REAL -TIME DAMAGE DETECTION FOR SMART COMPOSITE MATERIALS USING OPTICAL FIBER SENSORS

Chang-Sun Hong, Hyung-Joon Bang, Hyun-Kyu Kang and Chun-Gon Kim

Department of Aerospace Engineering
Korea Advanced Institute of Science and Technology
373-1 Kusong-dong, Yusong-gu, Taejon, 305-701, Korea
e-mail: cshong@kaist.ac.kr

SUMMARY: The objective of this study is to develop simultaneous failure detection and strain measurement techniques of composite materials in real-time using optical fiber sensors. To detect the failure signal, extrinsic Fabry-Perot interferometer (EFPI) system using laser diode(LD) was used and absolute EFPI (AEFPI) system with ASE broadband source was implemented for the strain measurement. Signals due to matrix cracking and fiber breakage in composite laminates were treated by a signal processing unit in real-time. This paper describes the application of time-frequency analysis such as Short Time Fourier Transform (STFT) and Wavelet Transform (WT) to identify the moment of failure. The ASE source and LD were applied in a single EFPI sensor using a wavelength division multiplexer(WDM) to monitor strain and failure simultaneously. From the result of the tensile test, strain measured by the AEFPI agreed with the value of electric strain gage and the failure detection system could detect the moment of failure with high sensitivity to recognize the onset of micro-crack failure signal.

KEYWORDS: Damage Detection, Optical Fiber Sensor, Smart Composites

INTRODUCTION

Composite materials have been used in the wide fields of aerospace and other industries. Composites can exhibit surprising and unusual behavior, which may lead to erroneous interpretation of experimental results. Experiments are indispensable for understanding and predicting the behavior and failure of a wide variety of composite materials. Therefore, it is desirable to establish new non-destructive evaluation (NDE) techniques for in-service monitoring of composite structures. In recent years, a lot of attention has been paid to the optical fiber sensors for smart materials and structures. The use of this dielectric sensor is preferable for embedding in composite materials, and optical fibers possess many other advantages which render them suitable for this purpose.

Fiber optic sensors can make useful measurements of a structure's state of strain, temperature, and vibration[1-4]. And they can also be used to predict the onset of structural

failure, thereby allowing timely preventive measures to be taken[5-7]. EFPI has good sensitivity to detect the stress waves from structural failure[4] and AEFPI which uses broad band light source can measure the strain without accumulation of errors[2]. This paper will focus on the simultaneous sensing of strain and failure signals in composite laminates using an EFPI sensor. And the characteristics of stress wave signals from composites failure will be discussed.

FIBER OPTIC SENSOR

EFPI for Stress Wave Detection

Fabry-Perot interferometer can be divided by the intrinsic and extrinsic whether the light medium in the sensor gage is optical fiber or air. Intrinsic sensors have serious drawbacks such as the beating and drifting of signal. However, there are no handicaps like this for extrinsic sensors. In this study, EFPI sensor was used as shown in Figure 1.

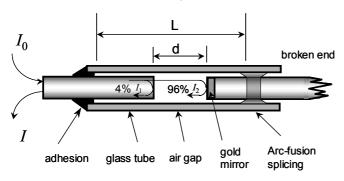


Figure 1. Schematic diagram of EFPI.

The sensor consist of a hollow glass tube capped over the end of a single-mode input/output fiber. A gold deposited fiber, placed inside the glass tube facing the single-mode fiber, functions as a Fresnel reflector and forms an air gap that acts as a low-finesse EFPI cavity. The first reflection at the glass-air interface acts as the reference reflection signal for the

interferometer. The second reflection from the surface of the gold deposited mirror generates the sensing reflection signal. These two form an interferometer and the reflected intensity can be written as a sinusoidal function.

$$I \propto A(1 + B\cos 2kd)$$
 and $k = 2\pi n_c / \lambda_0$ (1)

where A and B are constants, k is the wave number which equals to $2\pi n_c/\lambda_0$, and d is the width of gap separation. In the equation of k, $n_c (\sqcup 1)$ is the refractive index of core in optical fiber and λ_0 is the wavelength of laser diode in vacuum state, 1305nm. The relation between optical phase and gap separation is $\phi = 2kd$ and L is the gage length of EFPI. Because the fiber core is strain free in the glass tube, using the relation, $\Delta L = \Delta d$, equation of phase change can be written as follows.

$$\frac{\Delta \phi}{\Delta L} = \frac{4\pi n_c}{\lambda_0} = 0.9629 \times 10^7 (rad / m)$$
 (2)

Since the light medium of EFPI is air, there is no change in refractive index and sensor has immunity to polarization fading [7]. The signal from EFPI can be converted into the infinitesimal displacement by measuring $\Delta \phi$ and the change of phase is expressed as the intensity variation. Therefore the frequency characteristics of output signal shows the equal dynamic peculiarities of infinitesimal displacement of the sensor.

Absolute EFPI for Strain Measurement

The shape of AEFPI sensor is identical to that of EFPI sensor in Figure 1. But it utilizes the concept of white light interferometry in that a broadband source is employed instead of the

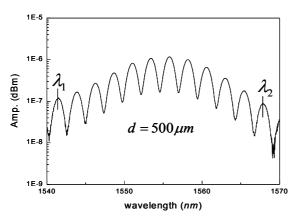


Figure 2. Typical output of the AEFPI

laser diode. The use of AEFPI system can overcome the limitations of EFPI system such as the non-linearity in the output signal, difficulty in distinction of direction of strain, and requirement of complex fringe counting technique [2]. The signal processing is performed using a computer followed by an optical spectrum analyzer(OSA) in real-time. Figure 2 shows the AEFPI signal acquired by OSA. Two wavelength λ_1 and λ_2 are determined from the OSA and signal processing program

determines the gap separation d unambiguously using the following equation [8].

$$d_i = \frac{m\lambda_1\lambda_2}{2(\lambda_2 - \lambda_1)} \qquad i = 0, 1, 2...$$
 (3)

where λ_1 and λ_2 are two wavelengths that are $2m\pi$ out of phase and m is an integer. The i is the number of measuring instant, and in case of initial state, i=0. If the sensor has a gage length of L, the applied strain can be expressed as

$$\varepsilon = \frac{d_n - d_0}{L} = \frac{\Delta d}{L} \,. \tag{4}$$

where Δd is the change of gap separation, and d_n , d_0 are the final and initial gap lengths, respectively. The thin deposition of metal such as gold or aluminum on the ends of the fibers enclosing the cavity increases the interface reflectivity and enhances the finesse of the cavity and sensitivity of the sensor. The finesse, F, is the parameter used to characterize Fabry-Perot cavities[2]. In this work, we deposited the gold on the second reflecting fiber end to increase the finesse of the sensor.

SIGNAL PROCESSING FOR FAILURE DETECTION

In many information processing systems, it is desirable to transform the sensor data from its raw time-domain format to the frequency domain, where appropriate spectral analysis and feature extraction can be applied. The most commonly used method is the Fourier transform. Because this transform use the sinusoidal basis functions which are localized in frequency only, it lost the transient feature of signal data. Therefore it is necessary to adopt the time-frequency analysis for diagnostics of transient signal such as damage induced signals. Moreover the time-frequency analysis can be used for damage monitoring of smart structures.

The Short-Time Fourier Transform (STFT) can be a candidate for the time-frequency analysis. The STFT has a short data windows centered at time t. The idea is that local spectral coefficients are obtained which describe the frequency composition of the record being analyzed at time t. The windows is then moved to a new position and the calculation repeated. The STFT of a signal f(t) is defined as follows.

$$STFT(\tau, \omega) = \int_{-\infty}^{+\infty} f(t)g(t - \tau)e^{-i\omega t}dt$$
 (6)

The result can be interpreted as the Fourier transform of the signal f(t) windowed by a function g(t) around time τ . But, unfortunately there is a fundamental problem with this approach. Because two requirements of a short data windows and a narrow bandwidth are irreconcilable, it is impossible to achieve high resolution in time and frequency simultaneously. STFT, however, does not require long computation time compared with other time-frequency analysis, therefore it is applied in the real-time processing for failure detection. In this study hamming window was applied for STFT and LabView program language and Signal Processing Toolbox of Matlab were used for signal processing.

In order to overcome the limitation of harmonic analysis in STFT, alternative families of orthogonal basis functions called wavelets are used instead of sines and cosines as the basis functions for decomposing a general signal. The Wavelet Transform(WT), which decomposes a signal into a set of basis functions which are localized both in time and in frequency, is opposed to the sinusoidal basis functions used by the Fourier transform. Each wavelet function in the basis set is a stretched or narrowed version of a prototype wavelet. Wavelet basis functions have the advantage that they are localized with respect to both time and frequency and act as multiscale bandpass filters when convoluted with the signal data. While the Fourier transform has the ability to isolate specific frequencies in a signal, the WT is capable of revealing aspects of data that other signal analysis techniques miss, such as transient features, trends, breakdown points, discontinuities in higher derivatives and self-similarity. The continuous wavelet transform is defined as follow,

$$CWT_{f}(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{+\infty} f(t) \Psi^{*} \left(\frac{t-b}{a}\right) dt$$
 (7)

where $a \in R$ and $b \in R$ are scale and shift parameters, respectively, and Ψ^* is complex conjugate of wavelet fuction. The equation implies that we measure the similarity between the signal f(t) and shifts and scales of an elementary function. In this study, an efficient algorithm, referred as the Fast Wavelet transform(FWT), was employed. In the FWT, a signal may be represented by its approximations and details. The approximations are the high-scale, low-frequency components of the signal. The details are the low-scale, high-frequency components. By selecting different dyadic scales, a signal can be broken into many lower-resolution components, referred as the wavelet decomposition tree. WT was applied for post-processing of failure signal to analyze its characteristics. The Wavelet Toolbox of Matlab® was used to process the signal.

EXPERIMENTS AND DISCUSSION

Failure Detection of Composite Laminates

To assess the failure mechanism of structures, it is important to understand the characteristics of failure signals of composite laminates. In this study, tensile test of graphite/epoxy specimen was performed to obtain the failure signal and time-frequency analysis using STFT and WT was implemented to analyze the signal characteristics. The gage length and gap separation of the EFPI are 9.59 mm and 29 μ m, respectively. EFPI sensor was embedded in the specimen between the layer of 0° and 90° degree, and on the opposite side PZT was attached to compare the signal response with EFPI. Figure 3. shows the composite specimen for the tensile test. It was made of twenty layer symmetric graphite/epoxy laminates $[0_2/\{0\}/90_{16}/0_2]_T$. The specimen had the dimension of 170 mm × 20 mm and was clamped to universal test machine(INSTRON, 4482). Material properties of Gr/Ep laminate (HFG CU-125NS) are presented in Table 1.

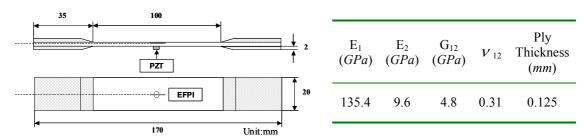


Figure 3. Configuration of specimen.

Table 1. Material properties of Gr/Ep laminate

Though impact or excessive loads are applied on the composite structure, if the damage does not happen, we can only see the sensor signal below the frequency range of 20 kHz. But, for

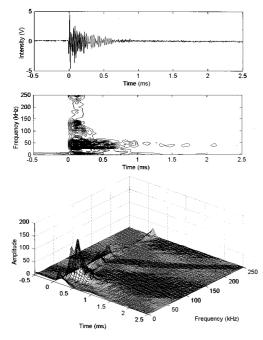


Figure 4. Matrix cracking signal and its STFT by PZT.

the case of structural failure, stress wave emission induced by matrix cracks or fiber breakages can be observed by examining the $20 \text{ kHz} \sim 200 \text{ kHz}$ frequency range [9].

Figure 4 shows the matrix cracking signal by PZT sensor and its STFT. In frequency domain, signal could be divided into two region, $20 \, kHz \sim 60 \, kHz$ and above $60 \, kHz$. In the first region, notable peaks with high amplitude were observed around $40 \, kHz$, and they lasted about 1 ms. And along the frequency region above $60 \, kHz$, figure shows that stress waves induced by the generation of matrix cracking can be observed by the examining the $60 \, kHz$ to $250 \, kHz$ frequency range, which continued about $0.2 \, ms \sim 0.4 \, ms$.

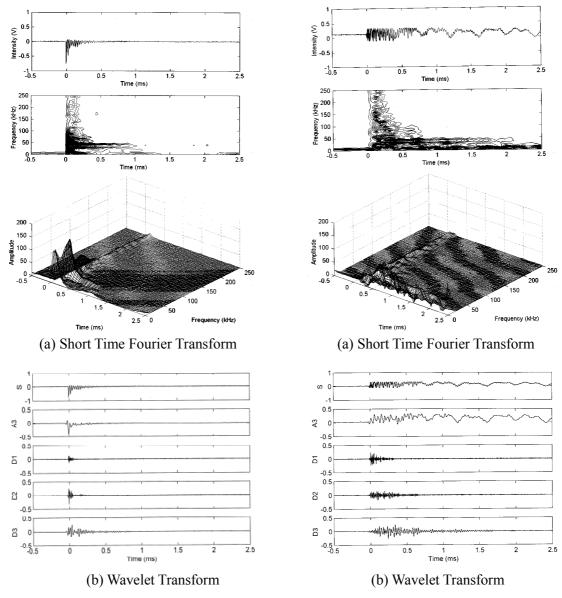


Figure 5. Matrix cracking signal by EFPI and its STFT & WT

Figure 6. Fiber fracture signal by EFPI and its STFT & WT

Figure 5(a) indicates the EFPI sensor response of matrix cracking signal which is the same as Figure 4. Comparing with the PZT signal, overall distribution of frequency characteristics of the two signals look alike. However, PZT signal showed more sensitivity around the peaks of 40 kHz, EFPI had more uniform and susceptible response over 150 kHz.

Figure 5(b) shows the results of the WT decomposition, respectively, at the three kinds of impact using Daubechies 4(Db4) wavelet to the level 3. In this figures, 'S' represents the raw sensor signal, The details D_l , D_2 and D_3 represent approximately $200 \sim kHz$, $100 \sim 200 \ kHz$, $1 \sim 100 \ kHz$ signal range respectively from the calculation of approximate frequencies. 'A' represents the approximation decomposed by high scaled wavelet function. If the structural failure happen, The generation time of damage is observed in the $Dl \sim D3$, high frequency component[9]. From the figure, Dl signal which cover the frequency range over $200 \ kHz$ continued about $0.2 \ ms$. It represents that to detect the moment of failure, the size of the time

window should be wider than 0.2 ms for the signal processing.

In the case of fiber breakage, PZT could not sense the signal any more since it separated from the specimen at the moment of damage. But EFPI sensor could detect the fiber breakage signal. Figure 6 shows the stress wave signals due to fiber breakage are dominantly composed of the detail D_1 and D_3 . For D_1 , the details of this mode have about three times of amplitude than that of the matrix cracking, and the time duration is much longer. However, the stress wave signals due to matrix cracks are mainly composed of D_2 and D_3 .

On the bases of these experimental results, we set the frequency threshold as 25 kHz in the failure detection program. Including characteristic frequency of 40 kHz, every failure signals over this limit will cause the warning of structural failure by the program.

Real-time Health Monitoring

The simultaneous sensing of the strain and failure in composite beams with an embedded fiber optic sensor have been carried out in real-time. To detect the failure signal, EFPI system using laser diode(LD) with 1305 nm wavelength was employed. And AEFPI system with ASE broadband source was implemented for the strain measurement. The composite specimen had the same layup and the dimension as the tensile test specimen in Figure 3. The gage length and gap separation of the EFPI are 10.73 mm and 239 μm , respectively. And, instead of PZT, an electric strain gage was attached on the front surface of it to compare the strain readout with AEFPI.

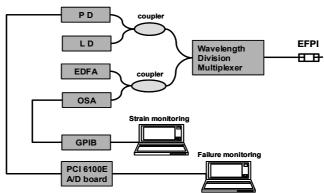


Figure 7. Optical fiber sensor system for simultaneous strain and failure monitoring.

To sense the strain and failure simultaneously, two different light source were employed in

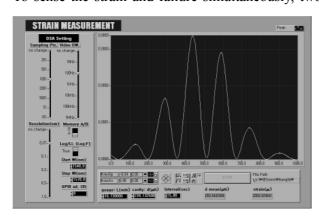


Figure 8. Real time strain monitoring.

one EFPI sensor using wavelength division multiplexer. It is the device which can multiplex two (or more) signals of different wavelengths onto the same fiber carrier. The schematic diagram of the fiber optic sensor system is shown in Figure 7.

The strain measurement system consists of ASE source, OSA, and processing computer. OSA is controlled by the program written in LabView®

language and transfers the wavelength data to the signal processing computer. Figure 8. shows the signal processing program for the strain measurement.

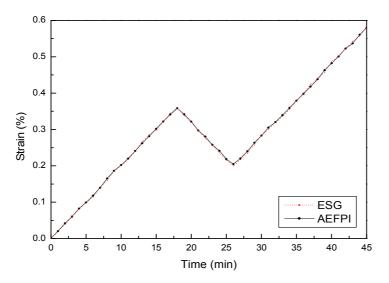
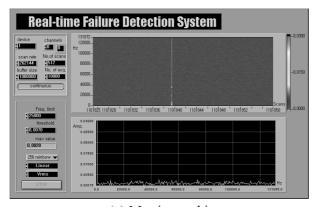



Figure 9. Experimental result of strain measurement using AEFPI.

At first, tensile loads were increased up to the level before the moment of 0.4% strain when the initial matrix cracks could appear. And the load were released to 0.2 % strain and were

(a) Matrix cracking

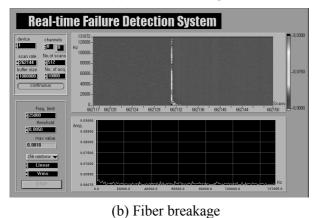


Figure 10. Failure signals detected by real-time failure detection system.

increased again to the level of fiber Figure shows the breakage. experimental result of strain data from AEFPI and electric strain gage. The strain measured by AEFPI coincides with the value of strain gage. From this result, it is confirmed that AEFPI can be applied the structural health monitoring system for long time measurement.

Figure 10 indicates the failure signals detected by EFPI sensor. Signals were processed by using real-time STFT. Figure 10(a) shows the matrix crack signal detected on 0.5% strain condition. From the figure, we can observe the peak near 40 kHz. In the Figure 10(b), fiber breakage signal has uniform distribution with high amplitude along the wide frequency range. These results are in accord with the frequency characteristics of the previous result, presented in Figure 5 and Figure 6.

With AEFPI sensor system, to sense

the strain with more accuracy, it is necessary to lengthen the gap separation. But, the wider the gap separation of the sensor, the lower the intensity of failure signal detected by EFPI sensor system. However, In this study, we could detect sensitively the failure signal with the sensor of wide gap separation by using gold deposited reflecting surface shown in Figure 1.

From the result above, we can confirm that it is possible to develop simultaneous failure detection and strain measurement techniques for health monitoring of composite materials using one EFPI sensor.

CONCLUSION

This paper describes the simultaneous sensing techniques of strain and failure signal. And the frequency characteristics of the failure signal from Gr/Ep composite laminate are also presented. Tensile tests of composite beams were performed to investigate the signal characteristics of matrix crack and fiber breakage. STFT and WT could quantitatively evaluate the onset of structural failure.

To sense the strain and failure simultaneously, two different light sources were employed in one EFPI sensor using wavelength division multiplexer. In this study, by using gold deposited reflecting surface, we could detect the failure signal with the sensor of wide gap separation which is suitable to strain measurement. The fiber optic sensor system successfully detected the moment of failure and could measure the strain accurately for long period.

ACKNOWLEDGEMENTS

The authors would like to thank the Agency for Defense Development, Korea, for the financial support of this work.

REFERENCES

- 1. Sirkis, J., Putman, M. A., Berkoff, T. A., Kersey, A. D., et al., "In-line Fiber Etalon (ILFE) for internal Strain Measurement," *SPIE : Smart Sensing, Processing, and Instrumentation,* Vol. 2191, 1994, pp. 137-147
- 2. Tran, T. A, Greene, J. A., Murphy, K. A., Bhatia, V., Sen, M. B. and , Claus, R. O., "EFPI Manufacturing Improvements for Enhanced Performance and Reliability," *SPIE*: *Smart Structures and Materials: Industrial and Commercial Applications of Smart Structures Technologies*, Vol. 2447, 1995, pp. 312-323.
- 3. Liu, K., Ferguson, S. M. and Measures, R. M., "Damage detection in composite with embedded fiber optic interferometric sensors," *SPIE : Fiber Optic Smart Structures and Skins II*, Vol. 1170, 1989, pp. 205-210.
- 4. Alcoz, Jorge J., Lee, C. E. and Taylor, H. F., "Embedded fiber-optic Fabry-Perot ultrasound sensor," *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control*, Vol. 37, No. 4, 1990, pp. 302-306.
- 5. Murphy, K. A., Schmid, C. A., Tran, T. A., Carman, G. Wang, A. and Claus, R. O.,

- "Delamination detection in composite using optical fiber techniques," *SPIE : Smart Sensing, Processing, and Instrumentation*, Vol. 2191, 1994, pp. 227, 231.
- 6. Kwon, I. B., Kim, C. G., and Hong, C. S., "Simultaneous sensing of the strain and points of failure in composite beams with an embedded fiber optic Michelson sensor," *Composites Science and Technology*, Vol. 57, 1997, pp.1639-1651.
- 7. Park, J. W., Ryu, C. Y., Kang, H. K., and Hong, C. S., "Detection of Buckling and Crack Growth in the Delaminated Composites Using Fiber Optic Sensor," *Journal of Composite Materials*, Vol. 34, No. 19, 2000, pp. 1602 –1623
- 8. Bhatia, V., Sen, M. B., Murphy, K. A., and Claus, R. O., "Wavelength-tracked White Light Interferometry for Highly Sensitive Strain and Temperature Measurements," *Electronics Letters*, Vol. 32, No. 3, 1996, pp. 247-249.
- 9. Sung. D. U., Oh. J. H., Kim. C. G. and Hong. C. S., "Impact monitoring of smart composite laminates using neural networks and wavelet, " *Journal of Intelligent Material Systems and Structures*, Vol.11, 2000, pp180-190.