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Abstract 

In distributed real-time computing systems for 
complicated applications like command, control, com- 
munications and intelligence, time constraints are se- 
vere and adaptability is required to provide high avail- 
ability and survivability of computing resources. In 
this paper, an object-oriented approach to software 
design for distributed real-time systems is presented. 
In order to support adaptability of the software system 
to a dynamically changing environment , our approach 
supports multi-versions of a method definition. Our 
design approach is illustrated with a hypothetical air- 
base defense simulation system. 

1 Introduction 
Distributed real-time systems in applications like 

command, control, communications and intelligence 
(C3I) require complex distributed systems with many 
interacting software components, heterogeneous pro- 
cessing systems and sharing resources. These systems 
should satisfy not only the functional requirements of 
application software, but also the specified timing con- 
straints on the execution of the software despite faults 
and failures. The requirements of these systems are 
substantially more complex than those of non-real- 
time systems. These systems have a high degree of 
complexity in terms of variety of functions, process- 
ing, storage, and communications hardware. Success- 
ful performance in real-time applications depends on 
satisfying the complex timing properties. Many appli- 
cation environments for real-time systems will be dy- 
namically varying and somewhat unpredictable. For 
example, real-time systems need to be able to con- 
trol, respond to, or interact with external environ- 
mental phenomenon. Such applications require the 
ability to adapt to changes in the environment or the 
external stimuli. Real-time systems must behave in 
a predictable manner. Current real-time systems are 
very expensive to build and runtime behavior is very 
difficult to predict at the design stage. 
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In this paper, we will present an object-oriented 
approach to software design for distributed real-time 
systems. The design approach is based on the object- 
oriented computation model for distributed real-time 
systems so that the real-time issues such as adapt- 
ability and timing constraints can be addressed at  the 
proper stages of the software development life cycle. 
We will illustrate our design approach with a hypo- 
thetical air-base defense simulation example. 

2 Background 
Although the software design for distributed com- 

puting systems has been studied extensively [1]-[6], the 
design techniques for developing distributed real-time 
software systems is still in the infant stage. Current 
real-time software systems seem to be developed in an 
ad hoc fashion or based on experience in application 
specific domains. This complicates the program logic 
and structure. There are various models for real-time 
software systems, such as communicating finite state 
machines, Petri-Nets, real-time extensions of data-flow 
diagrams and temporal logic, but none of these mod- 
els can individually represent all the aspects of a com- 
plex real-time software system. Ward and Mellor [7] 
developed a structured design method for real-time 
systems. DARTS (Design Approach for Real-Time 
Systems) [8, 91 is another structured design method 
for real-time systems. Both approaches are based on 
functional decomposition of software modules. In [lo , 
time systems are presented. In 11 , an object-oriented 

encapsulate the temporal characteristics of adaptable, 
real-time software. However, none of these methods 
fully address the issues of distributed real-time soft- 
ware systems. We need design methodologies that can 
be used to synthesize systems with the specified timing 
properties from the design stage. 

Most of the current design approaches 7,.8, 91 to 

resentation rather than the design process itself by 
adding constructs to specify the timing constraints. 
Moreover, they are not suitable for the design of dis- 
tributed real-time systems for lack of design guide- 
lines. Hence, in addition to the representation mecha- 

object-oriented analysis and desi n method for rea- I 
model is examined for its suita L f  ility to represent and 

real-time software systems focus on the A esign rep- 
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nisms, we need to develop design guidelines for design- 
ers to satisfy the real-time constraints by effectively 
utilizing the available resources. Before we discuss the 
design guidelines of our approach, we will first present 
the computation model of our approach. 

3 The Computation Model of Our Ap- 
proach 

Our computation model is based on object-oriented 
concepts and incorporates the real-time system char- 
acteristics. In this model, the software system is repre- 
sented by a set of objects which encapsulates the data 
and their related operations along with the timing 
constraints. We have developed the Parallel Object- 
Oriented Functional (PROOF computational model I'"1 and a framework for the 2 evelopment of software 
or parallel processing systems [13, 141. In this section, 

we will extend the concepts in PROOF to develop a 
model for developing distributed real-time software. 
We incorporate the concepts of active, passive and 
pseudoactive objects into our model. An active object 
can invoke the methods of other objects. A passive 
object is activated by other objects when its methods 
are invoked. A pseudoactive object can invoke the 
other objects as well as be invoked by other objects. 
Each of the active and pseudoactive objects will have 
a body, which is an expression for a set of method 
invocations. Each object in our model will be persis- 
tent. Each object consists of local data and a set of 
methods. Synchronization among objects is achieved 
by attaching an optional precondition called guard to 
each method. Each guard is a predicate. The ob- 
ject which invokes the method is suspended when the 
attached guard evaluates to be False and is resumed 
when the guard becomes D u e .  The guard attached 
to a method is defined in such a way that it depends 
only on the local state of the object, and hence the in- 
heritance of individual methods will not be hampered 
by the inclusion of the guard. 

Object Modeling for Adaptability 

Adaptability is an important issue in real-time soft- 
ware systems. To support adaptability of the software 
system in a dynamically changing environment, our 
computation model has a feature of supporting multi- 
versions of a method definition. The communication 
in an object-oriented paradigm occurs through well 
defined interfaces via message passing. For an object 
to communicate with another object, the calling ob- 
ject needs only to know the name of the method and 
its parameters. In the conventional approach, each 
method has only one definition. In our approach, al- 
though only one method name is visible through the 
interface, each method can have several different ver- 
sions which are not visible externally. For example, 
consider the following requirement where object 0, 
invokes another object 0, and object 0, may have 
to respond differently according to the state of object 
0,. In the conventional approach, there are at  least 
the following two possible design strategies: 

Figure 1: Multiple method definition. 

object 0. Ob* OP 

Figure 2: Single method definition with multiple ac- 
tions. 

0 Define distinct methods in 0, for each of the dif- 
ferent possible state of 0 as shown in Figure 1. 
Object 0, selects one of the  methods based on 
the state of the object 0,. In this strategy, there 
is large overhead for maintaining the states of the 
other objects as a caller object, say 0,, needs to 
know the state of a called object, say 0,. 

0 Each of the actions to be performed on different 
states is encapsulated in a single method in 0, 
as shown in Figure 2. A particular action from 
this method is selected by using constructs like 
CASE or the IF-THEN-ELSE statements avail- 
able in many high level languages. This strategy 
has the disadvantage that it is not modular and 
reduces the analyzability of the software. This 
strategy may limit concurrent activations of the 
method as the whole data could be locked by an- 
other object. 

In comparison to the above two existing strategies, our 
approach encapsulates the actions for a state into a 
single method called vidual method. Externally, only 
the name of the virtual method is visible, but inter- 
nally, each action is implemented as a single method 
called actual method. The virtual method is thus made 
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Figure 3: Multi-versions definition of a method. 

up of a set of actual methods. This is illustrated in 
Figure 3. The state information is maintained in its 
local data. Depending on the current state of the ob- 
ject, a correct version of the method is selected for 
execution. Thus, the state of the object does not need 
to be known to the invoking objects. 

Our multi-versions method approach will simplify 
the object interface and make the software system 
more readable and easily modifiable. This strategy 
will also enhance the parallel execution of the method 
since only the data that could be modified by the ac- 
tual method is locked. When the state of an object is 
changed, for instance, from a normal state to an urgent 
state due to a breakdown of its neighboring object, 
the object may have to adapt to such a situation. For 
example, the object may have to change its schedul- 
ing strategy to adapt to this state change. Then, for 
each actual method, we can easily associate an ap- 
propriate scheduling strategy, and thus our approach 
can easily improve the adaptability of the real-time 
software at the design phase. This increases the ana- 
lyzability of timing constraints at the high-level design 
stage, provides the designer a basis for the design of 
fault-tolerant software, and increases predictability of 
the real-time software system during the design phase 
since a more accurate behavior of the software system 
under development can be estimated. 

Object Invocation Mechanism 

Communication among the objects is done by mes- 
sage passing. To provide efficient communication for 
various distributed system environments, we consider 
both synchronous and asynchronous object invoca- 
tions. To support low coupling among distributed 
software modules and high predictability of each soft- 
ware module, asynchronous remote object invocation 
mechanism is considered in this model. In asyn- 
chronous remote object method invocation, the invok- 
ing object will not need to wait for the remote ob- 
ject to be ready. One advantage of the asynchronous 
remote object invocation is that it will increase the 
concurrency among the distributed software modules. 

However, it may introduce buffering problems and has 
no big advantage in a single processor environment. 
On the other hand, synchronous remote object inv- 
cation will limit the concurrency, The synchronous re- 
mote object invocation can cause more tightly coupled 
relations among distributed software modules. In our 
model, synchronous object invocations will be used for 
the interaction among local objects and asynchronous 
message passing mechanisms will be used for remote 
object invocations. 

Encapsulation of Timing Constraints in Ob- 
jects 

The time encapsulation mechanism is required to spec- 
ify the timing constraints of the methods of each ob- 
ject for distributed real-time software design. To in- 
corporate the timing constraints in our computation 
model, we consider the following timing attributes: 

0 start-time: starting execution time. 

0 finish-time: finishing execution time. 

0 duration-time: a time interval during which exe- 

0 period: a time interval between successive execu- 

cution is performed. 

tions of a periodic method invocation. 

In addition to an optional guard and expression in 
each method, each method can have one or more op- 
tional timing constraints expression. Encapsulation of 
such timing constraints in each method definition will 
allow early evaluation of schedulability at  the design 
phase, and can improve predictability of the software 
system by specifying the specific actions when the tim- 
ing constraints are violated. 

4 Our Approach 

1 Identify objects and classes. 
2 Determine class interfaces. 
3 Specify dependency and communication relation- 

4 Identify active, passive and pseudo-active objects. 
5 Identify the shared objects. 
6 Identify periodic and aperiodic control threads. 
7 Determine the priority of active and pseudoactive 

8) Check the completeness, consistency and schedula- 
bility of the high-level design. 
9) Establish the class hierarchy. 
10) Determine the body of the active objects and pseu- 
doactive objects. 
11) Design the methods of each object. 

Our approach consists of the following steps: 

s i ips among objects. 

o i jects. 

In Step l), objects are identified by analyzing the 
requirements specification. Objects in the real-time 
systems can be classified into three types: input ob- 
ject, oulpul object and process object. In a typical 
real-time system, the input objects provide data to 



the process objects for monitoring and controlling the 
real-time system. For instance, a temperature sensor 
belongs to the input object. The output objects are 
the objects that receive data from the process objects 
to physically control the system or display data to in- 
teract with the human operator. For instance, the 
temperature monitoring screen belongs to the output 
object. The procesa objects receive sensored data from 
the input objects, manipulate and send the sensored 
data or control signal for controlling the system. 

In Steps 2) and 3), class interfaces are determined 
by identifying public methods, including the inputs 
and outputs, in each object, and then the relation- 
ships among the objects are specified by identifying 
the methods required by each object. 

In Step 4), the objects are classified according to 
their invocation behavior as active, passive and pseu- 
doactive. 

In Step 5 ) ,  the shared objects are identified from 
the communication relationships among the objects 
obtained in Step 3). Once the shared objects are deter- 
mined, they can be further classified into two classes: 
read-only and writable objects. The distinction be- 
tween the read-only objects and the writable objects is 
self-explanatory. Read-only objects can be duplicated 
as many times as desired, but writable objects cannot. 
Since all the access to the data in the writable objects 
needs to be serialized to maintain the consistency of 
the data, the writable objects could be a bottleneck 
to enhancing parallelism. Such writable objects are 
called bottleneck objects. Thus, if possible, the bottle- 
neck objects need to be refined so as to reduce the po- 
tential of simultaneous access to the shared writable 
objects, resulting possible performance improvement 
due to the increase of parallel execution. If such re- 
finement is done, repeat Steps 1) to 4) to make the 
necessary changes accordingly. 

In Step 6), the periodic and aperiodic control 
threads are identified among the control threads. 
Since only the active objects can invoke the methods, 
all the control threads can be identified by identifying 
all the active objects. The periodic control thread is a 
thread in which the methods are invoked periodically. 
Most of sensory processing is periodic. For instance, 
a temperature monitor of a furnace in a steel manu- 
facturing factory, and a radar to track flights. On the 
other hand, the aperiodic control thread is a control 
thread in which the methods are invoked nonperiodi- 
cally. For instance, the fire-power supplier to provide 
more fuel to the furnace when the temperature moni- 
tor detects the temperature below a certain threshold. 
The characteristics of the periodic control threads, 
such as the periods, resource constraints, precedence 
relationships, communication requirements, critical- 
ness, can be known a priori in a static system. Thus, 
in such a static system, the behavior of the objects 
involved in the periodic control threads can be accu- 
rately specified. On the other hand, in a dynamic 
system, such characteristics may not be statically de- 
termined at the design phase. Although it is certain 
that the static systems are inflexible to adjust the sys- 

tem behavior to unpredictable circumstances, many 
real-time systems are static in nature. The identifi- 
cation of the periodic and aperiodic control threads is 
important to evaluate the schedulability of the system. 

In Step 7), the priority of the objects is determined 
according to their importance to the system. In order 
to determine the priority, the major functionalities of 
the software system need to be identified to assign the 
high priority. On the other hand, the objects related 
to minor functionalities are assigned low priority. This 
priority information with periodicity information ob- 
tained in Step 6) can be used to evaluate the schedu- 
lability of the software system at the design stage. 

In Step 8), the completeness and consistency of the 
high-level design are checked against the requirements 
by identifying the possible scenarios of activities and 
examining each scenario. Because each scenario starts 
from the active object and the number of the active 
objects is not big, all the scenarios can be examined. 
The sequence of activities in each scenario must be 
reachable by tracing the behavior of the objects. If 
there is any object behavior which cannot be found in 
any of the possible scenarios, the requirements need to 
be re-analyzed. In addition to checking the complete- 
ness and consistency of the design, the schedulabil- 
ity of the real-time system under development needs 
to be evaluated. Although at this stage of the de- 
velopment, it may not be easy to obtain sufficient 
information to evaluate the schedulabilty. In such 
a case, the schedulability of periodic control threads 
can be checked using existing priority-based schedul- 
ing approaches. Such checking also provides a basis to 
roughly evaluate the schedulability of aperiodic con- 
trol threads. The evaluation of the design in terms of 
schedulability can reduce software development effort 
by discovering any problems in satisfying the timing 
constraints at the early stage of the development. 

In Step 9), the class hierarchy is established. Estab- 
lishing the class hierarchy in the form of superclasses 
and subclasses increases the inheritance of the soft- 
ware. Class hierarchy also increases the modularity 
of the software and enhances the extensibility of the 
software. 

In Step lo), a body is associated with each active 
and pseudeactive object. The role of a body is to 
invoke a method and modify the state of the objects 
represented by their local data. The modification of 
objects is expressed using the special construct 7Z as 
'R[lOl]e in which 0 is the object called the recipient 
object that receives a new state obtained as the result 
of evaluating e [12]. The modification of the objects is 
allowed only at the bodies of the objects. Thus, there 
is no side effect in the method, and history sensitivity 
in the object level is achieved. 

In Step ll),  methods in each objects are designed 
by selecting or creating appropriate algorithms and 
data structures. As we discussed in Section 3, each 
method can have several definitions, called multi- 
versions. 
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class Fighter-base 

method put-rad,value(f:Fighter,base,bomb:int, 
fght:int, miss:int, dist:int -> 

Fighter-base) 
#called by the radar to pass the value of 
# the enemy cluster to the base. 

Figure 4: The class interface for Fighter-Base. 

5 An Example 
In this section, we use a hypothetical air-base de- 

fense simulation example to illustrate our approach. 
The specification of such a system is given as follows: 
There are three air-bases: two fighter bases and one 
bomber base. Each base is associated with a radar, 
CH(Command, Control, Communication and Intelli- 
gence) facility, air missile batteries and suficient mis- 
siles to be used for its defense. It is assumed that each 
enemy cluster is composed of either missiles only or 
a combination of fighters and bombers, and that the 
enemy sends no more than two clusters to attack a 
base at the same time. Furthermore, the enemy clus- 
ter is assumed to target a particular base and does not 
change its course. Once the enemy cluster is detected 
by  the radar, the base calculates the number of  missiles 
or aircrafts needed to match the number of missiles or 
aircrafts of the enemy cluster and then sends out the 
required number of aircrafts and missiles. I f  the base 
cannot match the number of missiles or aircrafts of 
the enemy cluster with its own equipment, the base re- 
quests help from its neighboring base. When it is too 
late to defend the base, the aircrafts in the base will 
f l y  out of the base and go to the aircraft shelter. 

In Step l), we identify the following objects from 
the requirements specification: a bomber object 61, 
two fighter objects f2 and f3, three radar objects r l ,  
r2 and r3, a shelter object shelter, a record object 
record and a reporter object reporter. Among them, 
the objects r l ,  r2 and r3 are input objects, and the 
objects b l ,  f2 and f3 are process objects. The rest are 
output objects. In addition, the following classes are 
identified: Bomber-class for bomber base, Fighter-base 
for fighter base, Radar for radar, Shelter for shelter, 
Record to record the base operations, and Reporter to 
print the data store record. 

In Step 2), the class interfaces are determined. The 
class interface for Fighter-Base is shown in Figure 4. 

In Step 3), once the class interfaces are obtained, 
we establish the dependency and communication rela- 
tionship among the objects. The initial object com- 
munication diagram is shown in Figure 5 .  

In Step 4), we identify active objects from the ob- 
ject communication diagram shown in Figure 5. The 
object r l  does not get invoked by the other objects, 
but invokes b l  and record. Thus, r l  can be identified 
as an active object. If the communication behavior 
shows an object being invoked only, then the object is 

I I-p..l 

Figure 5 :  The initial object communication diagram 
for the example. 

identified as a passive object. If the object is invoked 
by as well as invokes the other object, it is identified as 
a pseudoactive object. Thus, r l ,  r2, r3 and report are 
active objects, record and shelter are passive objects, 
and b l ,  f2 and f3 are pseudoactive objects. 

In Step 5) ,  from the object communication dia- 
gram, we identify the objects record and shelter as 
shared writable objects. Since each of these objects 
are accessed by the three base objects b1, f2 and f3, 
the access to the objects record and shelter needs to 
be serialized. Thus, record and shelter are bottleneck 
objects. We can split each of them into three objects: 
recordl, record2 and record3 and s l ,  s2 and s9. recordi 
and si are associated with bi, i = 1,2 ,3 .  The new ob- 
ject communication diagram reflecting such changes is 
shown in Figure 6. 

In Step 6), from the active objects r l ,  r2 and r3, 
periodic control threads are identified: that is, the 
radars generate signals periodically and give to the 
bases for processing. In addition, from the active ob- 
ject reporter, an aperiodic control thread is identified. 

In Step 7), r l ,  7-2, r3, b l ,  f2 and f3 are assigned high 
priority, and the other objects are assigned with low 
priority. 

by tracing the behavior of the objects 
and also looking at the class interfaces, we can check 
the completeness and consistency of the design. In 
addition, we can roughly check the schedulability of 
the system by scheduling the tasks in periodic control 
threads according to the objects’ priorities and then 
the tasks in aperiodic control threads. 

In Step 9), we can define a super class called Base 

In Step 8 

301 



Figure 6: The object communication diagram for the 
modified set of objects. 

which has the information common to the fighter base 
and the bomber base. The superclass Base is shown in 
Figure 7 ,  fighter-base and Bomber-base are subclasses 
of Base. The remaining classes do not form a class 
hierarchy. 

In Step lo), the body exists for only active and 
pseudoactive objects. Thus, the objects rl, r2, rS, b l ,  
f., $9 and reporter have bodies. In describing the body, 
we use the constructs SEQ , COB and SEL representing 
sequential execution, parallel execution and selective 
execution, respectively. The body of r l  is shown in 
Figure 8. 

In Step ll), methods in each class are designed 
by defining a class composition, optional guards 
and expressions. The definition of the method 
putlad-value in the class Base is shown in Figure 9. 
In Figure 9, we know that the method is invoked every 
0.2 seconds periodically, and the method has two ver- 
sions: one for the normal condition and the other for 
the urgent condition. In the case of the normal condi- 
tion such that the enemy cluster is far away from the 
base, all the information about the enemy attack is 
given to the base. In case of the urgent condition such 
that the enemy cluster is so close to the base, only the 
distance information is given to the base. 

6 Discussion 
In this paper, we have presented an object-oriented 

approach to software design for distributed real-time 
systems. In order to support adaptability of the soft- 
ware system to a dynamically chan ing environment, 
the underlying computation mode! supports multi- 
versions of a method definition. This multi-versions 
method approach simplifies the object interface and 
makes the software system more reliable and eas- 

class Base 

method put-rad-value(f:Base, bomb:int, 
fght:int, miss:int, dist:int -> Base) 

#called by the radar to pass the value of 
# the enemy cluster to the base. 

method compute-range ( f:Base -> int ) 
#returns a value proportional to the range. 
#such functions are used to for the sake of 
# functional programming style. 

method enemy-cluster (f :Base -> int) 
#determines whether a missile or aircraft attack. 

method effective (f:Base -> int) 
#effectiveness of the enemy cluster 

#to keep track of aircrafts currently on ground. 

method commit ( f:Base, n:int -> Base) 
method uncommit ( f :Base, n: int -> Base) 

end class 

Figure 7 :  The superclass Base. 

ily modifiable. This approach can also increase pre- 
dictability of the real-time software system durin the 
design phase since a more accurate behavior of the 
software system under development can be obtained. 
To provide efficient communication, synchronous ob- 
ject invocation is used for interactions among the local 
objects, and asynchronous object invocation is used 
for interactions among the remote objects. In addi- 
tion, the timing constraints are encapsulated in the 
objects so that the schedulability can be checked dur- 
ing the design stage. The design approach includes the 
steps to deal with the real-time issues, such as peri- 
odic and aperiodic tasks, priorities of the objects, and 
schedulability of the high-level design. 

We will continue to develop a high-level design de- 
scription language based on our computation model to 
support systematic design of distributed real-time sys- 
tems. It will have both textual description capability 
and also a graphical representation capability. This 
will be appropriate for analysis and verification of dis- 
tributed real-time systems. We will also develop a 
strategy to transform the design description language 
into a timing analysis model such as the timed petri- 
nets to facilitate the analysis of timing constraints. 
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