IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Vibration control of structures with interferometric sensor non-linearity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2004 Smart Mater. Struct. 13 92
(http://iopscience.iop.org/0964-1726/13/1/011)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 143.248.103.55
The article was downloaded on 19/04/2011 at 07:15

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0964-1726/13/1
http://iopscience.iop.org/0964-1726
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

INSTITUTE OF PHYSICS PUBLISHING

SMART MATERIALS AND STRUCTURES

Smart Mater. Struct. 13 (2004) 92-99

PII: S0964-1726(04)71619-5

Vibration control of structures with
interferometric sensor non-linearity

Do-Hyung Kim, Jae-Hung Han, Dae-Hyun Kim and In Lee'

Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology,

373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
E-mail: inlee @asdl.kaist.ac.kr

Received 7 March 2003, in final form 31 October 2003
Published 15 December 2003

Online at stacks.iop.org/SMS/13/92 (DOI: 10.1088/0964-1726/13/1/011)

Abstract

Experimental studies on vibration control of a composite beam with a
piezoelectric actuator and an extrinsic Fabry—Perot interferometer (EFPI)
have been performed using a neural network controller. Because of their
interferometric characteristics, EFPI sensors show non-linearity as dynamic
amplitude increases. Within the linear range of EFPI, conventional control
algorithms can be applied without serious difficulty. However, closed-loop
control may make the target system unstable when sensor non-linearity gets
high. Therefore, we examine the effects of the non-linearity of the sensor on
the control stability and performance, and investigate any simple method
applicable to the vibrations beyond the linear range. For this purpose, a
neural controller is adopted and its performance is experimentally
investigated. The neuro-controller showed good performance and
adaptiveness to the sensor’s non-linearity. Although the present
neuro-controller is not a fundamental solution to vibration control of
structural systems, it can be a simple practical choice for systems with

sensor non-linearity.

1. Introduction

There has been increasing interest in vibration control of
structural systems using smart materials [1, 2]. In order to
realize this function of smart structures, many researchers
have studied functional materials, their characteristics, and
the analysis methods of smart structures.  They have
also investigated sensor and actuator placement problem,
controller designs, and many other relevant research topics.
Among several functional materials, optical fibers are the
preferred sensor materials; they can produce sensors that
are small, lightweight, less power consuming, immune to
electromagnetic interference, and easily installable onto/into
host structures. In addition, the optical interferometer sensor
is one of the most effective strain sensors in terms of resolution.
Since the optical fibers can be inserted in the laminated
composite structure, they can directly measure internal strain
states inside the structure as well as surface strain, unlike
conventional strain sensors. Optical fiber sensors have been
utilized in dynamic measurement and vibration control as

1" Author to whom any correspondence should be addressed.

well as health monitoring. Yang and Jeng [3] showed that
bending vibration could be effectively reduced by using the
optical fiber as a Michelson interferometer for the detection of
the structural vibration and the lead—zirconium-titanate (PZT)
actuator. Chun et al [4] performed the direct negative velocity
feedback control of a carbon/epoxy laminated beam using a
Fabry—Perot interferometer and a piezoceramic actuator.
Among various kinds of optical fiber sensors, interfero-
metric sensors are widely used because they have a lot of the
advantages of other optical sensors and can be constructed
at reasonable prices. However, it is reported that they have
a problem representing vibrational amplitudes and directions
because of their interferometric characteristics. In order to
extract true mechanical strain from the EFPI sensor output
signal, several methods have been proposed including quadra-
ture phase-shifted EFPI [5], absolute EFPI [6], and passive
quadratic signal processing using two read-out interferome-
ters [7]. Several signal processing techniques have also been
used based on fringe counting methods [8, 9]. Such algorithms
can be applicable for the strain measurement of quasi-static
systems, but are not practical for real-time feedback control
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Figure 1. Schematic diagram of an EFPL.
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systems. That is the why studies on vibration control using in-
terferometric optical sensors are limited to small disturbance
cases [3, 4].

If a dynamic system has non-linear characteristics, such
as interferometric sensors used for large dynamic strain
measurement, a linear controller may make the system
unstable.  Control systems can be subdivided into two
categories: highly specialized controllers and general purpose
controllers. Highly specialized controllers are relevant when
the system to be controlled is in some sense difficult to stabilize
or when the performance is extremely important. The use
of general purpose controllers means that the same controller
structure can be used on a wide class of practical systems,
and the controllers are characterized by being simple to tune
so that satisfactory performance can be achieved with modest
effort [10]. Basically, neural networks belong to the latter,
and their ability to model a wide class of systems in many
applications can reduce time spent on development and offer
a better performance than can be obtained with a conventional
technique. At the same time, neural networks can be regarded
as highly specialized controllers because of their successful
application to many non-linear and very specific applications.
The research on neural network based vibration controls can
be divided into two categories: feedforward and feedback
control methods. Feedforward controls generally utilize a
reference signal, which is correlated with the impending
primary disturbance, for the derivation of control input. Snyder
and Tanaka [11] developed a neural network/algorithm, which
can be regarded as a non-linear generalization of the transversal
filter/filtered-x least mean squares (LMS) algorithm, for
non-linear feedforward control systems. They conducted
experimental works to demonstrate the utility of the algorithm,
showing that it is well suited for a non-linear control problem.
On the other hand, feedback controls generally rely on the
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Figure 3. Overall architecture for the neuro-controller with the
neural network model.
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error signals to construct control signals for the non-availability
of the reference signals. Chandrashekhara and Smyser [12]
developed a numerical dynamic model for the active vibration
control of laminated doubly curved shells. In their study, a
neural network controller was designed and trained off-line
to emulate the performance of a linear quadratic Gaussian
with loop transfer recovery (LQG/LTR) controller. Vibration
controls using neural networks with optimal neural design
methodologies using the Taguchi method have also been
studied [13]. Youn et al [14] applied a neuro-adaptive feedback
control algorithm to suppress the vibrations of composite
structures subject to sudden delamination. They used several
composite beams with a delaminated piezoelectric actuator as
experimental models in order to realize sudden delamination
conditions.

The present paper experimentally investigates vibration
control performance when the EFPI sensor produces a non-
linear signal. We examine the effects of non-linearity of the
sensor on the control stability and performance, and investigate
any simple method applicable to the vibrations beyond the
linear range. For this purpose, a neural controller is adopted
and its performance is experimentally investigated.

2. Extrinsic Fabry—Perot interferometer sensor

In this study, an EFPI is fabricated and used as a sensor in
vibration control system. Its schematic diagram is shown
in figure 1. The reflected intensity, /, can be written as a
sinusoidal function as follows [15]:

I x A+ Bcos¢ (D)

where A and B are functions of the fiber core radius, the air
gap separation, the transmission coefficient of the air/glass
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Figure 5. Connection of the neural network model and
neuro-controller.
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Figure 6. Schematic diagram of the specimens. (a) Nominal
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interface, and the numerical aperture, and ¢ is the optical phase.
For small variations of air gap separation, variations of A and
B are negligible. The relation between the optical phase, ¢,
and the gap separation, s, is given as

¢ = 2ks 2)
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Figure 9. System identification and simulated frequency responses.

where k is the wavenumber defined as 2mwn./Ag, n. is the
refractive index of the EFPI in the gauge length, and A is the
wavelength of the laser diode in the vacuum state (1310 nm,
in this study). Using equation (2) and the definition of k, A¢
can be written as follows:

4 4
Ap = —((n.As + Anes) = —(m AL + Anes).  (3)
Ao Ao

There is no change of refractive index in the gauge length
since the light medium of EFPI is air, son, = 1 and An, = 0.
Since An, is almost zero, EFPIs have immunity to polarization
fading and transverse strain intensity. Usingn, = 1, An. £ 0,
and Ag = 1310 nm, A¢ is reduced to

A¢ = 0.9593 x 10’ AL (rad m™). 4)

In order to fabricate an EFPI as shown in figure 1, the
ends of a pure silica capillary tube were bonded to the optical
fibers with epoxy. The Fresnel reflection, /;, from the glass/air
interface at front of air gap, s, and the reflection, I, from
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the air/glass interface at the far end of air gap interfere in the
input/output fiber. The measured gauge length, L, and the air
gap separation, s, were about 5.1 mm and 15 pum, respectively.

Because of the characteristics of interferometric optical
fiber sensors, the output intensity of an EFPI does not have
a linear relationship with mechanical strain, as shown in
figure 2. S1 is a possible mechanical strain for a vibrating
system and Il is the corresponding output intensity. S2
indicates another example of mechanical strain that has the
same amplitude as S1. However, the corresponding intensity,
12, shows a distorted behavior, according to the initial optical
phase of EFPIL. You can easily see from S3 and I3 that the
EFPI sensor shows non-linearity whenever the strain amplitude
is large enough. As previously stated, the reconstruction
of mechanical strain from an EFPI sensor signal cannot be
easily applied to real-time vibration control. Therefore, it
can be a simple practical choice to use the raw EFPI sensor
signal for vibration control. In that case, it is necessary to
consider the non-linear characteristics of an EFPI sensor. For
a dynamic system with sensor non-linearity, a conventional
linear controller may have performance and stability problems.
Therefore, a neural network controller is adopted to deal with
vibration control problems for systems containing sensors with
non-linearity.
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Figure 12. Free decay signals for excitation voltage = 6 and 12 V
(nominal system).

3. Neural network controller

A neural network is a mathematical model, which is artificially
embodied by imitating the recognition or knowledge-acquiring
processes of human beings. A neural network consists of
neurons, weights, and biases. Learning is defined as a process
that tunes weights and biases so as to obtain the desired output
values of the neural network.

The overall structure and learning algorithm of the neural
network are similar to those of [13]. The neural network used
in this study consists of one input vector and two layers, one
hidden layer and one outputlayer. A tangentsigmoid activation
function was used for the hidden layer and a linear activation
function was used for the output layer. For simplification,
bias was not used in the network. Among several learning
algorithms, the error back-propagation learning rule was used
and the momentum method was applied in order to improve
convergence characteristics and the convergence speed. The
fundamental idea of the algorithm is to adjust weights and
biases of neural network so that the sum of squared error of
the outputs is minimized. Using a gradient descent procedure,
weights are updated in real-time.

The control system consists of the neuro-identification
model and the neuro-controller, and the overall architecture
of the controller is shown in figure 3. The role of the
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Figure 13. Control result of the nominal system (excitation
voltage = 6 V). (a) Neuro-controller. (b) LQG controller.

neural network model (identifier) for the plant is to obtain
mathematical representation of the real plant. This procedure
is called forward modeling. The neural network model is
located in parallel with the plant as shown in figure 4. The
weights of the neural network model are adjusted to make the
output of the neural network model the same as that of the plant.
The input vector of the neural network model consists of the
present and previous plant inputs and outputs. In other words,
the output value of neural network model y,, is calculated by
using time sequences of the plant input # and plant output y,
as follows:

Ym@+1D) = f(yp(®), ..., yp(t—n);u@),...,ut—m)). (5)

After completing the forward modeling, the tuning for
weights of the neuro-controller is performed by the error back-
propagation learning algorithm. Because the desired output
value of the neuro-controller is not given in advance, this value
should be calculated by the error back-propagation through
the neural network plant model, as shown in figure 5. In
this step, the desired output value of the plant is set to zero
because the purpose of the control is to suppress vibrations.
When adjusting the weights of the neuro-controller, those of
the neural network model are not changed. The output of the
neuro-controller, u., is calculated by using time sequences of
the plant output, y,, as follows:

uc(t) = fyp(t =1, yp(r =2), ..., yp(t —n)). ()
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The neuro-controller has five input values, and eight
neurons and one neuron for the hidden and output layers,
respectively. The output value of the neuro-controller is used
as both the control force of the plant and the fifth input of
neural network model. Here, the control force is the applied
voltage to the piezoceramic actuator. The five previous output
values of the plant are used as input of the neuro-controller.
The neural network model has the same structure as neuro-
controller. The four previous output values of the plant and
the output of the neuro-controller are used as the input values
of the neural network model.

4. Experimental results and discussion

The schematic diagram of the specimen is shown in figure 6.
The nominal system comprises a composite base structure
(graphite/epoxy [90/0];), a PZT actuator (C8, Fuji Ceramics),
an EFPI sensor, and tip masses for the reduction of resonant
frequencies. In the experiment, the EFPI output is used as
the feedback signal and a laser displacement sensor (LB041,
Keyence) is used for the monitoring of real deflections. In
many practical situations, the system dynamics may change
during operation. Therefore, a controller is required to exhibit
robustness with respect to the system variations. To investigate
the adaptiveness of the controller, a modified system is
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Figure 15. Simulation result for an example system. (a) Small
amplitude case. (b) Large amplitude case.

prepared. The modified system has a reduced resonant
frequency compared with the nominal system (3.97 Hz —
3.16 Hz). Figure 7 shows the variation of the frequency
response functions due to additional tip masses.

The overall experimental setup for the vibration control is
shown in figure 8. The excitation signal and control input
are amplified through the high voltage amplifier (HEOPS-
5B6, Matsusada) and fed into the piezoceramic actuator. The
designed neural network controller is implemented using a
DSP board (DS1102, dSPACE) and the weights are updated
every 0.01 s. In the random excitation experiment, an
HP3567A spectrum analyzer is used to obtain frequency
response functions.

An LQG controller is also designed and the control
performance examined. In the case of the neural network
control, amathematical model is constructed during a real-time
learning procedure. However, an LQG controller is a model
based controller. The design of the LQG controller is based on
the identified system model using the experimental frequency
response function of the nominal system. The noise matrix, ©,
for the measurement noise, 0(¢), is calculated from the sensor
output when the specimen is stationary. For the process noise,
the covariance is assumed to be the same as the measurement
noise. The weighting matrix R is fixed to identity, R = [1],
and Q is considered to be diagonal. The simulated frequency
response of the closed-loop system using the designed LQG
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Figure 16. Responses to random excitation (modified system).

controlleris shown in figure 9, and the designed LQG controller
in cascade realization is as follows [16]:

A —-BK. - K K
Fis) = tC | Kt _|ar | be
K. [0 | dy
(F(s) : the transfer function from y to — u)
a — —11.015 20.716 be — —1.1004
=1 -29276 —9.6763 |’ = -0.83141
¢ =[041419 —-0.70700], dy = [0].
@)

Vibration control experiments have been performed in the
frequency and the time domains. For the frequency domain
experiment, band-limited white noise has been used as the
excitation signal. The random excitation was small enough
that the EFPI sensor output signal was within the linear range.
A sinusoidal excitation signal was applied for the time domain
experiments. Both slightly and highly non-linear cases have
been considered in the time domain experiments. In addition to
experiments, vibration control simulation has been performed.
In this case, an example dynamic system is introduced which
is constructed as a combination of the identified linear system
model and a non-linear sensor output part. Interferometric
sensor output is assumed to be in the form of equation (1) as
follows:

I = A+ Bcos(y + ¢o)
B =0.8, ¢o = 51/8

where y is the output of the linear system model.
Matlab/Simulink is used for the simulation and the block
diagram is shown in figure 10. The plant model is the same
model as used in the LQG controller design, and the parameters
in equation (8) are chosen to represent similar output intensity
to the experimental result for nominal case.

®)
A = 0.6,

4.1. Experimental result for the nominal system

For the nominal system, experimental frequency response
functions of the uncontrolled and controlled systems are shown
in figure 11. EFPI sensor output is approximately linear for
small disturbances. Hence, both the neuro-controller and the
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Figure 17. Control result of the modified system (excitation
voltage = 6 V). (a) Neuro-controller. (b) LQG controller.

LQG controller show good performance. Figure 12 shows
the free decay signals when an excitation signal with resonant
frequency is supplied to the piezoceramic actuator until the
specimen vibrates in a steady state and then the excitation
is stopped at 1 s. It is seen that the EFPI sensor output
signal becomes more distorted as the vibration amplitude
increases. Vibration control experiments have been performed
for small and large amplitude cases, that is, for slightly
and highly non-linear cases. Figures 13 and 14 show the
control results when an excitation signal with the open-loop
resonant frequency is supplied until the specimen vibrates in
a steady state and then the excitation is removed and a control
force is applied simultaneously at 1 s. When the excitation
amplitude is small, the EFPI signal is slightly distorted and both
controllers can suppress the vibration successfully. However,
the LQG controller makes the system unstable as the excitation
amplitude is increased. The EFPI sensor’s interferometric non-
linearity can cause a serious problem in vibration control. The
neuro-controller showed good performance and adaptiveness
to the sensor’s non-linearity. However, it also fails in vibration
suppression when the sensor signal gets excessively non-linear.
We get a similar simulation result, as shown in figure 15.
It has the same excitation and control start condition as the
experiment.
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Figure 18. Control result of the modified system (excitation
voltage = 13 V). (a) Neuro-controller. (b) LQG controller.

4.2. Experimental results for the modified system

The same procedure and controllers are applied to the modified
system.  For random excitation, there is no noticeable
degradation of control performance because the variation of
the resonant frequency is not very large, as shown in figure 16.
The control results for the sinusoidal excitation are also similar
to those of the nominal system, as shown in figures 17 and 18.
As the excitation amplitude is increased, the EFPI sensor
shows more non-linear behavior and the controllers operate
less efficiently when the vibration amplitude is over a certain
level.

5. Conclusion

In the present study, the effects of a sensor’s non-linearity
on the feedback control system have been examined. A
neural network based adaptive control was applied to the
vibration control of a structural system with the sensor’s non-
linearity, and an LQG controller was also designed and applied
to the vibration control. It is found that a small amount
of non-linearity does not cause a problem in the feedback
loop. However, a controller may make the target system
unstable when the sensor non-linearity gets high. This paper
begins research into overcoming interferometric non-linearity
in structural vibration control by using one of the general
purpose controllers, namely neural networks. With minimum
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tuning of the control parameters, the neuro-controller showed
good performance and adaptiveness to the sensor’s non-
linearity.  Although the present neuro-controller is not a
fundamental solution to vibration control of structural systems,
it can be a simple practical choice for systems with sensor non-
linearity. In order to apply EFPI sensors to vibration control
over a much wider dynamic range, a real-time linearization
technique is now under investigation by the present authors.
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