A Partitioning Approach for Object-Oriented Software
Development for Parallel Processing Systems

Stephen S. Yau, Doo-Hwan Bae and Gilda Pour
Computer and Information Sciences Department
University of Florida
Gainesville, Florida 32611-2024

Abstract

Ezisting partitioning approaches for distributed and
parallel processing systems are not suitable for par-
titioning in object-oriented software development for
parallel processing systems mainly due to the lack of
shared data concept. In this paper, a parlitioning ap-
proach for object-orienied software development for
parallel processing systems is presented. The objeclive
of our partitioning approach is to improve the over-
all performance of a software sysitem by minimizing
commaunicalion cost among processors and ezploiling
potential parallelism among objects. The software sys-
tem is modeled by a graph, and a bottom-up clustering
technique is presented to partilion the objects into a
set of clusters to achieve our goal.

1 Introduction

One of the important issues in the software devel-
opment for parallel processing systems is the distribu-
tion of software components or modules to the pro-
cessors so that the execution of the software system
can be completed with a minimum amount of time.
This process can be divided into two phases: parti-
tioning and then allocation. In partitioning phase, the
software system is partitioned into a set of modules.
In allocation phase, the modules are assigned to the
processors. Intuitively, to exploit parallel processing
power, the modules should be distributed to as many
processors as possible to be executed in parallel. On
the other hand, to reduce high communication over-
head among processors, the modules should be dis-
tributed over as few processors as possible. The trade-
off between these two conflicting criteria has been well
known in parallel processing systems design. It is very
difficult to increase the performance of the system in
proportion to the number of processors in parallel pro-
cessing systems due to communication costs between
processors, contention of shared resources and inabil-
ity to keep all the processors busy all the timeg]. This
is one of the reasons for having a large gap between
the ideal peak performance and the real performance
in most parallel processing systems.

*The work was supported by the Rome Laboratory, U. S.
Air Force Systems Command under contract No. F30602-91-C-
0045.

0730-3157/92 $3.00 © 1992 IEEE

251

The problem of partitioning for software develop-
ment for distributed and parallel processing systems
has been studied extensively. Existing approaches can
be classified in three categories: graph-theoretic [2,
3], 0-1 integer programming [4] and heuristic[5]-[11].
Some approaches adopt more than one method. Par-
titioning approaches attempt to minimize the sum of
communication time and execution time. Because this
problem is NP-hard, a suboptimal solution is usually
sought using heuristics.

Object-oriented software development has a num-
ber of advantages, especially maintainability and ex-
tensibility. In object-oriented software development
for parallel processing systems [12], the software sys-
tem is considered as a set of objects where every ob-
ject can contain shared data that may be accessed by
a number of objects. If the shared data is modified,
the access must be serialized. When shared data is
not modified, parallel invocation of methods in the
object should be allowed. The way the objects are
assigned to the processors can significantly affect the
overall system performance. The existing approaches
are generally not suitable for object-oriented software
development for parallel processing systems because
they do not consider the shared data concept.

In software development for parallel processing sys-
tems [13], partitioning phase precedes coding and al-
location phases. Most existing approaches cannot be
applied prior to coding and allocation because they
require the information on the execution time for each
module and the communication time among modules
to be a part of their input while this information is un-
likely available prior to coding and allocation phase.
In this paper, we will present a partitioning approach
for object-oriented software development For parallel
processing systems. The objective of our partition-
Ing approach is to improve the overall performance
of the software system by minimizing communication
cost among processors while maintaining the poten-
tial parallelism among objects. Our partitioning ap-
proach can be applied as early as at the end of object
design phase. We will assume that object invocations
are synchronous, and assignment to the processors is
static.




2 Our Partitioning Approach

The behavior of objects in a software system can be
identified as parallel, sequential, seleclive, or wailing.
The input to our partitioning approach is the infor-
mation available after the object design phase, and it
consists of the object behavior, object invocation fre-
quency, the upper limit on data units transferred be-
tween two objects at every invocation, and the number
of replications of every object. Our partitioning ap-
proach has three stages: initialization, normalization,
and clustering.

2.1 Initialization

The software system is modeled by an undirected
weighted graph. The initial graph G = (V,E) has a
set of nodes V and a set of edges E such that:

e An object o; is represented by node i in V.

o An edge (4, 4) is in E if and only if o; and o; can
communicate with one another or both objects
can be invoked concurrently by another object.

e A node i has a non-negative weight, denoted by
ri, with a value equal to the number of replica-
tions of object o;.

e An edge (i,j) has an ordered set of weights
(uij,vij) where u;; and v;; are the communica-
tion and concurrency weights for that edge, re-
spectively.

Communication and concurrency weights are as-
signed according to the following five rules. A commu-
nication weight is given a negative sign to imply the
communication cost resulted from assigning the ob-
jects represented by the nodes connected by the edge
to different processors. A concurrency weight is given
a positive sign to imply the gain achieved as a result
of parallel execution of the objects represented by the
nodes connected by the edge to different processors.
In this discussion, f;; is the frequency of invocation
between o; and o;, and d;; is the upper limit on data
units transferred between o; and o; at every invoca-
tion.

Rule 1. oy : CON(oz,03,...,0,) describes a case
where 03,03,...,0,-1, and o0, can be executed con-
currently after being invoked by o,. It corresponds to
a subgraph G = (V,E) where V = {i | 1 < i < n}
and E = {(,7) ] 1 < i < j < n}. Communication and
concurrency weights are assigned to the edges in E as
follows:

1) For 2 < i< j<n, there are two possibilities:
a) If (i, j) does not exist, then create (i, j) with
weights u;; =0 and v; = fii= flj.
b) 1If (i,j) exists, then u;; remains unchanged,
and v = v + S

2) Fori=1and 2 < j<n, there are two possibili-
ties:

252

a) If (3, j) does not exist, then create (1, j) with
weights u;; = —(fy; x dj;) and v;; = 0

b) If (1,]) exists, then Uij = Ujj — (flj X dlj)
and v;; remains unchanged.

Rule 2. o0, : SEQ(o02,03,...,0,) describes a case
where 0; invokes o;’s for 2 < j < n in the sequential
order 09,03, ...,0,. It corresponds to a subgraph G =
(V,E)whereV:{i|15i$n}andE={%1,j)|25
J < n}. In assigning communication and concurrency
weights to the edges in E, there are two possible cases
for2<j<mn:

1) If (1,7) does not exist, then create (1,j) with
weights uy; = —(flj X d[j) and vy = 0.

2) 1If (1,j) exists, then uy; = uy; — (f1; x dy;) and
v1; remains unchanged.

Rule 3. o1 : ONE-OF( o03,03,...,0, ) or 01 :
SEL( o03,03,...,0, ) each describes a case where o,
invokes only one of o;’s for 2 < j < n. SEL is
used when the selection depends on the True/False
status of a boolean condition, but ONE-OF is used
when the selection is done without checking any con-
dition. The corresponding subgraph for either one
is G = (V,F) where V. = {i | | < i < n} and
E ={(1,7)] 2 < j < n}. In assigning communication
and concurrency weights to the edges in E, there are
two possibilities for 2 < j < n:

1) If (1,7) does not exist, then create &l,j) with
weights uy; = —(f1; x dy;)/(n — 1) and vy; = 0.

2) If (1, ) exists, then uy; = uy; —(f1; xdy;)/(n—1)
and vy; remains unchanged.

Rule 4. o; : WAIT (o;) describes a case where o;
waits to be invoked by oj. It corresponds to a sub-
graph G = (V, E) where V = {i,j} and E = {(4,j)}.
There are two possibilities:

1) If (i,j) does not exist, then create (1,7) with
weights u;; = v;; = 0.}

2) 1If (i,j) exists, then both u;; and v;; remain un-
changed.

Rule 5 is applied to the cases of nested clauses. Be-
fore presenting Rule 5, we define the preservation of
the edge relationship, denoted by E-R, between two
subgraphs. Let G4 = (V4,FE4) and Gg = (Vp, EB)
be two subgraphs where V4 = {z,,...,z,} and Vg =
{y1,...,yp} for some ¢ > 1 and p > 1. For every z in
Va and every y in Vp, one of the following holds:
E-R(z, y) = true, if edge (z, y) exists.

E-R(z, y) = false, otherwise.
Then the preservation of the edge relationship E-R

1A nonzero communication weight will be assigned to this
edge when object o, is processed.




between the two subgraphs is defined as follows: E-
R(Ga, GB) = Axgigq,xgjgp E-R(z1, 1)

Rule 5. It is applied when nested clauses are used
to specify the object behavior. The steps are:

1) Modifying the object behavior by substituting ev-
ery nested clauses with one dummy object.

2) For every dummy object introduced in step 1:

2.1) Applying the appropriate rule(s) and pre-
serving its edge relationships with other ob-
jects.

2.2) Assigning communication and concurrency
weights to edges using Rules 1-4.

2.2 Normalization

As stated earlier, the goal of our partitioning ap-
proach is to make a trade-off between two conflict-
ing criteria of minimizing communication cost be-
tween the processors and exploiting potential paral-
lelism among the objects. In other words, it is desir-
able to find an optimal point at which communication
costs are reasonably reduced while the parallel exe-
cution of objects is well achieved. However, finding
an optimal solution requires execution and communi-
cation time to be available which is unlikely prior to
coding and allocation. Even if such information were
available, the problem of clustering to be discussed in
the next section is NP-hard. As a result, our approach
would provide a suboptimum solution.

In order to accommodate the two conflicting parti-
tioning subgoals, we present a normalization method
so that the communication and concurrency weights
associated to every edge can be combined to obtain a
common metric for the two kinds of weights. Let upin
be the minimum communication weight and vy, be
the maximum concurrency weight. First for every
edge (7, ), we replace u;; with -u;; /umin and v;; with
vij/Vmaz. This brings all communication weights to
the range of (-1, 0) and all concurrency weights to the
range of (0, 1). Then, we define a new edge weight
wij, called gain, to replace (u;j, v;;). The value of w;;
is taken to be o x u;; + (1 — a) x v;; where a is in the
range of (0, 1). To obtain a suitable a, the exact fig-
ure of the parallel machine, the exact execution time
and the exact communication cost are needed. Our
partitioning approach is applied before coding and al-
location phases where this information is unlikely to
be available. Therefore, modification of « is allowed
in the sense that if after allocation, the results of par-
titioning turns out not to be satisfactory, the overall
performance of the software system can be tuned by
using the required information available at the end of
allocation phase to find a suitable o and then repeat-
ing the last two stages of our approach for the new «.
Next, we define the objective function Y to be sum of
real-value weights of all edges in the graph.

253

2.3 Clustering

The main objective of this stage is to maximize the
value of Y by taking a bottom-up approach to cluster
the objects represented by the nodes connected by the
edges with negative weight values. Note that an edge
with a positive weight suggests that parallel execution
of the objects represented by the nodes connected by
the edge will reduce the execution time of the soft-
ware system. Hence, these objects should not be in
one cluster. On the other hand, an edge with a neg-
ative weight suggests that the objects represented by
the nodes connected by the edge should be placed in
the same cluster because execution of these objects
on different processors will increase the communica-
tion cost among processors. If the weight of an edge
is equal to zero, we choose not to cluster the objects
represented by the nodes of that edge together be-
cause clustering of such objects does not increase the
value of Y. Furthermore, comparing a partition con-
sisting of many small processes with one consisting of
a few large processes, the partition with many small
processes will provide the allocation phase with more
flexibility for the purpose of load balance or growth
potential.

The input to clustering is an undirecte(/i weighted
raph G =(V ,E' ) where V=V E=FE ,and G =
%V, E) is the initial graph. The difference between G
and G’ is that every edge (4, 7) € E has a set of weights
(uij, vij) while the same edge € E' has a weight w;j
representing the degree of contribution to improving
the overall system performance that is made by the
parallel execution of the objects represented by the
nodes connected by that edge.

We define function SIZE to map every node in the
graph to a positive integer that is equal to the number
of objects in the cluster represented by that node. The
steps of clustering stage are listed below.

1.for every node ¢ do Set SIZE(c) = 1.
while there is an edge with a negative weight and
there is more than one node in the graph do
begin
2. Find edge (a, b) where wy; is not greater than
any other edge weight in the graph.
3. Group a and b to form a new cluster gq.
Set SIZE(q) = SIZE(a) + SIZE(b).
4. for every node c there are four possible cases:
C.1 if E-R(c, a) = true and E-R(c, b) = true
then
E-R(c, q) = true.
Assign weight (weq + wep) to edge (¢, q) .
C.2 if E-R(e, a) = true and E-R(c, b) = false
then
E-R(c, ¢) = true.
Assign weight w., to edge (c, q).
C.3 if E-R(c, a) = false and E-R(c, b) = true
then
E-R{c, ¢) = true.
Assign weight we, to edge (¢, ¢q).
C.4 if E-R(c, a) = false and E-R(c, b) = false




then
E-R(c, q) = false.
5.if ( SIZE(a) = 1 and r4 > 1) then
Add edge (a, g) to the graph.
Assign +o00 to edge (a, ¢).
Set ry = 14 - 1.
else
Delete node a.
for every node ¢ do
if E-R(c, a) = true then
Assign E-R(c, a) = false.
6. Repeat Step 5 for node b.
end
7.if all replicated objects are not in the graph then
for every node ¢ do
if gSIZE(c) =landr.=k>1)then
dd k new nodes each to represent one
replication of object o,.
Obtain the edges incident to a new node
by duplicating the edges incident to ¢ and
their weights.
Connect any two of new nodes to one
another and also any one of them to node ¢
and assign a weight +00 to any new edge.
Go to while statement.

In Step 1, the value of function SIZE at every node in
the graph is set to 1 because a node in the initial graph
represents only one object. Steps 2-6 are executed un-
til there is no edge with a negative weight or there is
only one node in the graph. In Step 2, edge (a, b) with
the minimum weight wg; is found. In Step 3, nodes
a and b are clustered to form new node ¢q. The value
of function SIZE at node q is the sum of the number
of objects in nodes a and b. Forming node ¢ calls for
addition and deletion of some edges along with modi-
fication of their weights. This process is done in Step
4. Node a is deleted along with all edges incident to it
unless r, has a positive value which means that there
are at least rg replications of object o, that have not
been yet represented in the graph. If node a is not
deleted, then it must be connected to node ¢, and the
weight +o0o has to be assigned to edge (a,q). 7, is
decremented by 1 in order to be equal to the number
of the replications of o, that have not yet been repre-
sented in the graph. All this is done in Step 5. Step
6 is the repetition of Step 5 for node b. The while
loop runs until there is no more edge with a negative
weight or there is only one node in the graph. In Step
7, any node c representing only object o., but not its
replications, is identified, and r. new nodes are added
to the graph each representing one replication of o,.
The set of edges incident to any of these new nodes
is duplication of the set of edges incident to node c.
The weight of any one of these edges is the same as
the weight of its counterpart. In order to ensure that
the replications of an object do not end up in one clus-
ter, the nodes representing any two such objects are
connected by an edge witﬁ weight +oo. If any node
is added to the graph in Step 7, the while loop is re-
peated until there 1s no edge with a negative weight
in the graph or there is only one node.

254

The output of clustering is an undirected weighted
graph in which every node ¢ represents a cluster of
object(s) and every edge (p,gq) has a positive weight
representing the degree of contribution to improving
the overall system performance that can be made by
parallel execution of clusters p and ¢q. Note that a
larger weight of an edge implies that more gain in im-
proving the overall performance of the software system
can be obtained as a result of allocating two clusters
of objects represented by the nodes connected by the
edge on two different processors.

3 Time Complexity

Let m be the number of objects in the software sys-
tem, n be the number of objects without considering
replications of the objects, and e be the total number
of edges if all objects including replicated ones were
represented in the initial graph. Step 1 takes O(n)
time to run. Step 2 runs at most in O(e) time. Step
3 has a constant running time. Step 4 runs in O(n)
time. In Step 5, the time complexity of else part dom-
inates that of if-then part because else part takes
O(n) and if-then part takes constant time. Step 6 is
simply the repetition of Step 5. The while loop will
be executed at most O(min(e, m)) time. Hence, the
entire loop runs at most in O(min(e, m) x max(e,
n)) time. When there is at least one replicated object
in the graph, e cannot be smaller than n. The reason
is that a node 7 in the initial graph represents object
o; which has some relationship with at least another
object 0; and this relationship requires edge (3, j) to
be in the initial graph. Because e cannot be smaller
than n, max(e, n) is always equal to e. With similar
reasoning, we can show that min(e, m) is equal to
m. Therefore, the entire loop can be executed at most
in O(em) time. Step 7 can also run in Oﬂem) time.
Thus, the clustering algorithm can be completed in no
more than O(em) time.

4 An Example

In order to illustrate our partitioning approach, we
apply it to a Warehouse Management System(WMS).
A brief statement of the requirements of the WMS is
as follows:

The warehouse management system inter-
acts with manufacturers and customers such
as retailers. Manufacturers generate items
and send them to the warehouse manager
and items are stored on the warehouse racks.
The warehouse manager retrieves items from
warehouse-racks and sends them to the cus-
tomers upon their requests. The capacity of
this warehouse is fixed. Reports of transac-
tion information are generated periodically.

The object-oriented model of WMS consists of the
following objects: 0, = report-generator, o, = rack,
o3 = transaction, o4 = product-information, o5 =
customer-server, og = purchaser, and o7 = check-out-
counter.




Figure 1: Initial Graph

1) Object behavior of the system can be described as
01 : CON(o02,03,04)

O¢ CONEOz, 033
o7 . CON 02,03

2) The frequencies of the object invocations and the
upper limit on data units transferred between two ob-
jects every time one invokes the other (i.e. the two
objects communicate) are assumed to be as follow.
Those not listed are equal to zero.

fl? = 1000 dl2 = 100
f13 = 1000 d13 = 200
fia = 1000 dys = 500
f26 = 2000 dzs = 100
f27 = 1000 d27 = 200
fas = 2000 dze¢ = 40

far = 1000 ds7z = 100
fas = 2000 dqs = 100

3) Let r; i)e_the number of replications of 05,1 =1, 2,
LT

Ty = 1 re = 0 r3 = 0
Ty = 0 re = 0 rT = 0
The three stages of partitioning are as follows:

1. Initialization Figure 1 shows the initial graph
where o; is modeled by node i, and every edge (4, j) in
the graph has weights (u,j,v;;) where u;; is the com-
munication weight and v;; is the concurrency weight
associated with (i, 7).

2. Normalization Figure 2 shows the graph after
ui; and v;; are normalized and combined into a new
weight w;j, called gain, assuming « to be 0.5.

3. Clustering The edge connected by nodes 1 and 4
has a minimum weight with a negative value. Hence
the two nodes should be clustered together. Because
ryis 1 (i.e. object 0} has a replication%, node 1 should
remain in the graph. A new edge 1s added to the
graph which connects node 1 and the newly formed
node (1,4). In order to ensure that 0, and its replica-
tion are not placed in the same cluster, a weight 400
is assigned to this new edge. The resulting graph is
shown in Figure 3.

The edge connecting node 5 and the node (1,4) has
a minimum weight with a negative value. This sug-
gests that the two nodes should be clustered. Con-
sequently, oy, 04, and o5 are placed in one cluster as
shown in Figure 4.

1'4:0

255

Figure 3: Graph at the End of First Clustering.

The edge connecting nodes 1 and 3 has a mini-
mum weight with a negative value. Hence these nodes
should be clustered as shown in Figure 5.

Next, the edge connecting nodes 2 and 7 has a mini-
mum weight with a negative value which suggests that
these nodes should be clustered as shown in Figure 6.

The edge connecting node 6 and the node (2,7) has
a minimum weight with a negative value. Hence the
two nodes should be clustereg together. As a result,
0y, o and o7 are placed in one cluster. The graph
after creating this new cluster is shown in Figure 7 in
which there 1s no edge with a negative weight. There-
fore, clustering stops, and the graph in Figure 7 is the
output of partitioning phase.

5 Discussion

In this paper, we have presented a partitioning ap-
proach for object-oriented software development for
parallel processing systems which incorporates the
shared data concept [12] with synchronous access.
The objective of our partitioning approach is to im-
prove the overall performance of the software system
through a trade-off of minimizing communication cost
among processors and exploiting the potential paral-
lelism among objects. The output of our partitioning
approach is an undirected weighted graph in which
every node represents a cluster of object(s) and every
edge has a weight. A larger weight of an edge implies
that parallel execution of the clusters represented by
two nodes connected by the edge can improve the over-
all system performance to a larger extent. Hence at
the allocation phase, if the number of processors avail-
able is smaller than the number of nodes in the output
graph of our partitioning approach, the nodes incident




Figure 5: Graph at the End of Third Clustering.

to the edges with smaller weights are the candidates
for clustering.

Currently, we are extending our partitioning ap-
proach through introducing new constraint imposed
by limited processor memory size into the model. We
are also conducting a sensitivity analysis on the nor-
malization parameter. The preliminary results are en-
couraging.

References

[1] D. E. Eager, J. Zahorjan, and E. D. Lazowska,
“Speedup Versus Efficiency in Parallel Systems,”
IEEE Trans. on Computers, Vol. 38, No. 3, 1989,
pp. 408-423.

[2] H. S. Stone, “Multiprocessor Scheduling with the

Aid of Network Flow Algorithms,” /EEE Trans.

on Software Engineering, Vol. SE-3, No. 1, 1977,

pp- 85-93.

C. C. Shen and W. T. Tsai, “ A Graph Matching
Approach to Optimal Task Assignment in Dis-
tributed Computing Systems Using a Minimax
Criterion,” JEEE Trans. on Compulers, Vol. 34,
No. 3, 1985, pp. 197-203.

[4] O. I. El-Dessouki and W. H. Huan, “Distributed
Enumeration on Network Computers,” [EEE
Trans. on Computers, Vol. C-29, No. 9, 1980,
pp. 818-825.

[5] K. Efe, “Heuristic Models of Task Assignment
Scheduling in Distributed Systems,” Computer,
Vol. 15, No. 6, 1982, pp. 50-56.

(6] P. R. Ma and E. Y. S. Lee, “A Task Alloca-
tion Model for Distributed Computing Systems,”
IEEE Trans. on Computers, Vol. C-31, No. 1,
1982, pp. 41-47.

256

Figure 6: Graph at the End of Fourth Clustering.

S

046

0

(4)

Figure 7: Output Graph.

[7] S. M. Shatz and S. S. Yau, “ A Partitioning Algo-
rithm for Distributed Software Systems Design,”
Information Sciences, Vol. 38, No. 2, 1986, pp.
165-180.

S. S. Yau and I. Wiharja, “An Approach to
Module Distribution for the Design of Embed-
ded Distributed Software Systems,” Information
Sciences , Vol. 56, No. 1, 1991, pp. 1-22.

(8]

[9] Virginia Mary Lo, “Heuristic Algorithms for
Task Assignment in Distributed Systems,” IEEE
Trans. on Compulters, Vol. C-37, No. 11, 1988,

pp. 1384-1397.

H. Kasahara and N. Seinosuke, “Practical Mul-
tiprocessor Scheduling Algorithms for Efficient
Parallel Processing,” IEEE Trans. on Computers,
Vol. C-33, No. 11, 1984, pp. 1023-1029.

V. Sarkar and V. Hennessy, “Partitioning Par-
allel Programs for Macro-dataflow,” Proc. ACM
Conf. in Lisp and Functional Programming, 1986,
pp. 202-211.

S. 8. Yau, X. Jia, D.-H. Bae, M. Chidambaram,
and G. Oh, “An Object-Oriented Approach to
Software Development for Parallel Processing
System,” Proc. 15th Annual Int’l Computer Sofi-
ware & Applications Conf. (COMPSACY1), Oc-
tober 1991, pp. 453-458.

(13] S. S. Yau, D.-H. Bae, and M. Chidambaram,
“A Framework for Software Development for
Distributed Parallel Computing Systems,” Proc.
Third IEEE Workshop on Future Trends of Dis-
tributed Computing Systems, April 1992, pp 240-
246.

[10]

(1]

(12]




