
 1

Model-Solver Integration in Decision Support Systems:

A Web Services Approach

Keun-Woo Leea,*, Soon-Young Huha

aGraduate School of Management, Korea Advanced Institute of Science and Technology

207-43 Chongyang-ni, Dongdaemoon-gu, Seoul, 130-722, Korea

Abstract

As complex mathematical models are increasingly adopted for business decision-making,

many decision makers have difficulty in selecting compatible solvers (i.e., model solving

algorithms) for a model and adequately applying them to the model. This paper presents a

model-solver integration framework that enables a decision support system to autonomously

suggest the compatible solvers and to apply them to the model, even though the users are not

knowledgeable enough about all the details of the models and the solvers. In developing the

framework, this paper adopts a Web services approach for the integration of the models and

solvers created on different modeling paradigms by encapsulating individual solvers as Web

services.

* Corresponding author. Tel.: +82-2-958-3650; fax: +82-2-958-3604.

 E-mail addresses: kwlee@kgsm.kaist.ac.kr (K. Lee), syhuh@kgsm.kaist.ac.kr (S. Huh).

 2

1. Introduction

As business environments become more competitive and rapidly change, decision support

systems (DSS) for precise and agile decisions have been increasingly adopted in many

organizations. In a DSS, for user-friendliness and intuitive solution, a decision problem is

formulated as a model and diverse sets of solvers (i.e., model-solving algorithms) are also

provided. Particularly, since a model may have multiple problem-solving purposes, it needs

multiple solvers depending on the purposes, and conversely, a single solver can be also applied

to multiple models that have similar problem structures. Under this many-to-many relationship

between models and solvers, to solve a model, a user of the DSS should be knowledgeable about

which solvers can be applied to the model. Moreover, once an applicable solver is chosen, the

user should also understand how to match the individual model parameters to the solver

parameters to execute the solver adequately [5].

In reality, however, since most ordinary DSS users might not be familiar with the entire set of

the models and solvers but only specific kinds, they often have difficulty in picking out the

applicable solvers of a given model from the organizational solver library. In addition, the

complex model-solver interaction semantics, hardly understandable for the ordinary users, make

it difficult for them to match the model parameters to the solver parameters in the model-solving

process. This is not a trivial task even for the users with specific skill levels in the problem-

solving theories, which means that they understand the conceptual objectives and constraints of

the solvers and how to set up the initial parameter values of the model to be solved [1,3].

Moreover, as more organizations have constructed the DSS distributed across their

internal/external networks [4], models and solvers have been created based on different modeling

paradigms and different system platforms. Such heterogeneity of models and solvers makes it

 3

more difficult to utilize models and solvers in solving decision problems.

Thus, the DSS is required to support the following two capabilities to make the overall model

solution process easy and productive. First, for a specific model under consideration, the DSS

should be able to suggest autonomously a set of solvers that are both syntactically and

semantically compatible with the model so that the users can select an appropriate one among the

suggested solvers. Second, when a particular solver is chosen for the model, the DSS should be

able to match the model parameters to the adequate solver parameters intelligently and produce

the model solving results even though the user cannot perform exact matching between the two.

Recognizing such requirements of the DSS, this paper focuses on the development of a

model-solver integration framework that facilitates the autonomous solver suggestion and

intelligent model solution capabilities. In developing the framework, we adopt the Web services

technologies [6] as a vehicle for integrating the models and solvers distributed across networks

and created based on different modeling paradigms and system platforms. The Web services

technologies have been highlighted as a way of integrating distributed and heterogeneous

applications, which was previously impractical because of non-interoperable proprietary

approaches. In our framework, individual solvers are encapsulated as Web services (called

solving services) that provide the model-solving functions. Given these solving services, two

intelligent agents, model and solver agents, assist users with solving models by suggesting

compatible solving services and matching parameters of the two without direct users’

intervention [2]. In addition, for the agents to identify the compatibility of a solving service with

a model and their parameter matching patterns, an interfacing ontology managing such

interfacing semantics between individual models and solving services is also defined.

 4

2. Model-Solver Integration Framework

Figure 1 shows the conceptual architecture of the model-solver integration framework

proposed in this paper. The interfacing ontology and the model and solver agents are to be

explained in the following sections.

2.1. Interfacing Ontology

First, for representation of the compatibility between individual models and solving services,

models are classified into groups (i.e., model taxonomy) in such a way that every model in a

group can share solvers with one another. By assigning solving services to the individual model

groups, the interfacing ontology can represent which models a solving service can be applied to.

Figure 2 shows example taxonomy of optimization models and assignment of compatible solvers.

Model
Agent

Solver
Agent

User View

Model Builder/
Decision Maker

MODEL 2

MODEL 1

SOLVING
SERVICE 2

SOVING
SERVICE 1

Interfacing
Ontology

Models Solving Services

Compatible solving services

Model solving results

Compatible
solving
services

Model solving
results

Solving service description (WSDL)

Input parameters & Request for calculation (SOAP)
Model solving results (SOAP)

Interfacing
semantics

Interfacing
semantics

Figure 1. Conceptual Architecture of the Model-Solver Integration Framework.

 5

In model management literature, such model taxonomies have been proposed implicitly or

explicitly to organize similar models into groups. However, since those taxonomies are usually

concerned only with structural assumptions within the models such as whether a parameter of a

model is continuous or discrete, we use more detailed taxonomy where the models are

categorized one step further in terms of the shareability of solvers.

Second, for representation of the parameter matching patterns between individual models and

their compatible solving services, a parameter mapping dictionary is constructed. The parameter

mapping dictionary manages all the possible types of mapping relationships between model

parameters and solver parameters in a tabular form where each row represents an individual

parameter mapping (Table 1). We can distinguish those parameter mappings according to the

following two factors.

SolversModels

Optimization
Models

Linear
Programming
Models

Network
Models

Integer
Programming
Models

Dynamic
Programming
Models

Transportation
Models

Assignment
Models

Shortest-Route
Models

Minimum Spanning
Tree Models

Set Covering
Models

Simplex

Simplex, VAM+MODI

Simplex, VAM+MODI,
Hungarian

Simplex, Back Tracking,
Dijkstra

Prim, Kruskal

Maximal Flow
Models Max Flow Min Cut

Branch and Bound,
Complete Enumeration,
Cutting Planes

Forward Calculation,
Backward Calculation

Figure 2. Example Taxonomy of Optimization Models and Compatible Solver Assignment

 6

 Cardinality: A parameter mapping can have 1:1, 1:n, n:1, or n:m cardinality. An 1:1 or n:1

mapping is specified in a single row of the dictionary; an 1:n mapping is converted to n 1:1

mappings and thus specified in n rows; an n:m mapping is converted to m n:1 mappings and

thus specified in m rows. For example, in Table 1, the first row indicates the 1:1 mapping

between PARAM 1 and PARAM 6, and the second row describes the n:1 mapping between

the three parameters (PARAM 2, PARAM 3, and PARAM 4) and PARAM 7 by averaging

the three parameters. The 1:n mapping between PARAM 5 and the two parameters

(PARAM 8 and PARAM 9), shown in the third and fourth rows, is converted to two 1:1

mappings.

 Transformation function: A parameter mapping can include a transformation function.

When the transformation function is applied to the parameter value of the sender, it will

produce the data value required in the receiver. A transformation function is expressed as an

algebraic formula built from the mapping parameters recursively composed by a set of

operators. A parameter is denoted by its name enclosed by ampersands (&) at both ends

(e.g., &PARAM 1&). The operators include various mathematical operators for the

numerical calculations of the parameter values.

Table 1. A Conceptual Structure of the Parameter Mapping Dictionary.

Model Model
Parameters

Solving
Service

Solver
Parameters Transformation Function

MODEL 1 PARAM 1 SERVICE 1 PARAM 6
MODEL 1 PARAM 2,

PARAM 3,
PARAM 4

SERVICE 1 PARAM 7 &PARAM 7& = AVG(&PARAM 2&,
&PARAM 3&, PARAM 4&)

MODEL 1 PARAM 5 SERVICE 1 PARAM 8 &PARAM 8& = &PARAM 5& / 10
MODEL 1 PARAM 5 SERVICE 1 PARAM 9 &PARAM 9& = &PARAM 5& / 100

By referring to the parameter mapping dictionary, the DSS can identify the compatible

 7

solving services of a model and their parameter matching patterns. For example, the following

SQL command shows how to retrieve the compatible solving service names of the model

MODEL 1 from the parameter mapping dictionary. (Though the parameter mapping dictionary is

not a database table, we use commands written in SQL to illustrate how to manipulate the

dictionary because it has a tabular form.)

select distinct SolvingService
from ParameterMappingDictionary
where Model = “MODEL 1”;

Since the compatible solving services must have parameter mappings with the model in the

dictionary, this command finds the solving services by extracting the attribute solving service

from the mappings that have the model name “MODEL 1” in the attribute model.

2.2. Model and Solver Agents

The model agent acts as an intermediary between a user view and the solver agent to support

a user in solving a model. Specifically, the model agent brings two types of information to the

user view: compatible solving services with the model and the model solving results. First,

when a user view references a model, the model agent consults the interfacing ontology and

identifies the compatible solving services. Then, via the user view, the model agent suggests

them for the user to select one. Second, when the user selects a solving service to be used, the

model agent requests for description of the selected solving service from the solver agent.

According to the description, the model agent sends a Simple Object Access Protocol (SOAP)

[6] message containing the input parameters required in the solving service and the request for

 8

execution of model-solving calculation. In creating the message, the model agent refers to the

interfacing ontology again to understand the parameter matching patterns between the model and

the solving service. Afterwards, the model agent delivers the solution returned by the solver

agent to the user view.

In this context, the solver agent has the following two responsibilities in response to the

model agent’s request: sending the service description of a solving service and executing the

model-solving calculation. First, the service description defines the solving service’s interface

such as the message formats, data types, and transport protocols that should be used in the

service. Such service description is written in a standardized description language such as Web

Service Description Language (WSDL) [6]. Second, when the solver agent receives the request

for model-solving calculation from the model agent, it executes the solving service and returns

the results to the model agent in a SOAP message format.

3. Conclusions

A DSS can achieve high productivity and effectiveness in supporting a user’s model-solving

activities by satisfying the following two functional requirements: autonomous solver

suggestion and intelligent model solution. Having recognized these requirements, this paper

proposes a model-solver integration framework that facilitates the two requirements. In

developing the framework, we use the Web services technologies to integrate the models and the

solvers in unified system architecture. Also, we design an interfacing ontology for the model and

solver agents to infer the compatibility of a solving service with a certain model and to

understand their parameter matching patterns. Referring to the ontology, the agents can suggest

the compatible solvers and solve the models without direct intervention of the users. Thus, the

proposed model-solver integration framework can be equipped with the autonomous solver

 9

suggestion and intelligent model solution capabilities.

Now, we are working on elaborating the interfacing ontology to provide more concrete and

formal specifications about the model-solver compatibility and the parameter matching patterns.

A simple ontology that has a form of mapping table has been constructed but it is being extended

based on the Resource Description Framework (RDF) [6]. Also, a prototype system for the

model-solver integration framework is being developed with JAVA programming language.

References

[1] Beynon M, Rasmequan S, Russ S, “A New Paradigm for Computer-Based Decision

Support,” Decision Support System 2002; 33(2): 127-142.

[2] Bhargava H, Krishnan R, Roehrig S, Casey M, Kaplan D, Müller R, “Model Management in

Electronic Markets for Decision Technologies: A Software Agent Approach,” Proceedings of

the 30th Hawaii International Conference on System Sciences 1997: 405-415.

[3] Dutta A, “Integrating AI and Optimization for Decision Support: A Survey,” Decision

Support Systems 1996; 18(3-4): 217-226.

[4] Gregg D, Goul M, Philippakis A, “Distributing Decision Support Systems on the WWW: the

Verification of a DSS Metadata Model,” Decision Support Systems 2002; 32(3): 233-245.

[5] Huh S, “Modelbase Construction with Object-Oriented Constructs,” Decision Science 1993;

24(2): 409-434.

[6] World Wide Web Consortium, http://www.w3.org/, 2003.

