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Abstract

A closed-chairi mechanism having redundancy
in force domain can produce spring effect by proper
internal  load  distribution. - The  so-called
antagonistic stiffness is provided by redundant
actuation in conjunction with nonlinear geometric
constraints. In this work, an optimal structure of
five-bar mechanism that can maximize efficiency in
generation of antagonistic stiffness is evaluated and
analyzed. A stiffness modulation index that
represents isotropic characteristics in antagonistic
stiffness generation is proposed. Gradient design
index that shows rate of change of the isotropic
index is also employed to distribute the isotropy of
stiffness uniformly throughout the workspace. To
deal with multi-criteria based design, a composite
design index based on max-min principle of fuzzy
theory .is used as an objective function. Two
optimization results are obtained. One is optimizing
the X-directional stiffness and the other corresponds
to optimizing the Y-directional stiffness. The result
of the former design is found suitable for
antagonistic stiffness generation as well as for first-
order kinematic performances.

1. Introduction

Mobility of a system is defined as the number of
independent variables that must be specified in
order to locate its elements relative to another.
When the mobility of a system is greater than the
degree-of-freedom, the system is called a
kinematically redundant system, On the other hand,
when the number of actuation input is greater than
the mobility, the system is called a redundantly
actuated system. Structure of a system with
redundant actuation usually has closed-chain
mechanism. The redundantly actuated system can
produce proper internal load by distributing the
loads of the actuating input. Then, spring like effect
can be produced by antagonistic internal load with
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conjunction with complex nonlinear geometry of
the mechanism. The antagonistic stiffness can be
modulated arbitrarily by controlling actuation inputs
without feedback control [1]. A concept of
antagonistic stiffness has been addressed by Hogan
[2], Tong [3], and Yokoi [4]. Yi and Freeman(1]
modeled and analyzed antagonistic stiffness by
redundant actuation. Maekawa et al. [5] analyzed -
negative stiffness due to the motion of an object
grasped by mutifingered hand. The stiffness also
came from internal load but it could not be
controlled because of inherent structure of the hand
mechanism.

Besides a system that can actively vary its own
natural frequency [6], application of antagonistic
stiffness effect can expand to the field of impact
reduction. However, real application of the
antagonistic stiffness has been rare. Thus, in this
work, we investigate an optimal kinematic structure
of a five-bar mechanism that efficiently generates
antagonistic stiffness via redundant actuation. To
do this, the modeling of antagonistic stiffness is
performed and a stiffness modulation index, which
represents the isotropy of the transformation matrix
between the actuation efforts and the antagonistic
stiffness, is proposed. The transform matrix is the
second derivative of the kinematic constraint [1,6].
Also in order to obtain the global isotropic
characteristic, a global design index is employed
which is defined as the average value of the
isotropic indices calculated over the workspace.
And a gradient design index is proposed to obtain
uniform distribution of the isotropic index over the
workspace. To cope with these design indices in
optimization, composite design index based on
max-min principle of fuzzy theory [7] is defined
and used as objective function. The optimization is
performed in two paths. One is optimizing X-
directional stiffness modulation, and the other is
corresponding to Y-directional stiffness. The result
from optimization is suitable for generating stiffness
more effectively as well as general force/velocity
transmission.



2. Kinematic Modeling
2.1 Open-chain Kinematics

The five-bar mechanism shown in Fig. 1 has one
closed-kinematic chain which consists of two open-
chains by cutting the middle joint. It is identical
with cooperating two robots handling a common
object. The end-effector positions # of the two
open-chains are identical, and they are described by

x) (he +hey,) (I +1,cs+ e,
= = . (1)
y) \Ls +1s,, LySs + 135,

And the orientation angle of link 2 is
p=0+6,=0,+6,+6,+x. . (2
Adopting the standard Jacobian representation
for the velocity of dependent output  vector
ue R in terms of independent input coordinates
,¢ € RM of rth open-chain, one has

u=[,G;1,4. 3)

Here,

ou . '
[Gyl=|——|e®"™ @)
0,4
is the first-order Kinematic Influence Coefficient
(KIC) relating & to ,¢.

Acceleration vector # also can be represented
in terms of input coordinates [1]

. ua . T 3 .

u =[rG¢] r¢+r¢ [VHM] r¢ » (5)
where the element of the second-order KIC array
[[Hyle RVMM s defined as

o*u.
LHyl=———. ®
#U0.0,0,0,

Five-bar mechanism

Figure 1.

2.2 Internal Kinematics

In redundantly actuated systems, the
independent coordinates can be selected arbitrary.
Since the mobility of the five-bar mechanism is 2, at
least two actuation inputs are required to operate the
system. In this work, the minimum independent
(input) coordinates and dependent coordinates are
selected as

4. =(01595)T )
¢p =(62a03364)T~ @®

From the equivalent velocity relationship of the two
open-chains

u =[1G;] 1¢ =[2G;] 2¢ > ®

the velocity relation between independent and
dependent coordinate set can be obtained by
rearranging the above equation :

(416, =(B]4, . | (10)

where

[41=[(G:1,, 1,611,641, ). an
[B]= ["[1G; L a[sz; I ] (12)

In Eq. (11), [,G;],is ith column vector of the

matrix. The velocity vector for the dependent
coordinate set is obtained by premultiplying the
inverse of [A] to Eq. (10):

4, =[AT"[B14,=[G"14,. (13)

and the velocity vector of total system's joints can
be expressed in terms of the velocity vector of the
independent joint set by

s=16214, =| ] 1g,. (4)
[G]
The second order KIC array [H?” ] relating
¢‘5.p to ¢l, can be easily obtained in a similar
manner [1].

2.3 Forward Kinematics

Since the joints of the rth open-chain is
composed of some of the independent and

dependent joints, ,¢ can be expressed in terms of
the total system's independent joints by

$=1'G214,. as)
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where ['G®] is formed by rearranging rows of

[G?]. Thus the forward kinematics for the

common object is obtained by embedding the first-
order KIC into one of the rth pseudo open-chain
kinematic expression as follows :

a={,Gi1,6=,G.IIG! Y,
=[G4,

Using the same augmentation method employed
in Eq. (16) evaluation of the second-order forward

(16)

kinematic array [H ] is also straightforward. It is
given by

[H"]=[,G:1['H?,]
HG L HLIGY

where 'o' means a generalized scalar dot product

(8].

an

2.4 Statics of the Five-bar Mechanism

According to the duality existing between the
velocity and force vector, the force relation between
the independent and dependent joints can be
described. So the effective load referenced to the
independent joints is given by

T, =T,+[G!YT,=[G:TT, (8)

where T,, T »» and T 4 are force or torque at the

independent joints, the dependent joints, and the

total system's joints, respectively.
In static equilibrium, the torque at the
independent coordinates can be expressed as

T, =[G;TT,=0, )
where T, is the torque at the actuated joints @,.
[G/] is the first-order KIC relating $, and @,

obtained by rearranging the rows of [G?].

3. Modeling of Antagonistic Stiffness

Given a disturbance 'to the system under static
equilibrium, a spring-like behavior occurs to the

system. Assuming that the magnitude of T,
remains cdnstant, the effective stiffness matrix
[K,,] with respect to the independent coordinates
is obtained by differentiating Eq. (19) with respect
to the independent coordinate set @, .
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oT,
o9,

The stiffness relationship between the output
coordinates and the independent coordinates is
given by [9]

(K, 1=[G;T[K,]1[G]]. @

[K,]=——==(T,) °[H;] 0

where [G(] denotes the inverse of [G)] given

in Eq. (16). Substituting Eq. (20) into Eq. (21)
yields the following stiffness matrix expressed with
respect to the output space.

[K.1=(-T,) °[H,] @2)

where [H21=[GT [H.][G’] is obtained by
plane by plane multiplication [1].

An alternative form of Eq. (22) given in a matrix
form is described by

K, =-[H]T,, 1(23)

where Ku is consists of the upper diagonal

elements of [K,,] and [H'] is also obtained by
collecting the upper diagonal columns of the three-
dimensional array [H.], which are defined as

follows:
K, =(K..K,.K,f (24)
[H].
(HA=|(HA], | 25)
(H.1,

Necessary (but not sufficient) conditions for full
stiffness generation are derived in [1] : A closed-
chain is capable of full stiffness generation only if it
satisfies

N,>D+N 26)

where N is DOF (system mobility), D is number
of independent stiffness elements, and N, is
number of actuated joints and

NC=(IC-LCYzD 27

where JCis number of independent constraint
equations, NC is number of independent nonlinear

constraint equations, and LCis number of
independent linear equations.

The five-bar mechanism has only one
independent closed-chain and thus it has two
independent nonlinear constraint equations, so only



two elements of K, can be independently
modulated. According to the condition of Eq. (26),

at least four actuators are needed to modulate two
stiffness elements. Four joints except the third joint
are actuated in the given five-bar.

4. Stiffness Modulation Index

4.1 Local Design Index

The static equilibrium can be also expressed as

T, =[G/1"T, =0 (28)
where

[G/1=1G.1[G;]
and T, is the effective load at the end-effector

coordinates. Eq. (28) represents the primary
condition for antagonistic stiffness generation. For

Eq. (28), the general solution for T, is obtained as

(in-(617 1627 ), - @9
where '81 is an a.rbitrary vector and the superscript

'+' means pseudo-inverse. Eq. (29), denotes the
secondary subtask. Substituting Eq. (29) into Eq.
(23) yields

K= HA-(6:17)16:1 )e, 60
and ) : ‘
[Hle =K,, 31)

where
e -(647)16:77). @2
If the exact soiution of 8,‘ exists for Eq. (31), it

implies the second -subtask can be realized. The
general solution of & is '

& =[ATK, +(U1-[AT [H])az, 33)

where &, is an arbitrary vector. Then the solution

of T, isrepresented as
T, =(1- (67 (6T YATK,
([I] (GG AT [HJ)e

The first term of right-hand side of the above

34

equation is reduces to [IAI 1"K, [10], by using

condition of the symmetry and idempotency of
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([I 1- ([G,f1 ] T)‘[G:1 1" ) We can realize another

subtask (the third-priority subtask) by &, if the
system has more redundancy. Assuming that there
is no other subtask (&, = 0), the solution becomes

=[ATK,. (35)

So the relationship between K, and 7, ‘which
satisfies Eqs. (23) and (28) is

— A7) 67 ), 6o
Now, the stiffness modulation index is defined

by isotropic index of [H], which shows isotropy
characteristic in the stiffness modulation process :

g..
K=o 37
amax
where o, and O, are the minimum and

maximum singular values of the matrix [H 1,
réspectively.

4.2 Global Design Index

The design index K defined in Eq. (37) is a
local index that varies as the pose of the five-bar
mechanism changes, so it can not represent overall
characteristics of the mechanism throughout the
workspace. Therefore a design index which
represents the global feature should be defined and
used in optimization.

The global design index which represents an
average value of x over the workspace is defined
as

ko e

where W denotes workspace.

Since the value of the local design index
changes as the configuration of mechanism changes,
gradient design index is also considered so that final
design can have even distribution of the local design
indices over the workspace. The gradient design
index represents the change rate of the local design
index [11]. The gradient design index is defined as
the maximum of the differences among the local
design indices calculated at adjacent points
throughout the workspace. The smaller the global
gradient design index, the more uniformly
distributed the design index over the workspace,
therefore the gradient design index should be
minimized.



4.3 Composite Design Index

The design of a mechanism can be made based
on any particular criterion. However, the single
criterion-based design does not provide sufficient
control on the range of the design parameters
involved. Therefore, multi-criteria based design has
been proposed. But various design indices are
usually incommensurate concepts due to differences
in unit and physical meanings, and therefore should
not be combined with normalization and weighting
functions unless they are transferred into a common
domain. In other words, quantitative combination
should be avoided. Instead, these design indices

should be combined qualitatively. To consider these"

facts, we employ a composite design index [12].

As an initial step to this process, preferential
information should be given to each design
parameter and design index. Then, each design
index is transferred to a common preference design
domain which ranges from zero to one. Here, the
preference given to each design criterion is
subjective to the designer. Preference can be given
to each criterion by weighting. This provides
flexibility in design.

For K, the best preference is given the
maximum value, and the least preference was given
the minimum value of the criterion. Then the design
index is transferred into common preference design
domain as below

go K-Kuy

I(max - Kmm
where '~ implies the index which is transferred into
common preference design domain. Reversely, if
the best preference is given the minimum value, and
the least preference is given the maximum value of

(39)

the criterion, like the gradient design index Kd,

the design index transferred into common
preference design domain is given by
~s K& —K?
KY=—"max — (40)
Kmax _Kmin
Note that each transferred design index _is

constructed such that a large value represents a
better design.

A set of optimal design parameters was obtained
based on max-min principle of fuzzy theory [7].
Initially, minimum values among the design indices
for all set of design parameters are obtained, and
then a set of design parameters, which has the
maximum value of the minimum values already
obtained, is chosen as the optimal set of design
parameters. Based on this principle, the composite
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design index(CDI) is given by
CDI = min(ﬁ“,(ﬁ“)ﬂ). (1)
The upper Greek letter is the degree of weighting,

and large value implies large weighting. The
weightings are all set to ones in this work.

5. Optimization

Optimization problem is formulated as follows:
The objective is to evaluate optimal link lengths
which maximizes CDI. The design variables are the

ratios of link lengths to the base link length /;, and
they are defined by

x, =1L/, i=123,4. 42)
Constraints to the design variables are

0.5<x <1.5 “3)
and

I,=02m (44)

Two objective functions are defined and used in
optimization. One noted as CDI, corresponds to

the modulation of the X-directional stiffness. It
contribute to enhance the isotropic characteristic for

K. eand K, . The other noted as CDI,

corresponds to modulation of the Y-directional
stiffness. It contribute to enhance the isotropic

characteristic for K 4y and K -

Three numerical methods are used to deal with
multivariable nonlinear optimization problem with
constraints. The exterior penalty function method is
employed to transform the constrained optimization
problem into.an unconstrained problem. Powell's
method is applied to obtain an optimal solution for
the unconstrained multivariable problem, and
quadratic interpolation method is used for
unidirectional optimization [12].

Optimization result for modulation of the X-
directional stiffness is given as

1, /I, =0.697434392
1, /1, =1.250000000
1,/l, =1.487984717
1, /I, = 0.729829688

and the shape of optimized mechanism (Design 1) is
shown in Fig. 2. :



Optimized Shape

X ] 01

X

Figure. 2 Optimized shape of Design 1

02 03 04

Optimization result for modulation of the Y-
directional stiffness is given as

1, /15 =0.750000100
1, /1, = 0.750000050
1,/1, = 0.693700249
1, /1, =1.499999810

and the shape of optimized mechanism (Design 2) is
shown in Fig. 3

Optimized Shape

> o1t

005

015 01 005 0 005 01 0% 02 02 03
X

Figure 3. Optimized shape of Design 2

As shown in Fig. 2, the length of distal floating
link is longer than that of the link attached to the
base. This structure is suitable to translate the torque
given at the two base joints to the forces at the end-
effector. In Fig. 3, conversely, the length of right
connecting link shows extreme value, and this
represents bad force transmission from base
actuator to end-effector. By intuition, the shape of
the optimized five-bar should be symmetric when
solely considering the isotropy in optimization.
However, both optimization results show
unsymmetrical configurations. Its is remarked that
the unsymmetry is caused by consideration of the
gradient characteristic of the isotropic index in
optimization.

The contours of stiffness modulation index for
Design 1 are shown in Fig. 4. As shown in Fig. 4,
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K, is high at the center of workspace. Isotropies for

Y-directional stiffness modulation are also high
over most workspace. This factor is advantageous to
operate the mechanism in both x and y directions.

Isotropy of {H] for X-direction : kyx Kxy

0.1 02

0 01
X (m)
(a) Distribution of &,

tsotropy of (H] for Y-direction : ky, ky

0.t 01 02

° X (m)
(b) Distribution of &,

Figure 4. Isotropic index of Design 1

Figure 5 shows the contours of stiffness
modulation index for Design 2. The workspace is
narrow and the peak is not on the center of
workspace. Therefore this design can not be said to
be useful. Contrastively the workspace of Design 1
has shape of a fan and is close to a diamond, and it
is another advantage. As shown in Fig. 5 (a), very
low isotropy is detected on the middle of the
workspace. Although Design 2 is optimized to
maximize Y-directional stiffness modulation effect
only not to optimize X-directional stiffness
modulation, but this design is unfit for general
purpose.

Shape of optimization result for maximizing

isotropy of Jacobian [G[] and minimizing the
gradient of its isotropy also shows like that of
Design 1, though the result is not represented here.
Therefore, Design 1 is suitable for both general

operational purpose and antagonistic stiffness
generation. ‘



" Isotropy of {H] for X-direction : ke, kyy
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(a) Distribution of x

isotropy of [H] for Y-direction : kyy Ky,
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Figure 5. Isotropic index of Design 2

6. Conclusion

The purpose of this work is to propose an
optimal kinematic architecture of five-bar
mechanism that can modulate antagonistic stiffness
by using redundant actuators more effectively. The
model of antagonistic stiffness generation is
constructed and the stiffness modulation index is
proposed. The global design index that can
represent whole isotropic characteristic of the
mechanism is defined, and the gradient design index
is also defined and employed in optimization to
obtain uniform isotropic characteristic. Composite
design index integrating several design indices into
one index systematically is defined to deal with two
design indices.

Two optimization results are obtained based on
two objective functions. One corresponds to
stiffness modulation in the X-direction, and the
other to the Y-direction. It is observed that the first
design can modulate both of X-directional and Y-
directional stiffness effectively, but the second
design is not appropriate. Besides this, it is found
that the result of the first design coincides with that
of the optimal design to enhance the first-order
kinematic characteristics such as velocity and force
transmission ratios.

Currently, we are developing five-bar
mechanism for the purpose of useful utilization of
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the antagonistic stiffness. The first objective is
precise force control. The second objective is
impact minimization. Both applications utilize the
soft spring effect created by redundant actuation.
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