A Framework for Software Development for
Distributed Parallel Computing Systems*

Stephen S. Yau, Doo-Hwan Bae and Madhan Chidambaram
Computer and Information Sciences Department
University of Florida
Gainesville, Florida 32611-2024, USA

Abstract

In this paper, a framework for software development
for distributed parallel computing systems based on
the parallel object-oriented functional computational
model PROOF is presented. Our approach will enable
programming to be independent of the configuration of
the computing system on which the program will be
ezecuted. In our approach, the programmer does not
need 1o be bothered by the parallelism in the applica-
tion or the architectural details. These considerations
can be handled at the translation and the allocation
stages. Qur approach retains the benefits of both the
object-oriented as well the funclional paradigms.

1 Introduction

During the last decade, rapid progress has been
made in microelectronic technology, and the applica-
tions of the parallel and distributed computing sys-
tems such as process control and telecommunications
systems are becoming more feasible. The trend is
toward a distributed parallel computing system in
which one or more of the sites are made up of parallel
processing computing systems. This becomes feasi-
ble with the availability of low cost parallel process-
ing systems, such as the transputers and other par-
allel processing machines. However, the development
of the software for such systems has become rather
complicated due to the architectural considerations of
the distributed system, including the configuration of
the parallel computing systems at individual sites in
the distributed system. Interprocess and intraprocess
communications, partitioning and allocation of the
software system are all very important issues in such
software development. Furthermore, because most of
the existing parallel languages are tied to a specific
architecture, the software development approach for
each architecture becomes architecture dependent [1].

In this paper, we will present a framework for soft-
ware development for distributed parallel computing
systems based on the parallel object-oriented func-
tional computational model PROOF [2]. Our ap-
proach is architecture transparent, i.e., the configu-
ration details of the computing system are considered

*The work was supported by the Rome Laboratory, AFSC
under contract No. F30602-91-C-0045.

0-8186-2755-7/92 $03.00 © 1992 IEEE

240

at the translation phase. The programmer is liberated
from the issues such as parallelism and configuration
of the computing system during software development.
Our approach focuses on the performance of the soft-
ware system by identifying and modifying the bottle-
neck objects and shared writable objects which limit
the parallelism in the software system, if possible.

2 Our Approach

The computation model PROOF [2] was intended
for software development for parallel processing sys-
tem [3], and it incorporates the functional paradigm
into the object-oriented paradigm. However, since
the object-oriented paradigm reflects the distributed
structure of the problem space and is suitable for rep-
resenting inherently concurrent behavior, and since
the functional paradigm allows us to explore paral-
lelism on the parallel processing system in the dis-
tributed sites, PROOF is also suitable to support the
software development for large scale distributed par-
allel computing systems with the benefits of both the
object-oriented and functional paradigms.

Our framework has the following phases: decom-
position, object design, verification, coding, partition-
ing and allocation. In this paper, we will discuss the
overall framework for the software development and
focus on the decomposition, object design and verifi-
cation and analysis phases. We assume that the re-
quirement specifications are given and coding using
the PROOF/L language [2] is a straightforward phase,
and hence they will not be discussed here.

3 Decomposition

The decomposition phase is based on the object-
oriented strategy and consists of the following steps:

1) Identify objects and classes.
2) Determine class interfaces.

3) Specify dependency and communication relation-
ships among objects.

4) Identify active, passive and pseudo-active ob-
jects.

5) Identify the shared objects.
6) Specify the behavior of each of the objects.

7) Identify bottleneck objects, if any.

8) Check the completeness and consistency of the
decomposition.

In Step 1), objects are identified by analyzing the
semantic contents of the requirement specifications.
All physical and logical entities are recognized. Each
object corresponds to a real-world entity, such as sen-
sors, control devices, data and actions. One of the
strategies to identify the objects is by examining the
specification written in natural languages. The nouns
in the specification can be candidates for the objects
and the verbs as the operations of that object [4]. An-
other strategy is to draw the dataflow diagrams first
and then detect the candidates for objects from this
diagram [5]. Other techniques for identifying the ob-
jects are summarized in [4]. These techniques can be
used as guidelines for identifying objects. However,
the experience and intuition of the developers still play
an important role in identifying the objects from the
requirement specifications.

In Step 2), class interfaces are determined by identi-
fying methods provided by each object class and then
defining the inputs and outputs of those methods. The
actual design of the methods is postponed until the
object design stage.

In Step 3), the static relationships among objects
are specified by identifying the methods required by
each object. This relationship is specified using the
object communication diagrams. The identity of the
objects, the relationships among them and their meth-
ods are specified so that the features of the real world
problem which are important for the software devel-
oper can be captured.

In Step 4), the objects are classified according to
their invocation as active, passive and pseudo-active.
An active object can initiate activation of other ob-
jects by invoking methods of other objects. A passive
object is activated only when its methods are invoked
by other objects. Pseudo-active objects behave be-
tween the purely active and purely passive objects.
Pseudo-active objects can invoke the methods of other
objects and has methods which can be invoked by
other objects. Since active objects are invoked when
the software system is started, all the threads of con-
trol in the application start from the active objects.
Identifying all the threads is very important in real-
time process control systems. We can identify all the
possible threads of control and then use this informa-
tion to check for the completeness and the consistency
of the decomposition. Classification of objects by their
invocation behavior helps to build the static structure
of the software system among objects.

In Step 5), once the static structure of the software
system is determined, we identify shared objects from
them. Shared object has local data which can be ac-
cessed by a number of objects. The shared objects can
be further divided into two classes of objects: read-
only shared object and writable shared object. The
read-only object has local data which cannot be modi-
fied by other objects or has no local data. The writable
object has local data which can be modified by other

241

objects. Read-only objects can be freely duplicated
as many times as desired. However, writable objects
cannot be duplicated easily. All the access to the data
in the writable objects needs to be synchronized to
maintain the consistent status of the data. Shared
writable objects could become bottleneck objects as
they may have to be executed sequentially to maintain
the consistency of the data. Such bottleneck objects
are often shared components requiring synchroniza-
tion among objects accessing it concurrently. Thus,
identifying bottleneck objects from the decomposition
and refining the decomposition to reduce the number
of unnecessary bottleneck objects may play an impor-
tant role in enhancing the parallelism.

In Step 6), the behavior of each object is specified.
The object communication diagram obtained in Step
3) only describes the static structure and relationships
of the objects in the problem domain. It does not
provide any information regarding the behavior of the
software system to be developed. That is, the con-
trol aspect of the software system is not specified in
the object communication diagram. However, to ver-
ify and analyze the decomposition, we need to define
the behavior of the objects. For this purpose, we use
the notations similar to those in [6):

— SEQuencial execution of methods: When the meth-

ods m;,my,...,m, are executed sequentially in the
order mj,ms,...,my,, its behavior is specified as
SE%%’"I yM2,..., mn)

- current execution of methods: When the meth-
ods my, my, ..., m, are executed concurrently, its be-
havior is specifed as CON(my, ms,...,my,)

— WAIT for method invocation: When an object is
waiting for the invocation of its method m by another
object O to proceed with its execution, its behavior is
specified as WAIT(m, O)

— SELect a method for execution based on a condi-
tion: SEL construct behaves like the CASE statement
in ordinary programming languages. When an object
selects one of the methods for execution from among
the methods m;,m,, ..., m, based on a condition, its
behavior is specified as SEL(my,mg,...,my,)

—~ ONE-OF the methods for execution from a group
of possible methods: ONE-OF construct is used in
cases where different objects could try to invoke the
methods defined in the object O simultaneously. The
object O permits only one object to invoke its method
at a time. This construct serializes the requests and is
typically used to describe the behavior of the shared
writable objects. Note the difference between the SEL
and the ONE-OF construct. Among the set of meth-
ods m,,...,m,, defined in an object, when the ob-
ject permits only one of its methods to be invoked by
other objects, the behavior of the object is specified
as ONE — OF(WAIT(m,,0;),...,WAIT(my, O))

In Step 7), the bottleneck object which may unnec-
essarily degrade the performance of the software sys-
tem is identified. Usually, a bottleneck object will be
a shared writable object. Such objects limit the par-
allelism in the software system. If such an object is
found, then redo or refine the decomposition to reduce
the bottleneck if possible. This step may increase the

number of objects now available in the software sys-
tem. Repeat Steps 2) to 6) until the decomposition is
found satisfactory.

In Step 8), the result of the decomposition is veri-
fied with the user requirements. From the given user
requirements, the possible scenarios of activities are
identified, and each of them is examined using the be-
havior of the objects specified in Step 5). The first ac-
tivity in any scenario must begin in one of the active
objects. The sequence of activities in each scenario
must be reachable by tracing the behavior of the ob-
jects. If there is any scenario that cannot be followed,
the decomposition is incorrect and the decomposition
steps need to be reviewed. The consistency among
objects is verified by examining whether input param-
eters of the methods being called are defined as local
variables in the calling object and output parameters
of the methods being called are defined as local vari-
ables in the called object.

4 Object Design

The object design is specified using the notations
defined in PROOF/L [2]. The class interface defini-
tions and information about the object behavior are
used to design the objects. We have identified three
steps in our approach to the object design:

1) Establish the class hierarchy.
2) Design the method .

3) Determine the bodies of the active and pseudo-
active objects.

Step 1) Because some common operations and/or
attributes between the objects may not be apparent in
the decomposition phase, different objects should be
reexamined to identify the commonality between the
classes in the design phase. A set of operations and/or
attributes that are common to more than one class
can then be abstracted and implemented in a com-
mon class called the superclass. The subclasses then
have only the specialized features. In some cases, a
superclass can be extracted from a single subclass and
put in the class library if needed. Establishing a class
hierarchy in the form of superclasses and subclasses
increases the inheritance in the application. Class hi-
erarchy also increases the modularity of the software
and enhances the extensibility of the software [7].

Step 2) A method of an object consists of an
optional guard and an ezpression. The guard is a
predicate specifying synchronization constraints and
the expression statement specifies the behavior of the
method. The synchronization among concurrent ob-
jects is achieved by the guards attached to the meth-
ods. The expression is specified informally in a natural
language. If there is a guard, the method is executed
only if the guard is true; otherwise, the method waits
till the guard becomes true. When there are simul-
taneous attempts to access the same object through
invocation of its methods, the selection of one method
for execution is done non-deterministically.

It is desirable to refine the methods that access the
shared objects. For example, let object O1 invoke a

method m defined in the shared object O2. Now sup-
pose that the method m requires to read data, per-
form some computation based on the data and then
modify the local data of O2. Then the guard of the
method m needs to be evaluated before the execution
of the method m begins. The activities, reading and
computing, performed on O2 can be executed in par-
allel when another object invokes this method because
those operations do not involve any shared data. How-
ever, these activities cannot be executed by another
object in parallel if the method m contains these ac- -
tivities as part of its code. Thus, the method should
be refined into smaller methods in such a way that the
guard can affect the execution of a short segment of
code only. This refinement of method is similar to the
refinement of the object to reduce the bottleneck in
the decomposition stage.

Algorithm and data structure selection is a signifi-
cant part of the method design. The selection of algo-
rithms to accomplish a specific task should be based on
certain criteria which satisfy the required constraints
such as accuracy, timing requirements, use of common
utilities across the design, reuse of previously devel-
oped software, computational complexity, flexibility,
ease of implementation, understandability, etc.

While designing the algorithms, new classes of ob-
jects may be defined to make the implementation more
efficient. These are low level objects and are not usu-
ally visible externally.

Step 3) A body is associated with each active and
pseudo-active object. There is no body associated
with a passive object as it does not invoke any meth-
ods. The role of a body is to invoke a method and to
modify the state of the objects represented by their
local data. The body in each object is expressed in
the form e;//e2// .../ /ex Where each e; is an expres-
sion representing method invocations and expressions
separated by // are evaluated simultaneously. The
modification of objects is expressed using the special
construct R as R[|O|]e in which O is the object called
the recipient object that receives a new state obtained
as the result of evaluating e {2]. The modification of
the objects is allowed only at the bodies of the ob-
jects. Thus, there is no side effect in the method, and
history sensitivity in the object level is achieved.

The body of an object can be derived using the
class interface and the object behavior obtained from
the decomposition stage. We also need to introduce
the modification operator R in the body of the objects
that are modified. The objects that are modified can
be determined from the method definitions given in
the class interface. Consider an object Oy defined as
the output of a method m. Whenever an object O>
invokes the method m defined in O;, O, will be modi-
fied. Thus, in the body of O,, when m is invoked, the
modification operator R[| Oz |] m is substituted in the
place of the method invocation.

5 Verification

The design of the objects done in the previous phase
has to be analyzed for various liveness and safeness

my
my
H
(a)
1
m1 1
Xz 1
2
s 2
(c)

@ Result

Figure 1 ()’Iskgrés(formation r)ulels) fgl(’) ;‘}les qun(trol con-
structs: (a my,my,...), Mi,...)s
SEQ ma,..)), C g%L(SEé(ml ,Ma,.. 3,
SEQ ll s 12, .o)), (d) ONE—OF(ml, ma, m3)

properties. For this purpose, we transform our desi

into Petri Nets [8]. Petri nets have been selected in
our approach mainly because our design can be easily
represented in Petri net model and because many tech-
niques have been developed to analyze Petri-net mod-
els for various liveness and safeness properties [9, 10].

The transformation of the design to Petri nets con-
sists of the following three steps:

1) Transformation of bodies to Petri nets.
2) Composition of the nets.
3) Refinement of the nets.

Step 1) To transform the bodies into Petri nets, we
use places as the token holder for the control flow,
transitions as the methods, and the arcs between
places and transitions as the control flows. Since a
body is represented as a statement consisting of con-
trol constructs and method names, we show the trans-
formation rules for each control construct in Fig. 1.
Body of an active object could have methods that do
not require modifications and methods that require
modification by using the construct R. The method
requiring modification needs to be executed in serial
to maintain the consistency of the object state. For
this purpose, an additional place called the bottleneck
place is associated with such a method so that the se-
rialization of the execution can be specified. Fig. 2

243

Figure 2: Transformation of a method requiring mod-
ification

904~ 16

Figure 3: Combining two objects with a common bot-
tleneck place

shows the transformation of such a method. The bot-
tleneck place will also be used to compose the Petri
nets in the next step.

Step 2) The Petri nets obtained from the bodies
of the active objects in Step 1) must be composed
together so that the software system can be repre-
sented by a single Petri net representation. To com-
pose the nets, we need to identify the transitions or
the places that serve as interaction points. The in-
teraction among objects occurs only when there is an
object modified by other objects. When an object in-
teracts with another object for accessing the shared
writable object, the bottleneck place will be common
to both the objects. Since the bottleneck place is
used to serialize the interaction among the methods
requiring modification, they can be used as the fusion
point. When the nets are to be composed, the body
of the active object is searched for the methods that
require modification. When such methods are found,
two cases arise. For example, consider two active ob-
jects O, and Op having the following bodies:

Oa: SEQEml, ... ,R[{ O; || ma)

Opg: SEQ(my,...,R[| O; [| m,)
When the methods m, and m,+ are defined in differ-
ent classes (O; # Oj) there is no common bottleneck
place between O4 and Op. Hence, no composition
of the nets is necessary. When the methods m, and
m,: are defined in the same object (O; = Oj), the
two bottleneck places associated with the two meth-
ods are combined to one. This process is called fusion
of places and is illustrated in Fig. 3.

Step 3) The purpose of the refinement is to re-
place a transition by a more complex Petri net in order
to give a more detailed description of the activity in-
volved in the transition. It is analogous to the module
concepts found in many programming languages. At
one level, a simple abstract description of the activ-
ity is given without considering the detailed behavior.
At another level, by refining the nets, a more detailed
description of the activities can be specified.

The transition can be refined according to the fol-
lowing rules. Suppose that a transition {; is replaced
with a subnet S. The subnet S consists of three parts:
input transition, a refinement of net called block, and

Figure 4: Refinement of the methods with the guards.

output transition. The incoming arcs of ¢; serve as
incoming arcs to the input transition. The outgoing
arcs from t; serve as outgoing arcs from the output
transition. All the transitions except the input and
output transitions can only interact with the places
defined within the block of S. All the places can only
interact with transitions defined within S.

Since a method consists of an expression with an
optional guard, the transitions may have to be refined
to specify the guard and the expression and is done
as follows: Let a method m; consist of a guard g; and
an expression e;. Then the transition for m; can be
refined as follows: Guard evaluation is specified as a
place and there is a transition associated with each
result - true or false - of the guard evaluation. In case
of True transition, the expressions are executed. In
case of False transition, go back to the guard place to
evaluate the guard again. The use of True and False
transitions is analogous to the method specified in [8]
to represent condition statement. This refinement pro-
cess 1s shown in Fig. 4.

6 An Example

We will use the warehouse management system as

an example. We will illustrate each step in our frame-
work by taking only a couple of cases. A simplified
version of the requirement of a warehouse manage-
ment system is given below:
The consumer requests items from the warehouse man-
ager and consumes the items delivered by the ware-
house manager. The manager receives the order re-
quest from the consumer and then retrieves the re-
quested items from the rack and deliver them to the
consumer. The manager also places an order to the
producer whenever needed. The producer produces
items only when the manager requests them.

For the decomposition phase, we have :

1) ’{he objects: manager, producer, consumer, and
rack.

2) For the interface of the class manager, the inputs
for the method request-by-consumer are request and
manager; and its output is manager; the inputs for
the method deliver-to-manager are item and manager;
and its output is manager.

244

rack
.put
.get
Tequest-by- o pat get est-by-consumner
producer
manager consumer
.request-by- .
manager fe— _request-by-consumer 1*— .deliver-to-
ot . s} cConsumer
Jproduce t .deliver-to-manager 1 _consume
deliver-to-manager @ deliver-to-consumer
a
p-manager || c-manager
- .dteliver- .reb%}iest- ——
— ol tO-
manager consumer |,
()

Figure 5: (a) An object communication diagram for
the warehouse management system, and (b% object
manager modified

3) Dependency and communication relationships
among objects are identified and described using an
object communication diagram shown in Fig. 5(a).
The links between the objects indicate the method
invocations between the objects. The arrows on the
links indicate the direction of invocation.

4) consumer is an active object, manager is a pseudo-
active object, rack and producer are passive objects.
5) rack is the only object with shared data. The meth-
ods defined in rack — put and get — update the local
data in rack, and thus rack is a writable shared object.
6) The behavior of each object is specified. rack has
two methods put and get, which are invoked by man-
ager. The behavior of rack is specified as follows:
ONE-OF(WAIT(put,manager), WAIT(get,manager)).
consumer has two methods deliver-to-consumer and
consume and its behavior is specified as follows:
SEQ(request-by-consumer, WAIT(deliver-to-
consumer,manager), consume)

Similarly, we have the behavior of other objects:
producer: SEQ(WAIT(request-by-manager, manager),
produce, deliver-to-manager

manager: CON(SEQ(request-by-manager,
WAIT (deliver-to-manager, producer), put),
SEQ(WAIT(request-by-consumer, consumer),
deliver-to-consumer))

7) In manager there are two threads of control: one
is initiated by manager to receive the item from pro-
ducer and store it to rack and the other is initiated by
consumer and to retrieve the item and send it to con-
sumer. Thus, the object manager can be split into two

get,

objects since two independent threads of control exist
in manager. This enhances parallelism. After splitting
manager into two different objects, called p-manager
and c-manager as shown in Fig.5(b), the new object
communication diagram can be obtained by substitut-
ing Fig.5(g)) in place of the managerin Fig. 5(a). The
object behavior for each of the objects can be derived
as follows:

rack: ONE-OF(WAIT(put, p-manager), WAIT(get, c-
manager))

consumer: SEQ(request-by-consumer,WAIT(deliver-
to-consumer,c-manager),consume

producer: SEQ(WAIT(request-by-manager,
p-manager), produce, deliver-to-manager)

p-manager: SEQ(request-by-manager,WAIT(deliver-
to-manager,producer), put

c-manager: SEQ(WAIT(request-by-consumer, con-
sumer), get deliver-to-consumer

8% The following control threads are identified from
the requirements: (a) ‘the consumer requests an item
from the c-manager and the c-manager retrieves it
from the rack ang sends it to the consumer’ and (b)
‘the p-manager asks the producer to produce items
and stores them to the rack’. These control threads
can be verified by starting from the active objects,
consumer and p-manager, and tracing the method in-
vocations using the object behavior.

For the design phase, 1) Establish class hierachy.

In this example, each object is an instance of a dif-
ferent class. Thus no class hierarchy exists based on
the inheritance. However, suppose that p-manager
and c-manager may need to record all the transations
done in each object. Then both objects will need a
method ‘update-transaction-record’. In such a case,
we can define superclass, called manager-class having
the method update-transaction-record, that can be in-
herited to its subclass, p-manager and c-manager.
2) Design of methods. Since an object is an instance
of a class, we define the class. In the following, we
only give the definition of the class Rack. The others
can be done in a similar manner.

class definition Rack(itemtype, capacity)
-- rack is defined as generic class with
-- itemtype and capacity as parameters.
composition
buffer: list of itemtype X count:integer;
-- buffer is a storage for items and count
-- indicates number of items in buffer
method put buffer x
guard: count < capacity;
expression
add an item x to the buffer
method get buffer
guard: count > 0
expression
retrieve an item from the buffer
end class

3) Determine the body of active/pseudo-active ob-
jects. We have two active/pseudo-active objects, p-
manager and consumer. In the following, we show

245

request-by-manager
request-by-consumer

deliver-to-manager
deliver-to-consumer|

consumer

p-manager

Figure 6: Transformation of the bodies p-manager and
consumer.

how the body of p-manager can be obtained from the
bahavior of the objects. .

An important aspect of the design here is indicating
the modification of the objects. For this we attach R
at the method put since this method modified the p-
manager. Thus, R[|rack|] put is substituted in place
of put. This modification of body will be implemented
at the coding stage. The design of other constructs is
straightforward and will not be discussed here.

Verification is done by transforming the design into
Petri-nets and then applying one of the many Petri-
net algorithms to verify the net for deadlock, livelock,
etc. \ﬁe will consider the bodies of the active objects
p-manager and consumer which are given respectively
as follows:

SEQarequest-by-manager, produce, deliver-to-
manager,R[|rack|]put)

SEQ(request-by-consumer, R[|rack[}get, deliver-
to-consumer, consume) :

In Step 1), each body is translated. For each body,
based on the control structures used, the correspond-
ing net structure is copied and methods are associated
with the transitions. In the case of the methods that
are attached to R, the bottleneck place is added to the
corresponding transition. This step is shown in Fig.
6. In Step 2), the two bottleneck places are fused to
compose the two nets into one. Because the methods
put and get are from the same object, we fuse the two
nets into one via the bottleneck place. In Step 3), the
transitions representing methods with guards are also
refined resulting in the final net. Because the methods
put and get have guards, the net is refined to describe

Figure 7: Refinement of the methods with the guards.

these guards. This is shown in Fig. 7. Various Petri
Net based algorithms can now be applied to this net
to analyze the net for the desired properties.

7 Discussion

In this paper, we have presented a framework for
the software development for distributed parallel pro-
cessing systems without considering the network de-
tails which will be handled by the translator in the
implementation. The implementation phase is done
in the following steps: coding, translating to a target
code, partitioning, allocation and ezecution. Coding is
perfomed after the verification stage. Coding in our
framework will be done using the PROOF /L language
which is based on PROOF. The advantage of using
this language is that the programmer will not have to
be bothered by the synchronization, communication
or the configuration of the network. PROOF/L code
is translated into the target code and then executed on
the target machine. In this case, the target machine
will be the network of parallel computers. Translating
PROOF/L into the target language can be done in
two steps: In the first step, PROOF/L code is trans-
formed into an intermediate form. This intermediate
form will be independent of any particular language
and will not reflect any characteristics of any specific
architecture. This will facilitate the implementation
of the PROOF/L code on different computers and dif-
ferent target language easily. Also, the intermediate
form will facilitate the exploration of the fine grained
parallelism. The second step is to translate the inter-
mediate form into the target language. The architec-
ture of the target computer as well as the features of
the target language will have to be used as inputs for
this translation step.

Partitioning is performed to reduce the communi-
cation overhead among objects by clustering together
the objects that communicate extensively with each
other. Partitioning can be done after the verification
stage. The inputs to this stage are the object com-
munication diagram, the number of times a thread of

control is invoked and the number of times certain
operations are performed. This information based on
heuristics helps in estimating the number of times a
method is invoked in an object. Based on this infor-
mation, the communication overhead between objects
can be determined and used by the partitioning al-
gorithm. The partitioned cluster could be allocated
to a site in the distributed system. Each method in
an object can be the unit of parallelism that can be
executed in the parallel processing system in a site.

The intermediate form, architectural details and
the target language details are used as inputs to pro-
duce the target code from the intermediate form. The
partitioned and translated code will be allocated onto
the various processors in the network for execution.

References

[1] David B. Skillicorn, “Architecture-Independent
Parallel Computation,” IEEE Computer, Vol. 23,
No. 12, December 1990, pp. 38-50

[2] S.S. Yau, X. Jia, and D-H. Bae, “PROOF: A
Parallel Object-Oriented Functional Computa-
tion Model,” Jour. of Parallel and Distributed
Computing, Vol. 12, No.3, July 1991, pp. 202-
212.

[3] S.S. Yau, X. Jia, D-H. Bae, M. Chidambaram,
and G. Oh, “An Object-Oriented Approach to
Software Development for Parallel Processing
Systems,” Proc. 15th International Computer
Software & Applications Conference, (COMP-

SAC 91), September 1991, pp. 453-458.

[4] G. Booch, “Object-Oriented Development,”
IEEE Trans. on Software Engineering, Vol. SE-
12, No. 2, Feb. 1986, pp. 211-221.

[6] S.C. Bailin, “An Object-Oriented Requirements
Specification Method,” Communications ACM,
Vol. 32, No. 5, May 1989, pp. 608-623.

[6] S.S. Yau, C.-C. Yang, and S.M. Shatz, “An Ap-
proach to Distributed Computing System Soft-
ware Design,” IEFEE Trans. on Software Engi-
neering, Vol. SE-7, No. 4, July. 1981, pp. 427-
436.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen, Object-Oriented Modeling and
Design, Prentice Hall, NJ., 1991.

J. L. Peterson, Petri Net Theory and the Modeling
of Systems, Prentice-Hall, 1981.

S.S. Yau and M. U. Caglayan, “Distributed Soft-
ware System Design Representation Using Modi-
fied Petri Nets,” IEEE Trans. on Software Engi-
neering, Vol. SE-9, No. 6, Nov. 1983, pp. 733-745.

S. S. Yau and C.-R Chou, “Control Flow Analysis
of Distributed Computing System Software Using
Structured Petri Net Model,” Proc. Workshop on
the Future Trends of Distributed Computing Sys-
tems in the 1990s, Sept. 1988, pp. 174-183.

(8]
9

[10]

