by a consortium of banks. Each bank has i ts own
computer to maintain i ts accounts and make updates to
accounts. A T M s communicate with a central computer
of a consortium. A n A T M accepts a bank card, interacts
with the user, communicates with the central computer
to process transactions, and/or dispenses cash.

The object model shows the static structure of the
anticipated software system and organizes it into work-
able pieces. It also describes the object classes and the
relationship among them. The object diagram of the
ATM system is shown in Figure 3. The dynamic model
shows the timedependent behavior of the system and its
objects. It is implemented by preparing a state diagram
for each object class with dynamic behavior showing the
events the object receives and sends. For example, the
state transition diagram of the class A T M is shown in
Figure 4. Once we have the object model and dynamic
model, we show how to apply our verification approach
by the following steps.
Step 1: Transform OORS into formal specifica-
tion

The first step of our verification approach is to trans-
form the OORS into the corresponding formal specifi-
cation. The following shows the transformation for the
class A T M .
Step 1.1 Specify the class name, inheritance, and local
variables as follows:

attribute
cash: cash-type
transactionsuccess: boolean

end class spec

Step 1.2 Specify the methods of each class and the
constraints of local variables. For the class ATM, we
have

class spec ATM is
at tribute

cash: cashfype (5 200)
transactionsuccess: boolean

request-password (ATM x card 4 ATM)
verifyaccount (ATM x password + ATM)
requestkind (ATM + ATM)
request-amount (ATM x kind -+ ATM)
process-transaction (ATM x amount

dispense-cash (ATM x transactionsuccess

eject-card (ATM -+ ATM x card)
displaymainscreen (ATM -+ ATM)

method

+ ATM x transactionsuccess)

-+ ATM x cash)

end class spec

class spec ATM is
Step 1.3 Define the axioms for each class. For the class
A T M , we have

100

m System

Figure 5: The information tree after adding class infor-
mation (step 2.1)

Figure 6: The information tree after identifying func-
tions in each class (step 2.2)

class spec ATM is
at tribute

cash: cash-type (5 200)
transactionsuccess: boolean

request-password (ATM x card -+ ATM)
verifyaccount (ATM x password + ATM)
requestlind (ATM + ATM)
request-amount (ATM x kind + ATM)
process-transaction (ATM x amount

dispense-cash (ATM x transactionsuccess

eject-card (ATM + ATM x card)
displaymainscreen (ATM + ATM)

request-password (ATM, insert-card(User))
verifyaccount (ATM, enter-password(User))
requestkind (ATM, account-ok(Consortium))
request-amount (ATM, enter-kind(User))
process-transaction (ATM, enter-amount(User))
dispensemoney (ATM,

eject-card (ATM)
displaymainscreen (ATM)

method

4 ATM x transactionsuccess)

+ ATM x cash)

axioms

transactionsucceed(Consortium))

end class spec

Step 2: Building the information tree
Next, we build an information tree from the formal

specification. When we build the information tree, we
add information such as object classes, functions for
each class, attributes of a function and constraints for
attributes as sequences. The information tree after in-
cluding such information for the object classes is shown
in Figure 5 , and after including the information for the
function in each class is shown in Figure 6. We add the
information for the attributes of each function and con-
straints for the attributes if any as shown in Figure 7.
Step 3: Checking the completeness and consis-
tency

For each statement in the given requirements state-
ments, we apply the topdown approach. For instance,
ATM dispenses cash.

Step 3.1.1 This statement is classified as an operation
statement.

'I \

Figure 7: The information tree for the ATM syst #em

Step 3.1.2 The corresponding path of this statement
in the information tree is identified by selecting
nodes such as ATM, dispense-cash, cash and 5 200
as shown with arrows in Figure 7.

Step 3.1.3 We compare this path and the statement
for the consistency. As a result, we find an incon-
sistency, 5 200, in the OORS

We apply the bottom-up approach as follows:
Consider the path in the information tree, ATM, dis-

pense-cash, cash, and less than o r equal t o $200, as an
example.

Step 3.2.1 We make the statement or the enumeration
of words for that path as follows:
ATM dispenses cash (less than or equal to $200).

Step 3.2.2 We search a statement in the require-
ments statements matched with the statement rep-
resented by that path. We find the statement in

101

ori inal requirements statement, “ATM dispenses
cas%”. We determine that less than o r equal to
$200 is from the domain knowledge or a mistake
made during OOA. Comparing it with the domain
knowledge added during OOA, we find that “less
than or equal to $200” IS from the domain knowl-
edge.

8 Discussions
We have presented an approach to object-oriented re-
quirements verification in software development for dis-
tributed computing systems. In our approach, we ver-
ify the completeness and consistency between the origi-
nal requirements statements and OORS. By represent-
ing the OORS as an information tree, it is very con-
venient for the software developer to understand and
check the requirements specification, and it is easy to
visualize the structure of the software system under de-
velopment. Our approach can also be automated be-
cause we can systematically compare the requirements
statements with the OORS through the steps in our ap-
proach. The software tools and environment to support
our approach, such as automatically transforming the
OORS to the formal specification and graphically rep-
resentin the information tree, will be developed in the
future afong with an interactive software development
environment.

Currently, we assume that the requirements state-
ments are unambiguous. Ambiguities in the require-
ments statements may lead to different interpretations
of the software system, thus making the verification
more difficult. Further research is needed to deal with
the verification of requirements statements containing
ambiguities.

The current notations used in the information tree
can be used to represent the simple relationship among
the nodes in the information tree such as an operation
with single attribute in a class and communication re-
lationships among classes, and does not describe all the
dynamic behavior, most of which come from the d e
main knowledge. The information tree can be extended
to represent more complex control information such as
and and or relationship among the nodes in the informa-
tion tree so that our approach can also represent com-
plex software systems and describe all information in
OORS, especially the dynamic behavior of the system
. In addition, by extending the information tree with
hierarchical structure, our approach can be applied to
the requirements verification of large-scale software for
distributed computing systems.

References
[l] S . S . Yau, X. Jia, and D.-H. Bae, “Trends in Soft-

ware Design for Distributed Computing Systems,”
Proc. Second IEEE Workshop on Future Trends of
Distributed Computing Systems, 1990, pp. 154-160.

[2] S . S. Yau, X. Jia and D.-H. Bae, “Software De-
sign Methods for Distributed Computing Systems,”
Journal of Computer Communications, Vol. 15,
No. 5, May 1992, pp. 213-223.

[3] G. Booch, “Object-Oriented Development,” IEEE
f ians . on Software Engineering, Vol. 12, No. 2,
Feb. 1986, pp. 211-221.

[4] S . S . Yau, and G. -H. Oh, “An Object-Oriented A p
proach to Software Development for Autonomous
Decentralized Systems,’’ Proc. International Sym-
posium on Autonomous Decentralised Systems,
1993, pp. 37-43.

[5] S . S . Yau, D.-H. Bae and M. Chidambaram,
“Object-Oriented Development of Architecture
Transparent Software for Distributed Parallel Sys-
tems,” Journal of Computer Communication, Vol.
16, No. 5, May 1993, pp. 317-326.

[6] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen, Object-Oriented Modeling and
Design, Prentice-Hall, Englewood Cliffs, New Jer-
sey, 1991.

[7] P. Coad and E. Yourdon, Object-Oriented Analysis,
Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

[8] S . Shlaer and S . J. Mellor, Object-Oriented ys-
tems Analysis, Yourdon Press, Englewood Cliffs,
NJ 1988.

[9] W: J. Quirk, Verification and Validation of Real-
Tzme Soflware, Springer-Verlag, Berlin, Heidel-
berg, 1985.

[lo] A. Pnueli, “Applications of Temporal Logic to the
Specification and Verification of Reactive Systems:
A Survey of Current Trends,” in Current l’kends in
Concurrency, ed. Bakker, Roever, Rozenberg, Lec-
ture Notes in Computer Science, Vol. 224, Springer-
Verlag, 1986, pp. 510-584.

111 B. Berthomieu and M. Diaz, “Modeling and Ver-
ification of Time Dependent Systems Using Time
Petri Nets,” IEEE f ians . on Software Engineering,
Vol. 17. No. 3, Mar. 1991, pp. 259-273.

121 R. Gerber and I. Lee, “A Layered Approach to Au-
tomating the Verification of Real-Time Systems,”
IEEE f ians . on Software Engineering, Vol. 18, No.
9, Sep. 1992, pp. 768-784.

131 C. J. Fidge, “Specification and verification of real-
time behaviour using Z and RTL,” Formal Tech-
niques in Real-Time and Fault-Tolerant Systems,
Lecture Notes in Computer Science, Springer-
Verlag, 1991, pp. 393-410.

[14] R. Breu, Algebraic Specification Techniques in Ob-
jecf Oriented Programming Environment, LNCS,
Springer-Verlag, Berlin, Heidelberg, 1991, pp. 65-
111.

102

