
An Object-Oriented Approach to Software Design for Distributed
Real-Time Computing Systems

Stephen S. Yau, Doo-Hwan Bae, Gil-Ho Oh*and Madhan Chidambaramt

Computer and Information Sciences Department
University of Florida

Gainesville, Florida 32611-2024, USA

Abstract

In distributed real-time computing systems for
complicated applications like command, control, com-
munications and intelligence, time constraints are se-
vere and adaptability is required to provide high avail-
ability and survivability of computing resources. In
this paper, an object-oriented approach to software
design for distributed real-time systems is presented.
In order to support adaptability of the software system
to a dynamically changing environment , our approach
supports multi-versions of a method definition. Our
design approach is illustrated with a hypothetical air-
base defense simulation system.

1 Introduction
Distributed real-time systems in applications like

command, control, communications and intelligence
(C3I) require complex distributed systems with many
interacting software components, heterogeneous pro-
cessing systems and sharing resources. These systems
should satisfy not only the functional requirements of
application software, but also the specified timing con-
straints on the execution of the software despite faults
and failures. The requirements of these systems are
substantially more complex than those of non-real-
time systems. These systems have a high degree of
complexity in terms of variety of functions, process-
ing, storage, and communications hardware. Success-
ful performance in real-time applications depends on
satisfying the complex timing properties. Many appli-
cation environments for real-time systems will be dy-
namically varying and somewhat unpredictable. For
example, real-time systems need to be able to con-
trol, respond to, or interact with external environ-
mental phenomenon. Such applications require the
ability to adapt to changes in the environment or the
external stimuli. Real-time systems must behave in
a predictable manner. Current real-time systems are
very expensive to build and runtime behavior is very
difficult to predict at the design stage.

*Currently at Kum-Oh National Inst. of Tech., Korea
'Currently at Cap Gemini, Dayton, Ohio, USA

In this paper, we will present an object-oriented
approach to software design for distributed real-time
systems. The design approach is based on the object-
oriented computation model for distributed real-time
systems so that the real-time issues such as adapt-
ability and timing constraints can be addressed at the
proper stages of the software development life cycle.
We will illustrate our design approach with a hypo-
thetical air-base defense simulation example.

2 Background
Although the software design for distributed com-

puting systems has been studied extensively [1]-[6], the
design techniques for developing distributed real-time
software systems is still in the infant stage. Current
real-time software systems seem to be developed in an
ad hoc fashion or based on experience in application
specific domains. This complicates the program logic
and structure. There are various models for real-time
software systems, such as communicating finite state
machines, Petri-Nets, real-time extensions of data-flow
diagrams and temporal logic, but none of these mod-
els can individually represent all the aspects of a com-
plex real-time software system. Ward and Mellor [7]
developed a structured design method for real-time
systems. DARTS (Design Approach for Real-Time
Systems) [8, 91 is another structured design method
for real-time systems. Both approaches are based on
functional decomposition of software modules. In [lo ,
time systems are presented. In 11 , an object-oriented

encapsulate the temporal characteristics of adaptable,
real-time software. However, none of these methods
fully address the issues of distributed real-time soft-
ware systems. We need design methodologies that can
be used to synthesize systems with the specified timing
properties from the design stage.

Most of the current design approaches 7,.8, 91 to

resentation rather than the design process itself by
adding constructs to specify the timing constraints.
Moreover, they are not suitable for the design of dis-
tributed real-time systems for lack of design guide-
lines. Hence, in addition to the representation mecha-

object-oriented analysis and desi n method for rea- I
model is examined for its suita L f ility to represent and

real-time software systems focus on the A esign rep-

297
1071-0485/93 $3.00 0 1993 IEEE

nisms, we need to develop design guidelines for design-
ers to satisfy the real-time constraints by effectively
utilizing the available resources. Before we discuss the
design guidelines of our approach, we will first present
the computation model of our approach.

3 The Computation Model of Our Ap-
proach

Our computation model is based on object-oriented
concepts and incorporates the real-time system char-
acteristics. In this model, the software system is repre-
sented by a set of objects which encapsulates the data
and their related operations along with the timing
constraints. We have developed the Parallel Object-
Oriented Functional (PROOF computational model I'"1 and a framework for the 2 evelopment of software
or parallel processing systems [13, 141. In this section,

we will extend the concepts in PROOF to develop a
model for developing distributed real-time software.
We incorporate the concepts of active, passive and
pseudoactive objects into our model. An active object
can invoke the methods of other objects. A passive
object is activated by other objects when its methods
are invoked. A pseudoactive object can invoke the
other objects as well as be invoked by other objects.
Each of the active and pseudoactive objects will have
a body, which is an expression for a set of method
invocations. Each object in our model will be persis-
tent. Each object consists of local data and a set of
methods. Synchronization among objects is achieved
by attaching an optional precondition called guard to
each method. Each guard is a predicate. The ob-
ject which invokes the method is suspended when the
attached guard evaluates to be False and is resumed
when the guard becomes D u e . The guard attached
to a method is defined in such a way that it depends
only on the local state of the object, and hence the in-
heritance of individual methods will not be hampered
by the inclusion of the guard.

Object Modeling for Adaptability

Adaptability is an important issue in real-time soft-
ware systems. To support adaptability of the software
system in a dynamically changing environment, our
computation model has a feature of supporting multi-
versions of a method definition. The communication
in an object-oriented paradigm occurs through well
defined interfaces via message passing. For an object
to communicate with another object, the calling ob-
ject needs only to know the name of the method and
its parameters. In the conventional approach, each
method has only one definition. In our approach, al-
though only one method name is visible through the
interface, each method can have several different ver-
sions which are not visible externally. For example,
consider the following requirement where object 0,
invokes another object 0, and object 0, may have
to respond differently according to the state of object
0,. In the conventional approach, there are at least
the following two possible design strategies:

Figure 1: Multiple method definition.

object 0. Ob* OP

Figure 2: Single method definition with multiple ac-
tions.

0 Define distinct methods in 0, for each of the dif-
ferent possible state of 0 as shown in Figure 1.
Object 0, selects one of the methods based on
the state of the object 0,. In this strategy, there
is large overhead for maintaining the states of the
other objects as a caller object, say 0,, needs to
know the state of a called object, say 0,.

0 Each of the actions to be performed on different
states is encapsulated in a single method in 0,
as shown in Figure 2. A particular action from
this method is selected by using constructs like
CASE or the IF-THEN-ELSE statements avail-
able in many high level languages. This strategy
has the disadvantage that it is not modular and
reduces the analyzability of the software. This
strategy may limit concurrent activations of the
method as the whole data could be locked by an-
other object.

In comparison to the above two existing strategies, our
approach encapsulates the actions for a state into a
single method called vidual method. Externally, only
the name of the virtual method is visible, but inter-
nally, each action is implemented as a single method
called actual method. The virtual method is thus made

298

Figure 3: Multi-versions definition of a method.

up of a set of actual methods. This is illustrated in
Figure 3. The state information is maintained in its
local data. Depending on the current state of the ob-
ject, a correct version of the method is selected for
execution. Thus, the state of the object does not need
to be known to the invoking objects.

Our multi-versions method approach will simplify
the object interface and make the software system
more readable and easily modifiable. This strategy
will also enhance the parallel execution of the method
since only the data that could be modified by the ac-
tual method is locked. When the state of an object is
changed, for instance, from a normal state to an urgent
state due to a breakdown of its neighboring object,
the object may have to adapt to such a situation. For
example, the object may have to change its schedul-
ing strategy to adapt to this state change. Then, for
each actual method, we can easily associate an ap-
propriate scheduling strategy, and thus our approach
can easily improve the adaptability of the real-time
software at the design phase. This increases the ana-
lyzability of timing constraints at the high-level design
stage, provides the designer a basis for the design of
fault-tolerant software, and increases predictability of
the real-time software system during the design phase
since a more accurate behavior of the software system
under development can be estimated.

Object Invocation Mechanism

Communication among the objects is done by mes-
sage passing. To provide efficient communication for
various distributed system environments, we consider
both synchronous and asynchronous object invoca-
tions. To support low coupling among distributed
software modules and high predictability of each soft-
ware module, asynchronous remote object invocation
mechanism is considered in this model. In asyn-
chronous remote object method invocation, the invok-
ing object will not need to wait for the remote ob-
ject to be ready. One advantage of the asynchronous
remote object invocation is that it will increase the
concurrency among the distributed software modules.

However, it may introduce buffering problems and has
no big advantage in a single processor environment.
On the other hand, synchronous remote object inv-
cation will limit the concurrency, The synchronous re-
mote object invocation can cause more tightly coupled
relations among distributed software modules. In our
model, synchronous object invocations will be used for
the interaction among local objects and asynchronous
message passing mechanisms will be used for remote
object invocations.

Encapsulation of Timing Constraints in Ob-
jects

The time encapsulation mechanism is required to spec-
ify the timing constraints of the methods of each ob-
ject for distributed real-time software design. To in-
corporate the timing constraints in our computation
model, we consider the following timing attributes:

0 start-time: starting execution time.

0 finish-time: finishing execution time.

0 duration-time: a time interval during which exe-

0 period: a time interval between successive execu-

cution is performed.

tions of a periodic method invocation.

In addition to an optional guard and expression in
each method, each method can have one or more op-
tional timing constraints expression. Encapsulation of
such timing constraints in each method definition will
allow early evaluation of schedulability at the design
phase, and can improve predictability of the software
system by specifying the specific actions when the tim-
ing constraints are violated.

4 Our Approach

1 Identify objects and classes.
2 Determine class interfaces.
3 Specify dependency and communication relation-

4 Identify active, passive and pseudo-active objects.
5 Identify the shared objects.
6 Identify periodic and aperiodic control threads.
7 Determine the priority of active and pseudoactive

8) Check the completeness, consistency and schedula-
bility of the high-level design.
9) Establish the class hierarchy.
10) Determine the body of the active objects and pseu-
doactive objects.
11) Design the methods of each object.

Our approach consists of the following steps:

s i ips among objects.

o i jects.

In Step l), objects are identified by analyzing the
requirements specification. Objects in the real-time
systems can be classified into three types: input ob-
ject, oulpul object and process object. In a typical
real-time system, the input objects provide data to

the process objects for monitoring and controlling the
real-time system. For instance, a temperature sensor
belongs to the input object. The output objects are
the objects that receive data from the process objects
to physically control the system or display data to in-
teract with the human operator. For instance, the
temperature monitoring screen belongs to the output
object. The procesa objects receive sensored data from
the input objects, manipulate and send the sensored
data or control signal for controlling the system.

In Steps 2) and 3), class interfaces are determined
by identifying public methods, including the inputs
and outputs, in each object, and then the relation-
ships among the objects are specified by identifying
the methods required by each object.

In Step 4), the objects are classified according to
their invocation behavior as active, passive and pseu-
doactive.

In Step 5) , the shared objects are identified from
the communication relationships among the objects
obtained in Step 3). Once the shared objects are deter-
mined, they can be further classified into two classes:
read-only and writable objects. The distinction be-
tween the read-only objects and the writable objects is
self-explanatory. Read-only objects can be duplicated
as many times as desired, but writable objects cannot.
Since all the access to the data in the writable objects
needs to be serialized to maintain the consistency of
the data, the writable objects could be a bottleneck
to enhancing parallelism. Such writable objects are
called bottleneck objects. Thus, if possible, the bottle-
neck objects need to be refined so as to reduce the po-
tential of simultaneous access to the shared writable
objects, resulting possible performance improvement
due to the increase of parallel execution. If such re-
finement is done, repeat Steps 1) to 4) to make the
necessary changes accordingly.

In Step 6), the periodic and aperiodic control
threads are identified among the control threads.
Since only the active objects can invoke the methods,
all the control threads can be identified by identifying
all the active objects. The periodic control thread is a
thread in which the methods are invoked periodically.
Most of sensory processing is periodic. For instance,
a temperature monitor of a furnace in a steel manu-
facturing factory, and a radar to track flights. On the
other hand, the aperiodic control thread is a control
thread in which the methods are invoked nonperiodi-
cally. For instance, the fire-power supplier to provide
more fuel to the furnace when the temperature moni-
tor detects the temperature below a certain threshold.
The characteristics of the periodic control threads,
such as the periods, resource constraints, precedence
relationships, communication requirements, critical-
ness, can be known a priori in a static system. Thus,
in such a static system, the behavior of the objects
involved in the periodic control threads can be accu-
rately specified. On the other hand, in a dynamic
system, such characteristics may not be statically de-
termined at the design phase. Although it is certain
that the static systems are inflexible to adjust the sys-

tem behavior to unpredictable circumstances, many
real-time systems are static in nature. The identifi-
cation of the periodic and aperiodic control threads is
important to evaluate the schedulability of the system.

In Step 7), the priority of the objects is determined
according to their importance to the system. In order
to determine the priority, the major functionalities of
the software system need to be identified to assign the
high priority. On the other hand, the objects related
to minor functionalities are assigned low priority. This
priority information with periodicity information ob-
tained in Step 6) can be used to evaluate the schedu-
lability of the software system at the design stage.

In Step 8), the completeness and consistency of the
high-level design are checked against the requirements
by identifying the possible scenarios of activities and
examining each scenario. Because each scenario starts
from the active object and the number of the active
objects is not big, all the scenarios can be examined.
The sequence of activities in each scenario must be
reachable by tracing the behavior of the objects. If
there is any object behavior which cannot be found in
any of the possible scenarios, the requirements need to
be re-analyzed. In addition to checking the complete-
ness and consistency of the design, the schedulabil-
ity of the real-time system under development needs
to be evaluated. Although at this stage of the de-
velopment, it may not be easy to obtain sufficient
information to evaluate the schedulabilty. In such
a case, the schedulability of periodic control threads
can be checked using existing priority-based schedul-
ing approaches. Such checking also provides a basis to
roughly evaluate the schedulability of aperiodic con-
trol threads. The evaluation of the design in terms of
schedulability can reduce software development effort
by discovering any problems in satisfying the timing
constraints at the early stage of the development.

In Step 9), the class hierarchy is established. Estab-
lishing the class hierarchy in the form of superclasses
and subclasses increases the inheritance of the soft-
ware. Class hierarchy also increases the modularity
of the software and enhances the extensibility of the
software.

In Step lo), a body is associated with each active
and pseudeactive object. The role of a body is to
invoke a method and modify the state of the objects
represented by their local data. The modification of
objects is expressed using the special construct 7Z as
'R[lOl]e in which 0 is the object called the recipient
object that receives a new state obtained as the result
of evaluating e [12]. The modification of the objects is
allowed only at the bodies of the objects. Thus, there
is no side effect in the method, and history sensitivity
in the object level is achieved.

In Step ll), methods in each objects are designed
by selecting or creating appropriate algorithms and
data structures. As we discussed in Section 3, each
method can have several definitions, called multi-
versions.

300

class Fighter-base

method put-rad,value(f:Fighter,base,bomb:int,
fght:int, miss:int, dist:int ->

Fighter-base)
#called by the radar to pass the value of
the enemy cluster to the base.

Figure 4: The class interface for Fighter-Base.

5 An Example
In this section, we use a hypothetical air-base de-

fense simulation example to illustrate our approach.
The specification of such a system is given as follows:
There are three air-bases: two fighter bases and one
bomber base. Each base is associated with a radar,
CH(Command, Control, Communication and Intelli-
gence) facility, air missile batteries and suficient mis-
siles to be used for its defense. It is assumed that each
enemy cluster is composed of either missiles only or
a combination of fighters and bombers, and that the
enemy sends no more than two clusters to attack a
base at the same time. Furthermore, the enemy clus-
ter is assumed to target a particular base and does not
change its course. Once the enemy cluster is detected
by the radar, the base calculates the number of missiles
or aircrafts needed to match the number of missiles or
aircrafts of the enemy cluster and then sends out the
required number of aircrafts and missiles. I f the base
cannot match the number of missiles or aircrafts of
the enemy cluster with its own equipment, the base re-
quests help from its neighboring base. When it is too
late to defend the base, the aircrafts in the base will
f l y out of the base and go to the aircraft shelter.

In Step l), we identify the following objects from
the requirements specification: a bomber object 61,
two fighter objects f2 and f3, three radar objects r l ,
r2 and r3, a shelter object shelter, a record object
record and a reporter object reporter. Among them,
the objects r l , r2 and r3 are input objects, and the
objects b l , f2 and f3 are process objects. The rest are
output objects. In addition, the following classes are
identified: Bomber-class for bomber base, Fighter-base
for fighter base, Radar for radar, Shelter for shelter,
Record to record the base operations, and Reporter to
print the data store record.

In Step 2), the class interfaces are determined. The
class interface for Fighter-Base is shown in Figure 4.

In Step 3), once the class interfaces are obtained,
we establish the dependency and communication rela-
tionship among the objects. The initial object com-
munication diagram is shown in Figure 5 .

In Step 4), we identify active objects from the ob-
ject communication diagram shown in Figure 5. The
object r l does not get invoked by the other objects,
but invokes b l and record. Thus, r l can be identified
as an active object. If the communication behavior
shows an object being invoked only, then the object is

I I-p..l

Figure 5 : The initial object communication diagram
for the example.

identified as a passive object. If the object is invoked
by as well as invokes the other object, it is identified as
a pseudoactive object. Thus, r l , r2, r3 and report are
active objects, record and shelter are passive objects,
and b l , f2 and f3 are pseudoactive objects.

In Step 5) , from the object communication dia-
gram, we identify the objects record and shelter as
shared writable objects. Since each of these objects
are accessed by the three base objects b1, f2 and f3,
the access to the objects record and shelter needs to
be serialized. Thus, record and shelter are bottleneck
objects. We can split each of them into three objects:
recordl, record2 and record3 and s l , s2 and s9. recordi
and si are associated with bi, i = 1,2 ,3 . The new ob-
ject communication diagram reflecting such changes is
shown in Figure 6.

In Step 6), from the active objects r l , r2 and r3,
periodic control threads are identified: that is, the
radars generate signals periodically and give to the
bases for processing. In addition, from the active ob-
ject reporter, an aperiodic control thread is identified.

In Step 7), r l , 7-2, r3, b l , f2 and f3 are assigned high
priority, and the other objects are assigned with low
priority.

by tracing the behavior of the objects
and also looking at the class interfaces, we can check
the completeness and consistency of the design. In
addition, we can roughly check the schedulability of
the system by scheduling the tasks in periodic control
threads according to the objects’ priorities and then
the tasks in aperiodic control threads.

In Step 9), we can define a super class called Base

In Step 8

301

Figure 6: The object communication diagram for the
modified set of objects.

which has the information common to the fighter base
and the bomber base. The superclass Base is shown in
Figure 7 , fighter-base and Bomber-base are subclasses
of Base. The remaining classes do not form a class
hierarchy.

In Step lo), the body exists for only active and
pseudoactive objects. Thus, the objects rl, r2, rS, b l ,
f., $9 and reporter have bodies. In describing the body,
we use the constructs SEQ , COB and SEL representing
sequential execution, parallel execution and selective
execution, respectively. The body of r l is shown in
Figure 8.

In Step ll), methods in each class are designed
by defining a class composition, optional guards
and expressions. The definition of the method
putlad-value in the class Base is shown in Figure 9.
In Figure 9, we know that the method is invoked every
0.2 seconds periodically, and the method has two ver-
sions: one for the normal condition and the other for
the urgent condition. In the case of the normal condi-
tion such that the enemy cluster is far away from the
base, all the information about the enemy attack is
given to the base. In case of the urgent condition such
that the enemy cluster is so close to the base, only the
distance information is given to the base.

6 Discussion
In this paper, we have presented an object-oriented

approach to software design for distributed real-time
systems. In order to support adaptability of the soft-
ware system to a dynamically chan ing environment,
the underlying computation mode! supports multi-
versions of a method definition. This multi-versions
method approach simplifies the object interface and
makes the software system more reliable and eas-

class Base

method put-rad-value(f:Base, bomb:int,
fght:int, miss:int, dist:int -> Base)

#called by the radar to pass the value of
the enemy cluster to the base.

method compute-range (f:Base -> int)
#returns a value proportional to the range.
#such functions are used to for the sake of
functional programming style.

method enemy-cluster (f :Base -> int)
#determines whether a missile or aircraft attack.

method effective (f:Base -> int)
#effectiveness of the enemy cluster

#to keep track of aircrafts currently on ground.

method commit (f:Base, n:int -> Base)
method uncommit (f :Base, n: int -> Base)

end class

Figure 7 : The superclass Base.

ily modifiable. This approach can also increase pre-
dictability of the real-time software system durin the
design phase since a more accurate behavior of the
software system under development can be obtained.
To provide efficient communication, synchronous ob-
ject invocation is used for interactions among the local
objects, and asynchronous object invocation is used
for interactions among the remote objects. In addi-
tion, the timing constraints are encapsulated in the
objects so that the schedulability can be checked dur-
ing the design stage. The design approach includes the
steps to deal with the real-time issues, such as peri-
odic and aperiodic tasks, priorities of the objects, and
schedulability of the high-level design.

We will continue to develop a high-level design de-
scription language based on our computation model to
support systematic design of distributed real-time sys-
tems. It will have both textual description capability
and also a graphical representation capability. This
will be appropriate for analysis and verification of dis-
tributed real-time systems. We will also develop a
strategy to transform the design description language
into a timing analysis model such as the timed petri-
nets to facilitate the analysis of timing constraints.

References
[l] S. S. Yau, C. C. Yang, and S. Shatz, ‘‘ An Ap-

proach to Distributed Computing System Soft-
ware Design,” IEEE Trans. on Software Engi-
neering, Vol. SE-7, No. 4, July 1981, pp. 427-436.

302

SEQ(#Assign values to the radar object
RCI ri 11 object radar(pre-assign radar

while(True,
#Generate the radar values to be passed
#on to the base.

values),

COB(ri.generate-rad_bombervdlue,
ri.generate,rad-fightervalue,
ri.generate-rad-missilevalue,
ri.generate-rad-distancevalue),

#Put the values obtained above in the base
#and record, and then
#modify the radar values.
#will modify a l l the obiects involved.

This operation

COB(RCI 61 13 bi.put:rad-value,
RCl record1 11 recordi.base-data,
RCI ri 13 ri.modify-list)

1
1

Figure 8: The body of rl.

S. S. Yau, M. U. Caglayan, “ Distributed Soft-
ware System Design Representation Using Modi-
fied Petri Nets,” IEEE iC)-ans. on Software Engi-
neering, Vol. SE-9, No. 6, Nov. 1983, pp.733-745.

C.K. Chang, et al., “ A New Design Approach of
Real-Time Distributed Software Systems,” Proc..
11th International Computer Software d Appli-
cations Conference, (COMPSAC 87), October
1987, pp. 474479.

S. S. Yau, and I. Wiharja, “ An Approach to Mod-
ule Distribution for the Design of Embedded Dis-
tributed Software Systems,” Joumal of Informa-
tion Sciences, Vol. 56, August 1991, pp. 1-22.

S. S. Yau, X. Jia, and D.-H. Bae, “ On Software
Design Methods for Distributed Computin Sys-
tems: Computer Communications Joumaf, vol.
14, May 1992, pp. 213-223.

H. Kopetz, et al, “Real-Time System Develop-
ment: The Programming Model of MARS,” Proc.
Int ’1 Symp. on Autonomous Decentralized Sys-
tems, April 1993, pp. 290-299.

P.T. Ward, and S. J. Mellor, “ Structured Devel-
opment of Real-Time Systems,” (Volumes 1,2,3)
Yourdon Press, 1985.

H. Gommaa, “ Software Development of Real-
Time Systems,” Comm. ACM, Vol. 29, No. 7,
July 1986, pp. 657-668.

H. Gommaa, “ A Software Design Method for
Real-Time Systems,” Comm. ACM, Vol. 27, No.
9, September 1984, pp. 938-949.

class Base
compostion
radar,bomber:int
radar-fighter:int
radar-missi1e:int
radar,distance:int

method put-rad-value(b:Base, bomb:int,
fght:int, miss:int, dist:int -> Base)
period: 0 . 2 s
guard : none
version 1: dist > 50
expression
radar-bomber = bomb
radar-fighter = fght
radar-missile = miss
radar-distance = dist

version 2: dist <= 50
expression
radar-distance = dist

end class

Figure 9: The put-rad-value method definition.

[lo] M. Baldassari, and G. Bruno, A Methodology
and Environment for the Object Oriented Analy-
sis and Design of Real Time Systems,” Proc. Eu-
romicro’90 workshop on Real Time, June 1990,

[ll] T. Bihari, P. Gopinath and K. Schwan “Object-
oriented Design of Real-Time Software,” Proc.
Real- Time Systems Symposium, December 1989,

[12] S.S. Yau, X. Jia and D.-H. Bae, “PROOF: A Par-
allel Object-Oriented Functional Model,” Joumal
of Parallel and Distributed Computing, Vol. 12,

[13] S.S. Yau, X. Jia, D.-H. Bae, M. Chidambaram,
and G. Oh, “An Object-Oriented Approach to
Software Development for Parallel Processing
Systems,” Proc. 15th International Computer
Software d Applications Conference, (COMP-
SAC 91), September 1991, pp. 453-458.

[14] S.S. Yau, D.-H. Bae and M. Chidambaram, “A
Framework for Software Development for Dis-
tributed Parallel Computing Systems,” Proc.
Workshop on Future l h n d s of Distributed Com-
puting Systems in the 1 9 9 0 ’ ~ ~ April 1992, pp. 240-
246.

pp. 72-78.

pp. 194-201

NO. 3, July 1991, pp. 202-212.

303

