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Nonlinear Finite Element Simulation of Shape
Adaptive Structures with SMA Strip Actuator

JIN-HO ROH, JAE-HUNG HAN* AND IN LEE

Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology
373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea

ABSTRACT: In this research, the thermomechanical responses of shape memory alloy
(SMA) actuators and their applications in the shape adaptive structures combining strip SMA
actuators are investigated. The numerical algorithm of the three-dimensional (3-D) SMA
thermomechanical constitutive equations based on Lagoudas model is developed to analyze
the unique characteristics of a SMA strip. The Green—Lagrange strain-displacement
relationships are adopted to consider the large displacements, large strains, and material
nonlinearity. For the numerical results presented in this article, the ABAQUS finite element
program has been utilized with an appropriate user supplied subroutine (UMAT) written by
FORTRAN for modeling a SMA strip and host elastic structure elements. In this model of a
SMA strip, the shape memory effect is restricted to one-way applications. Numerical results
show that an SMA strip actuator can generate enough recovery force to deform the host
structure and sustain the deformed shape subjected to large external load, simultaneously. But,
there are some difficulties found in designing reversible shape adaptive structures with this
actuator, even if the SMA strip is coupled to an elastic structure which compels the SMA to

recover the initial condition.

Key Words: thermomechanical response, SMA, adaptive structures.

INTRODUCTION

NCREASED demands for improving the structural

performance with recent advances in material science
have produced smart structures which include the ability
to sense, diagnose, and actuate in order to effectively
perform desired functions. Some materials of interest in
the development of smart structures are piezoelectric
crystals, electrostrictive, and magnetostrictive materials,
shape memory alloys, electrorheological fluids, and
optical fibers. Compared with piezoelectric, electrostric-
tive and magnetostrictive compounds, shape memory
alloys (SMA) are relative newcomers to the arena of
smart materials.

The SMAs are characterized by solid state transfor-
mation between austenite and martensite phases in
response to mechanical and thermal loadings. This
provides the SMAs with the capability for sustaining
and recovering transformation strain up to 10% which
imbues them with unique actuator and potential sensor
capabilities in smart structural systems. The inherent
thermal-mechanical coupling and hysteresis associated
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with the phase transformations also pose significant
modeling challenges which must be implemented to
investigate the capabilities of SMAs as actuators or
sensors. Several mathematical models that reproduce the
SMA constitutive behavior have been proposed in the
last two decades. The majority of the constitutive
models reported in the research of SMA modeling can
be formally classified into one of the two groups:
micromechanics-based models and phenomenological
models. The essence of the micromechanics-based
models is in the modeling of the single grain and further
averaging of the results over a representative volume
element (RVE) to obtain a polycrystalline response of
the SMAs. The micromechanics-based models were
developed using the thermodynamic framework and
micromechanics of a single crystal, and evaluating the
energies involved during the phase transformations.
Moreover, these models adopt homogenization tech-
niques to derive the overall behavior of the SMA (Sun and
Hwang, 1993a, b). The advantage of the micromechanics
models is their ability to predict the effective material
response with only crystal lattice parameters and the
information from the martensitic transformation at
the crystalline and grain levels. However, these
models are complex and require a large number of
numerical computations. On the other hand, in the
phenomenological models, a macroscopic free energy
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function that depends on internal variables and their
evolution equations are usually postulated and used in
conjunction with the second law of the thermodynamics
to derive constraints on the constitutive behavior of the
SMAs. This model does not directly depend on the
behavior of the material at the microscopic level. But
this approach is useful for engineering applications
because of the relative simplicity of implementation in
computational procedures. In particular, Liang and
Rogers (1990) have developed an empirically based
cosine model to represent the martensite fraction as a
function of stress and temperature during transforma-
tion. But this model has a limitation to investigate the
behavior of SMAs below some range of temperature.
Brinson (1993) modified the Liang model and could
predict the thermomechanical response of SMAs with
more general cases. Some three-dimensional (3-D)
models from this group have been derived by the
generalization of 1-D results. Boyd and Lagoudas (1996)
proposed the unified thermodynamic constitutive
model for SMA materials based on the thermodynamic
framework. By using a free energy function and dissipa-
tion potential, pseudoelasticity and shape memory
effect are modeled accounting for 3-D transformation.
Qidwai and Lagoudas (2000) presented a consistent
thermodynamical model based on the principle of
maximum dissipation transformation considering
generalized transformation function. A comprehensive
study on the numerical implementation of SMA
thermomechanical constitutive response using elas-
tic predictor-transformation corrector algorithms was
presented.

As SMAs can sustain large forces and displacements,
alter their shape, and change their stiffness and damping
characteristics with temperature or applied load, they
have been excellent candidates for adaptive or smart
structural systems. Roh and Kim (2003) considered a
low velocity impact for the hybrid smart plate. The
hybrid smart plate using SMA actuators and piezo-
electric sensors can enhance its global resistance to low
velocity impact. Lee et al. (2003) investigated the
thermomechanical responses of SMA hybrid composite
shell panel. The numerical results showed that SMA
actuator could enhance the structural stiffness and
suppress thermally buckled deflection of the composite
shell panel. Marfia et al. (2003) investigated the behavior
of SMA Ilaminated beams. The numerical results
demonstrated that the SMA actuators are very effective
to change the shape of beam structure by performing
temperature cycles on the SMA layers. The high work
density to weight ratio of SMAs makes them ideal
candidates for a variety of aerospace applications. In the
1995 Smart Wing Program, SMA torque tubes were
employed to modify aerodynamic properties of an
airfoil to increase lift and rolling moments. Singh et al.
(2003) described the design, analysis, and testing of an

improved SMA based tracking tab actuator for a
helicopter rotor to minimize vibration due to rotor
dissimilarities. Kudva (2004) illustrated the potential
of bulk SMA to improve flight -characteristics
within the constraint mandated by low switching
frequencies.

In this study, the thermomechanical responses of
SMA actuators and their applications in the shape
adaptive structures are investigated. The numerical
algorithm of the 3-D SMA thermomechanical constitu-
tive equations based on Lagoudas model is developed
to analyze the unique characteristics of a SMA strip
such as the pseudoelastic behavior and shape memory
effect. The incremental SMA constitutive equations are
implemented in the user supplied subroutine UMAT
by using ABAQUS finite element program. In the
finite element modeling, The Green—Lagrange strain-
displacement relationships are adopted to consider
the large displacements, large strains, and material
nonlinearity. The interactions between host structure
and a SMA strip actuator and the actuator characteristic
such as how magnitude of recovery stress can be
generated by heating and cooling cycle are investigated
by considering 3-D effect of SMAs. In this model of
a SMA strip, the shape memory effect is restricted to
one-way applications, unless the SMA is coupled to an
elastic structure which compels the SMA to recover the
initial condition. The shape change of structure is caused
by initial strained SMA strip bonded on the surface of
host structure when thermally activated. The SMA
strip starts transformation from the martensite to
the austenite state upon actuation through heating,
simultaneously recovering the initial strain, thus making
host structure to change the shape. In the numerical
results, a SMA strip actuator can generate enough
recovery force to deform the host structure and sustain
the deformed shape subjected to large external load,
simultaneously.

NUMERICAL IMPLEMENTATION OF SHAPE
MEMORY ALLOY CONSTITUTIVE EQUATIONS

Constitutive Model of SMAs

For the numerical analysis, the 3-D incremental
formulation of the SMA constitutive model based
on Lagoudas model (Qidwai and Lagoudas, 2000)
is used to predict the thermomechanical responses of
SMA. The model consists of three sets of equations:
The constitutive equations, which describe the incre-
ment of strain, ¢&; in terms of the increments
of stress, o;;, temperature, T, and martensite fraction,

& ie.,

& = Syt % + oy T+ Q& (1
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the transformation equations, which relate the increment
of martensite fraction to transformation strain, sl’j ie.,
sf] = Ay 2)
and the transformation surface equation, which controls the
start of the forward and reverse phase transformation, i.e.,

1
M4 :G;ff[\ij + —O',:,'ASU'/([O'/([ + AOl,'jO','j(T— To)

2
T
+ pAc|:(T— T,) — Tln(?)} (3)
+ pAs, T — (z_ AU, = Y

€
where 7 is the thermodynamic force conjugated to &. The
terms that are defined with the prefix A in Equation (3)
indicate the difference of a quantity between the
martensite and austenite phases as follows:

M A M _ A M _ A
ASjiy = S”kl — Si,k,, Aoy = o — o, Ac=c" —c
Asy = sg/[ - SOA, Auy = ug'l - uOA
“4)

Also, p, ¢, s,, and u, are the mass density, specific heat,
specific entropy, and specific internal energy at the
reference state, respectively. The superscript A stands
for austenite phase, and superscript M stands for the
martensite phase. The plus sign on the right hand side in
Equation (3) should be used for the forward phase
transformation (austenite to martensite), while the
minus sign should be used for the reverse phase
transformation (martensite to austenite). Note that the
material constant Y* is the measure of internal dissipa-
tion due to phase transformation and can be interpreted
as the threshold value of the transformation surface 7
for the start of the phase transformation. The transfor-
mation function can be defined in terms of the
transformation surface equation as follows:
*
®— T— Y, 5 >0 5)
—T—Y, &£<0

The transformation function ® takes a similar role to
the yield function in plasticity theory, but in this case,
an additional constraint for martensite fraction & must
also be satisfied. Constraints on the evolution of the
martensite fraction are expressed as,

£>0, ®(0,7T.8) <0,
£<0, ®(0,T,8<0,

<I>§ 0 ©)
PE=0
The inequality constraints on ®(o, T,£) is called as the
transformation condition and regarded as a constraint
on the state variables’ admissibility. For ® < 0, Equation (6)
requires £ =0 and elastic response is obtained. On
the other hand, the forward phase transformation
(austenite to martensite) is characterized by ® = 0 and

£ > 0, while the reverse phase transformation (martensite
to austenite) is characterized by ® = 0 and & < 0.

Finally, Equations (1), (2), and (6) can be composed
for finding unknown state variables and predicting
the thermomechanical responses of SMAs. In the
formulation, Equation (1) is a generalized Hooke’s law
in incremental form, Equation (2) is the flow rule
for transformation strain, and Equation (6) is the
transformation function. In total, there are five
unknown state variables in three Equations (1), (2),
and (6), i.e., total strain tensor g;, stress tensor oy,
transformation strain tensor el’-j, temperature 7, and
martensite fraction & If ¢; and T are given, such as in
finite element analysis, or o; and T are given, when
stress formulation is utilized, the other variables can be
solved by using Newton—Raphson method and return
mapping algorithms (Ortiz and Simo, 1986). In the
above equations Sj; = (Cl-,-k/)*1 is the elastic compliance
tensor and oy is the thermal expansion coefficient
tensor, where both Sy and «; are given in terms of
the volume fraction of martensite by,

A M A
Sijr = Sy + 5<Sg/k/ - Si/kl)

A M_ A M

aj = o + 5(“@/ - O‘zﬁ/)
where the superscripts A and M denote the austenite and
martensite phases, respectively. The various other terms
in Equations (1)—(6) are defined by,

Q,‘j = AS@/k}O’k] + AOlij(T— TO) + Ai/ (8)

where Aj is the transformation tensor which determines
the transformation strain direction and is assumed to
have the following form:

3 —offy—1 —aff’ -

ZH(eM) &, >0

=12 @) e E ©)
HE ") el £<0

[/

A

where H is the maximum uniaxial transformation strain
™ &'’ is the transformation strain at the reversal of

phase transformation, and

3 o i , 1 2

ff’ cff ff' _ _eff iy =t

zag- o, ag- = f] —gazk&;,-, &= 58;—83

(10)

where the effective stress of" = oy — p(9f/de};) acts as a
thermodynamic force conjugate to e,’] The hardening
function f(&) is responsible for the transformation-

induced strain hardening in the SMA material and is
given by,

O—_e[f —

| .
prMéz + (11 + m2)E, £>0

NE) = )

1 .
prA$2 +(u1 — pa)g, £<0
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where pbM, pb*, 1, and p, are transformation strain
hardening material constants.

In the numerical implementing of the SMA constitu-
tive model, the tangent stiffness tensor and the stress
tensor at each integration point of all elements should
be updated in each iteration for given increments of
strain and temperature. To derive the tangent stiffness
tensor, the consistency condition, ® =0, can be
expressed by,

0o . 9D . 9D .
Equations (1) and (12) can be used to eliminate & and
obtain the relationship between stress increments and
strain and temperature increments as,

6y = Ligiér + ;T (13)

where the tangent stiffness tensor Ljy; and tangent
thermal moduli /;; are defined by,

Qij(acb/amd))‘1

f= <S”"" 09/

-1
b= Sy (Qk (9 /T) — (9% /o) (Si) et ak,>

: (3D /3E) — (3P /303)(Siikr) ' O
(14)

Numerical Algorithms of SMA Constitutive Equations

To calculate the increment of stress for given
strain and temperature increments, a return mapping
integration algorithm (Ortiz and Simo, 1986) has been
used. Equation (1) can be written in the following
incremental form,

Aoy = (Si)) (At — a AT — QiAf) (15)

The elastic predictor is calculated in the first step by
letting A£ =0, i.e.,

Ao = (Sj) " (Aer — aAT), o) =0l + Acj; (16)

An iterative scheme is then applied to obtain the
transformation corrector from Equation (15) by
assuming Aeg; =0, and AT =0, ie., during the pth
iteration,

Aol = —[Suu&)] " Of aE! (17)
The transformation function, Equation (5), is expanded
into a Taylor series about the current value of state
variables, denoted by ‘p’, and is truncated at the linear
part as shown below:

P JDP
Aol 4 T
i &

where temperature T is fixed, and thus AT?*! = 0. By

using Equation (17), A&*! and As,’-j'.’+l can be obtained

0P
(0. §) = (07 8) + 5 AgL(18)

as follows:
14
(3PP /doy)(Sia) ™' Oy — (BPP/8)” (1)

P AP A gptl
Asij —Ag,'AE

A$p+1 —

The state variables &' and e can then be updated
as follows: ‘
gl =g+ agtl, o

o a Ip+]
i =&y T Ae (20)

i
and the stress can then be obtained by using the
constitutive equation

UZH = [Sg/c1(§p+l)]7l[8/cz — a(ETHAT - (65(/’/“)] (21)

The iterative procedure ends if A&*! is less than a
specified tolerance (10~°). If the convergence criterion is
not satisfied, calculations given by Equations (17)—(21)
are repeated until the convergence is achieved. The
numerical algorithm of SMA constitutive equation for
the ABAQUS user subroutine is illustrated in Figure 1.
In the numerical algorithm, Newton—Raphson iteration
method is used to solve the increment of martensite
fraction in Equation (19).

FINITE ELEMENT MODELING

For the finite element modeling of SMA actuator and
elastic structure, incompatible eight-node brick element
is used (Figure 2). This type of element has been found
to be suitable for 3-D stress analysis and improve the
accuracy of bending stiffness. Thus, the interpolations
of displacement fields (uy, up, and wu3) in the x-y-z
coordinate system for the eight-node brick element with
incompatible modes are expressed as,

8 3
Ug = Z:Niuqi + Z: Siagi, q=1,2,3 (22)
= =

where u,; is the displacement of nodal point i, and a,; are
the variables of incompatible modes. The shape functions
of the eight-node brick element, ; (i = 1-8), and the shape
functions of the incompatible modes S; (i=1-3), are

_ (I=r1=s5)(1-2 (=51 -1

N < N, = .
Ny U0y (=i 9=
N = d=nd ;s)(l ) S G )¢ ;s)(l +1)
N, = (Ltnd ;:S)(l L A Gl € ;s)(l +1)
Si=1=r), SS=01-5), Si=(01-1)

(23)
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INITIAL CONDITIONS

t
ojj. €jj €p T, &

TRANSFORMATION FUNCTION (@)

v

LOADING CONDITIONS

+loading / unloading process
»phase transformation direction

YES

|®| < TOLERANCE

» NO
v
INCREMENT OF MARTENSITIC FRACTION (A¢)
p
Aépﬂ D!
oDP S Op oDP
— Sjp)™ Q- ——
90 a&

|A¢| < TOLERANCE

UPDATE STATE VARIABLES
p+1

pH pt1 p
t P o.ptl ptl_ .p ptl t L t
Agij =AGAET 8T =8N+ AL ,e,-j=e,-j+A§ ,

1
GFL[S/M (& )]_1 [gkl - o4 (&) AT- glt: ]

UPDATE JACOBIAN MATRIX
Ly tangent stiffness tensor
;i tangent thermal moduli

RETURN

Figure 1. Algorithm of the SMA constitutive equation for the
ABAQUS user subroutine.

A 4

where r, s, and ¢ are the natural coordinates for each
element whose values vary form —1 to +1. To consider
the large displacements, large strains, and material non-
linear of SMAs, the Green—Lagrange strain—displacement
relationships are adopted in this analysis. The strain
vector in material Cartesian coordinates can be written
as follows:

1
Exy = UJ. | +§ [(u, D+ (u21)* + (u3,1)2]

1
Ey =w2+3 [(u1,2)” + (u2.2)” + (13.2)*]

tll

\4
-

_— -#3

N

Figure 2. Schematic of the eight-node element.

1
gz =U33+5 [(1,3)* + (u23) + (u3,3)7]

1 1
= §(u1,2 +u> 1) +§(u1,1u1,2 +up 1un, 0 + U3 U3 2)

M
=
<

1 1
&y = E(um +u3 ) + 5(“1,2“1,3 + up oy 3 4 U3 213 3)

1 1
Exz = 5(“1,3 +u3, 1) +§(M1.1u1,3 Uy un 3 4 Uz 1U33)

24)

where wuy,u,us are the displacements and the comma
denotes the partial differentiation.

Considering the nonlinear motion of a body in a
Cartesian coordinate system, the equilibrium position of
the body is evaluated at the discrete time position 0, At,
2At, 3At, ..., where At is an increment in time. Assume
that the solution for the static variables for all time steps
from time 0 to time ¢ have been solved and the solution
for time ¢+ Atz is required next. It is noted that the
solution process for the next required equilibrium
position is typical and would be applied repeatedly
until the complete solution path has been solved. By
using the principle of virtual displacement, the equilib-
rium of the body in the configuration at time ¢ + A7 can
be expressed. The principle of virtual displacement
requires that

At At At
/ ‘[ij(SH_Afe[j dv = R (25)
Z+AIV

where FA/R is the external virtual work expression,

AL _ +tAL At AL _+AL £ oo 1+AT
R= [+Au1 et St da—l—/ Priay Jidu 2 dy

ALY

(26)
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In Equations (25) and (26), Suy, is a virtual variation in
the current displacement components “"2/u;, and §,4a,¢;
are the corresponding virtual variations in strain. The
Cauchy stress tensor is denoted by "™/t at time 7 + At
and [TR11, "2 p, and !T3! fi represent the surface force,
the specific mass and the body force per unit mass at
time ¢+ Atf, respectively. By using the Lagrangian
formulation (Hibbitt et al. 1970), the approximate equi-
librium equation can be solved. Using Equations (22)
and (24) to evaluate the displacement derivatives
required in the integrals, Equations (25) and (26)
becomes, considering a single element

(iKL + iKN]_)ll = TAIR — iF 27)

where !Kp, ‘Knp and [F are obtained from the finite
element evaluation, respectively, i.e.,

Ky = / ‘B ,C!BL'dv (28)
Ly

Ky, = / Bl B 29)

'F = / ‘Bl dv (30)
4

In Equations (28)—(30), the elements of the linear and
nonlinear strain-displacement transformation matrices
B and ‘Bnp, respectively, and the elements of the
incremental material property matrix, ,C, are defined
with respect to the configuration at time 7, 't is a matrix
and ’T is a vector of Cauchy stresses in the configuration
at time f. The loading vector "*2’R in Equation (27)
can be obtained from the wusual finite element
evaluation way and detailed expressions for the

Table 1. Material parameters of SMAs.

parameters used in Equations (27)—(30) can be found
in Bathe et al. (1975).

RESULTS AND DISCUSSION

For the numerical results presented in this article, the
ABAQUS finite element program has been utilized with
an appropriate user supplied subroutine (UMAT) for
the modeling SMA and elastic structures. The material
properties of SMA (Qidwai and Lagoudas, 2000) used
in the finite element analysis are given in the Table 1.

Code Verification and Comparison

To verify present numerical algorithm developed for
the thermomechanical responses of SMA strip actua-
tors, the simple cases are investigated and the result is
compared with Qidwai and Lagoudas (2000) result.
Figure 3 shows the schematic of the SMA model and the
loading histories. Only two 3-D incompatible eight-node
elements are used in this model. Because the use of
UMAT generally requires considerable development
and testing, initial testing on a simple element model is
recommended. In the case of Qidwai and Lagoudas
(2000), it is assumed that the boundary conditions are
such that except for the axial component of stress oy,
the rest of the stresses are zero. But this boundary
condition makes 3-D model of SMAs be reduced to 1-D
model. So, it is not appropriate to consider thermo-
mechanical characteristics of 3-D SMAs. In the present
numerical results, two kinds of boundary conditions are
considered such as (i) case I: the rest of the stresses are

Material constants Values Model variables
EA 70.0 x 10°Pa Used to calculate isotropic compliance tensor, S* and SM
EM 30.0 x 10°Pa
WA =M 0.3
ot 22.0 x 1075/K Used to calculate isotropic thermal expansion coefficient tensor, «* and oM
oM 10.0 x 107¢/K
pAc =cM —ch 0.0 J/(m3K)
H 0.05 pASe _ (40"
A " ’ H dT
d d

(d—‘;) = (d—‘;) 70.0 x 108 Pa/K

1
A 315.0K v =pAlo+ i =5 PASG(MP®S + A%
A°® 295.0K pb? = —pASH(A% — A%S)

1

A°S 291.0K o = Z(pbA — pb™)
Mof 271.0K yE — %,OASO(AOf _ MOS) -‘r%pASO(MOS _ Mof _Aof +AOS)
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(a) FEM model of SMA

Applied load

Temperature

0 1 2
Time step (1)

() Uniaxial stress with constant temperature

©

©

Q

°

2

=

o

< T 1
0 1 2

g

2

o

(0]

[oN

£

(0]

—
0 1 2

Time step (1)

(i) Constant stress with temperature cycle

(b) Loading histories

Figure 3. FEM model and loading histories.

zero except for the axial component of stress oy, and
(i) case II: cantilevered (u=v=w =0, at X =0).
Firstly, the uniaxial stress with constant temperature
loading case is investigated. The initial temperature is
chosen to be austenite finish temperature, 7=42°C. The
isothermal loading history is applied and assumed to be
a linear function of time step, . The maximum load
is applied such that all austenite phases transform to
martensite and transformation strain of 5% is followed
by full unloading to austenite state. In Figure 4, the axial
stress is plotted against the axial strain. As can be seen,
the present result with boundary condition (case I)
is good comparable with Qidwai and Lagoudas (2000).
But in case of cantilevered boundary condition (case II),
there are some differences in phase transformation
region, because the phenomenon of stress concentration
occurs in the boundary region. It should be expected
that the result of case II should be same with Lagoudas
if the number of elements are increased and observing
point is far enough from boundary area to ignore the
effect of stress concentration. Lastly, uniaxial constant
stress thermally induced transformation is investigated.
The constant stress with temperature cycle loading
is applied. The SMA is put through a temperature
cycle at a constant axial stress of 50 MPa. The initial
temperature of the SMA is above A°. Next the

500 - ____ Lagoudas
o Present (case I)
—m— Present (case Il)
400
©
o
2
= 300
b><
2
© 200 |
177
100
0 1 . 1 " 1 " 1 " 1 1 " 1

-0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Strain, €,

Figure 4. Hysteresis of axial stress vs axial strain.

temperature is decreased below M°' for full forward
transformation and the increased above 4° again for
full reverse transformation. In Figure 5, the uniaxial
strain with temperature cycle is illustrated. As can be
seen, both present results (case I and II) are well
compatible with Lagoudas results. But in case of
cantilevered boundary condition, thermally induced
transformation strain is little more than 0.05. If the
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Figure 5. Hysteresis of axial strain curve with temperature cycle.

(a) FEM model

Temperature Applied load

0 1 2
Time step (1)

(b) Loading history

Figure 6. FEM model of a SMA wire and loading history.

SMA is subjected to only uniaxial stress, the strain
cannot exceed the value of 0.05. But the stress
concentration effect induced cantilevered boundary
condition generates complex stress condition near the
boundary area.

Thermomechanical Responses of SMA Wire
and Strip Actuator

SMA wire and strip are modeled numerically to
investigate the thermomechanical responses and capa-
bilities of SMAs as actuators. First, the SMA wire is
investigated and this numerical result is compared with
I-D SMA models such as Liang (1990) and Brinson
(1993). Figure 6 illustrates the SMA wire model
with seventy-five 3-D incompatible eight-node elements

300 | Element location (x/L)
r —— 0.013
250 —e— 0.026
—_ | —2—0.04
N —=— 0.6
S 200 —e— 10
‘; L
© 150 b
@ I
<
&% 100 |
50 +
" 1 " 1 " 1 " 1 " " 1 "
8.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Strain, €,
(a) Shape memory effect (T=22°C)
500
Element location (x/L)
—=— 0.013
400 1 —e— 0.026
= .
a
= 300
%
©
2 200
<
77
100
0 B | N | N | N | N | N | N
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Strain, €,,
(b) Pseudoelastic behavior (7=45°C)

Figure 7. Stress—strain curves with different temperature.

in x-direction and loading history. This wire model has
a rectangular cross section (¢ =b = 0.4 mm) and its
dimension is very small comparing with longitudinal
dimension (L/a = 75). Figure 7 shows the stress and
strain curves at the different location of wire elements
with temperature 7=22 and 45°C indicating the shape
memory effect and pseudoelastic behavior, respectively.
As can be seen, stress and strain curves have the
different values with respect to the different location due
to the stress concentration near the boundary area even
if simply uniaxial load is applied. In case of shape
memory effect, the residual transformation strain cannot
exceed the value of 0.05 in this model if a SMA is
subjected to uniaxial stress. But the effect of stress
concentration induced cantilevered boundary condition
induces the complex stress condition near boundary area
even if simply uniaxial load is applied (Figure 8).
So, transformation strain at the element location
x/L =0.026 should be beyond the limited value of
0.05. When the element location is far enough from
boundary condition, the effect of stress concentration
can be neglected such as x/L=0.6 and x/L=1.0
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von-Misesstress (MPa)
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Figure 8. Stress distribution of a SMA wire at time step t=1 and
T=22°C.

and the transformation strains are within the value of
0.05. But, if the SMA wire is modeled based on 1-D
constitutive equation, this model cannot predict such a
phenomenon and illustrates the same value of stress—
strain curves at all locations. So, the development of
SMA constitutive equation based on 3-D model is
necessary to investigate the thermomechanical response
of SMA with more accuracy. Uniaxial stress—strain
curves with temperature 7'=35°C predicted by the
different equations are plotted in Figure 9. Present
result at the location x/L =1 is compared with Liang
(1990) and Brinson (1993) equations which are imple-
mented numerically based on 1-D constitutive equation.
To modify the stress of phase transformation start,
critical stresses for transformation are used in the
Brinson model as follows:

o =5MPa, of =136 MPa (31)

As can be seen, the stress—strain curves of all three
are similar, and they give the same amount of total
hysteresis in a complete loading—unloading cycle, except
for the curve where the phase of the SMA is
transformed. Liang (1990) and Brinson (1993) equations
are based on cosine hardening law but present model is
based on polynomial hardening law. To illustrate the
capability of the SMA wire as an actuator, the recovery
stress induced by heating with different initial strains is
investigated. The SMA wire which has residual initial
strain generates extremely large recovery stress as the
temperature is raised through austenite start tempera-
ture, and austenite finish temperature, because both
edges of the SMA wire is clamped as the transformation
occurs. As can be seen from Figure 10, the recovery
stress is decreased until 4% (22°C) due to thermal
expansion effect. Although the temperature is above 4%,
the recovery stress continues to decrease except in the
case of 3% initial strain, because thermal expansion is
more influential than recovery stress when SMA is

400
| —— Liang
350 - —&— Brinson
r  —=— Present
300

250
200

150

Stress (MPa)

100 |&

50 §

1 " 1 " 1 " 1 "
0.03 0.04 0.05 0.06 0.07

Strain

0 . 1 -zl
0.00 0.01 0.02

Figure 9. Stress—strain curves at temperature, T=35°C.
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Recovery stress (MPa)

" " 1 1 "
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Temperature (°C)

Figure 10. Recovery stress of a SMA wire vs temperature.

subjected to low initial strain. After the end of phase
transformation induced temperature, the recovery stress
is decreased again due to thermal expansion effect.
It can be observed that larger recovery stress and higher
modified austenite finish temperature should be induced
by increasing the initial strain.

For the next numerical analysis, a SMA strip model
with cantilever subjected to uniaxial force is illustrated
in Figure 11. This analysis uses 16 x 10 x 1 mesh with
3-D incompatible eight-node elements. Figure 12
shows the unique characteristics of the SMA strip at
different temperatures such as shape memory effect and
pseudoelastic behavior observed at x/a=1 and
y/b = 0.5 respectively. The hysteresis loop of recovery
stress with respect to temperature variation is illustrated
in Figure 13. The SMA strip is restrained during the
phased transformation induced by heating process,
so that the large recovery stress is generated by shape
memory effect. The recovery stress is decreased until 4°°
(22°C) due to thermal expansion effect. But in case
of 1% initial strain, the recovery stress continues to
decrease after the temperature of 4°°. Because the stress
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Figure 11. FEM model of a SMA strip.
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(a) Shape memory effect (7=22°C)
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(b) Pseudoelastic behavior (T=45°C)

Figure 12. Unique characteristics of a SMA strip with different
temperatures.

generated by thermal expansion is more influential than
recovery stress induced by phase transformation. After
austenite finish temperature is modified by initial strain,
the recovery stress should be decreased again due to
thermal expansion effect.

1000
| Heat R -
ool o 1111
SMA strip .
600

400

200

Recovery stress, c,, (MPa)

—e—1% Initial strain —— Heating
—a—5% Initial strain ------- Cooling

. . . . .
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Temperature (°C)

Figure 13. Hysteresis of recovery stress vs temperature cycle.
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Figure 14. Residual recovery stress with 1% initial strain by
temperature cycle.

As can be seen from this hysteresis loop, recovery
stress is returned to the initial state in case of 1% initial
strain except in case of 5% initial strain. In case of 1%
initial strain, reverse phase transformation to austenite
is completely finished by heating process. So complete
forward phase transformation can be acquired by
cooling process. But in case of 5% initial strain, reverse
phase transformation to austenite does not get com-
pleted. Because the initial state at the beginning of
cooling process is not a complete austenite phase,
residual recovery stress remains at the end of cooling
process. As should be expected, the recovery stress with
1% initial strain cannot be returned to initial state when
reverse phase transformation is not completed by
heating process (Figure 14). The distribution of residual
recovery stress of the SMA strip with 5% initial strain is
illustrated in Figure 15. In case of 5% initial strain, the
distributions of martensite fraction at various tempera-
tures are also investigated. Figure 16 illustrates the
martensite fraction of the SMA strip at 7=200°C and
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Figure 15. Residual recovery stress (ox) on a SMA strip with 5% initial strain.
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(a) Martensite fraction on a SMA strip (T=200°C)
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(b) Martensite fraction on a SMA strip (7=0°C)

Figure 16. Distribution of martensite fraction with different temperature (5% initial strain).

at the end of the temperature cycle, T=0°C. The
numerical results show that the SMA strip does not
recover the initial martensite fraction and generates the
residual recovery stress at the end of the temperature

cycle. These phenomena should cause the SMA strip to
be an irreversible actuator, even if SMA is coupled to an
elastic structure which compels SMA to recover the
initial condition. Therefore, the research about the
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interactions between host structure and the SMA strip is
necessary to design reversible shape adaptive structures.

Applications of SMA Strip Actuator
to Elastic Structures

In this section, the interactions between the SMA strip
actuator and the elastic structure are investigated. The
SMA strip actuator coupled with elastic structure can
be used to generate bending force and for the shape
modification. The host elastic structure is made of
aluminum, the properties of which are as follows:

E=69GPa, v=033, a=236x10"°/°C (32)

For the numerical analysis, following assumptions
are considered: (i) the SMA strip is perfectly bonded
with aluminum by using epoxy adhesive, (ii) the SMA
strip actuator is activated by electrically heating, and
(ii1) the SMA strip is thermally insulated from the rest of
aluminum. The constrained condition such as tie is
applied between the surface of the SMA strip and host
structure. So two surfaces of the SMA strip and host
structure are tied together in the simulation. The surface
of the SMA strip is defined as the master surface and
that of host structure is done as the slave surface. The
master nodes are calculated and used to determine the
slave nodes according to constrained condition.

The first numerical example is a beam structure
coupled with the SMA strip for generating bending force
(Figure 17). Aluminum beam and the SMA strip are
respectively modeled by 10 x 2 x 1 mesh using 3-D
eight-node elements with cantilevered boundary condi-
tion. The SMA strip is subjected to initial strain in
x-direction. When the SMA strip is activated by raising
its temperature above the austenite start temperature,
strain recovered in the activated SMA strip causes
bending deformation due to the off-center placement of
the SMA strip. Figure 18 shows the vertical tip
deflection with temperature variation for the various
initial strains. One can get the larger vertical deflection

Figure 17. FEM model of the beam structure with a SMA strip.

of host structure by increasing the initial strain of the
SMA strip. The deflection of structure with 5% initial
strain occurs at lower temperature than with other initial
strain cases, because larger recovery stress should be
generated by increasing the initial strain of the SMA
strip (Figures 10 and 13). In the case of 1.0% initial
strain, vertical deflection remains constant over the
temperature 7=130°C, due to the complete phase
transformation to austenite state over this temperature.
Also, the SMA strip actuator effect on the shape control
is investigated. The elastic beam with 3.0% initial strain
of the SMA strip is originally flat and then is exposed to
an uniform distributed load of 300,000 N/m?. Figure 19
shows the calculated deflection of the beam under
different input incremental temperature. In this numer-
ical results, the SMA strip actuator can generate enough
recovery force to bend the host structure, also sustain its
shape against large external uniform load. To design
a reversible shape adaptive structure with SMAs, the
interactions between the SMA strip and elastic structure
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20+
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Figure 18. Vertical tip deflection vs temperature variation.
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Figure 19. The deflection under uniform load and different
temperature increment.
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Figure 20. Vertical deflection vs temperature cycle on a SMA strip.

with temperature cycle on the SMA strip should be
investigated. Figure 20 shows the hysteresis of deflection
versus temperature cycle on the SMA strip with 1 and
5% initial strains, where the deformed shape cannot be
fully recovered at the end of cycle. To investigate
internal condition of the SMA strip at the end of
temperature cycle, the residual recovery stress and
distribution of martensite fraction with 1 and 5% initial
strains is illustrated in Figures 21 and 22, respectively.
The recovery stress of the SMA strip does not decrease
to zero, even if the SMA strip is coupled with elastic
structure. In case of 1% initial strain, it can be found
that the value of martensite fraction exceeds the initial
value of 0.2 in some areas. So, there should be a
limitation to make a reversible shape adaptive structure
using one-way shape memory alloys and the investiga-
tion of the interactions between host structure and the
SMA actuator is necessary to make a more accurate
structural actuator.

The next numerical model is a conical shell structure
which can be applied to the variable-area fan nozzle
(VAFN). The object of the VAFN structure is to
decrease jet noise during takeoff and reduce drag by
changing the area of inlet or outlet fan nozzle. Figure 23
shows the numerical model of conical shell structure
with a SMA strip. The conical shell structure consists of
aluminum and a SMA strip layer and each layer is
modeled using 20 x 10 x 1 mesh with 3-D eight-node
elements. The SMA strip is subjected to initial strain in
axial direction and bonded on the surface of host
structure. Boundary condition is cantilevered and each
geometric  dimensions are aluminum  thickness
(t,) =2mm, SMA strip thickness (7;) =0.5mm, length
(L) =150mm, shallow angle (¢)=230°, and radius
(R;)=100mm and (Rp)=50mm. Figure 24 shows the
hysteresis of tip deflection versus temperature cycle on
the SMA strip with 3 and 5% initial strain. In this
numerical simulation, a SMA strip can generate enough
force to deform host structure to desired shape but

Residual recovery stress (MPa)

(a) Residual recovery stress with 1% initial strain (7=15°C)

Residual recovery stress (MPa)

256
244
233
222
211
200
188
177
166
155
144
132
121
110
99

(b) Residual recovery stress with 5% initial strain (7=15°C)

Figure 21. Distribution of residual recovery stress at the end of
temperature cycle.

deformed shape does not get recovered to its initial
shape at the end of cycle. To investigate the SMA strip
internal conditions at the end of temperature cycle, the
recovery stress and martensite fraction is illustrated.
Figure 25 shows the distribution of residual recovery
stresses in case of 3 and 5% initial strain of the SMA
strip. As can be seen, recovery stress of the SMA strip
does not decrease to zero at the end of temperature
cycle. This residual recovery stress of the SMA strip
causes the host structure to remain as a deformed shape.
Also, the martensite fraction of the SMA strip at the end
of cycle is illustrated in Figure 26. In the case of 3%
initial strain, the martensite fraction of the SMA strip
does not recover its original value of 0.6, but 5% initial
strain, the distribution of martensite fraction almost
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Martensite fraction
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(a) Martensite fraction with 1% initial strain (7=15°C)

Martensite fraction

0.99
0.97
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(b) Martensite fraction with 5% initial strain (7=15°C)

Figure 22. Distribution of martensite fraction of SMA strip at the end
of temperature cycle.

recovers its initial value of 1.0, except near the boundary
area. In this numerical analysis, residual recovery stress
of the SMA strip causes host structure to remain in
deformed shape and martensite fraction of the SMA
strip not to recover its initial value. Therefore, it is
difficult to design a perfect reversible shape adaptive
structure using this one-way SMA strip, even if the strip
is coupled with elastic structure.

CONCLUSIONS

The thermomechanical responses of SMA actuators
and their applications in the shape adaptive structures

z (radial)

y (tangential)

Figure 23. FEM model of the conical shell structure with a SMA
strip.
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Figure 24. Tip deflection vs temperature cycle on a SMA strip.

combining strip SMA actuators are investigated. The
numerical algorithm of the 3-D SMA thermomechanical
constitutive equations based on Lagoudas model is
developed to analyze the unique characteristics of SMA
strip such as the pseudoelastic behavior and shape
memory effect. The incremental SMA constitutive
equations are implemented in the UMAT written by
FORTRAN with ABAQUS finite element program. The
shape change of structure is caused by the initially
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Figure 25. Distribution of residual recovery stress (o) at the end of
temperature cycle on SMA strip.

strained SMA strip bonded on the surface of host
structure when thermally activated. The SMA strip
starts transformation from the martensitic into the
austenitic state upon actuation through heating,
simultaneously recovering the initial strain, thus
making host structure to change the shape. Numerical
results show that the SMA strip actuator can generate
enough recovery force to deform the host structure and
sustain the deformed shape subjected to large external
load, simultaneously. In this study, the shape memory
effect is restricted to one-way applications, unless the
SMA is coupled to an elastic structure which compels
the SMA to recover the initial condition. But the SMA
strip might generate the residual recovery stress and
does not fully recover its martensite fraction after the
first loading cycle, even if the SMA is coupled to an
elastic structure. Therefore, the deformed structure
cannot fully recover its original shape due to residual
recovery stress of SMA. Also, depending on the initial
value of martensite fraction, SMA cannot be used as a
reversible actuator because, martensite fraction cannot
be recovered to its initial value. So, it is difficult to make
a reversible shape adaptive structure using one-way

Martensite fraction
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(a) Martensite fraction with 3% initial strain of a SMA strip (T=15°C
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(b) Martensite fraction with 5% initial strain of a SMA strip (7=15°C

Figure 26. Distribution of martensite fraction at the end of
temperature cycle on SMA strip.

SMAs and necessary to investigate the interactions
between host structure and the SMA actuator. The two-
way shape memory effect could be a solution to make
the actuation reversible. However, if high precision is
needed in terms of activation magnitude versus the
number of cycles, the issues of thermal fatigue and drift
in the response are still not completely solved.
Therefore, the accurate prediction of the thermomecha-
nical behavior of the SMA should be further studied to
design the actuator and shape adaptive structure, taking
into account the nonlinear and hysteretic behavior of the
SMAs.
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