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Abstract 
 
This study deals with the problem of robust preview control of a vehicle suspension system. The 
system is described by a state-space model with linear nominal parts and norm-bounded linear 
uncertainties, which are functions of states and control input of the state and controlled output 
equations. Using the augmentation of preview information to the state, the robust preview controller is 
designed using the well-developed robust feedback control algorithms. The proposed controller 
guarantees the robust stability of the vehicle suspension system and simulated results are presented. 
 

Introduction 

Most control systems utilize the feedback structure, whose control input depends only 
on the error signals in the current and past states without considering future 
information, such as tracking commands and measurable disturbances into the 
systems. Thus, if we know the information about future disturbances and utilize them 
to be fully reflected on a control law, better performance maybe obtained. 
The idea of preview was first proposed by Bender(1968). Bender used the spectral 
technique and Wiener filter theory to derive a preview controller of 1DOF system. 
Tomizuka developed a preview control algorithm for discrete-time systems using the 
dynamic programming method for 1DOF system(1976). Hac also solved the problem 
using the calculus of variation(1992).  
Dynamic systems have always uncertainties in the plant parameters. Aforementioned 
researches are based on a LQ framework show the limitation on considering 
robustness specifications for designing the controller in systematic manner. Some 
preview control methods based on the H∞ control theory have been reported. Kojima 
and Ishijima derived an H∞  control law with preview compensation in the 
continuous time domain(1997). Mianzo and Peng suggested a unified framework 
based on Hamiltonian formulation(1999). This approach provided a general 
framework to solve both the LQ and H∞  preview control problems. Choi and 
Tsao(2001) presented a design method of the preview controller based on discrete-
time H∞  control with augmentation of preview information to the state. 
The problem of robust H∞  preview control for linear systems has not been studied. 
In this paper, a robust H∞ preview controller is proposed and applied to the vehicle 
suspension system. The class of systems is described by a state-space model with 
linear nominal parts and time-varying norm-bounded uncertainties of the state and 
output equations except previewable disturbance input matrices. To design the robust 
H∞  preview controller which guarantees the robust stability, the previewable 
disturbance input which is assumed to be exactly known is augmented to the state. 
Then well-developed robust feedback controller design techniques are applied. The 
Hamiltonian approach is used to obtain a solution to the problem of robust H∞  
preview control of the system. 
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Robust Preview Control 

Consider the following stabilizable uncertain system: 
 

( )Σ : 1 2 1

1 2 2

( 1) ( ) ( ) ( ) ( ( ), ( ))
( ) ( ) ( ) ( ) ( ( ), ( ))

x k Ax k B u k B r k x k u k
z k Cx k D u k D r k x k u k

+ = + + + Δ
= + + + Δ

             (1) 

 
where ( ) nx k ∈\ is the state, ( ) mu k ∈\ is the control input, ( ) pr k ∈\ is the previewable 
disturbance input, ( ) sz k ∈\  is the controlled output, 1 2 1, , , ,A B B C D and 2D are known 
real constant matrices of appropriate dimensions that describe the nominal system. 

( ( ), ( )), 1, 2i x k u k iΔ =  are real time-varying vectors representing norm-bounded 
uncertainties. k∈]  is the integer which represents the discrete-time step. 
Using the following augmented state, 
 

( 1) ( ) ( 1)r r r r px k A x k B r k N+ = + + +                    (2) 
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The state and controlled output equations are represented as 
 

( )aΣ : 1 2 1

1 2

( 1) ( ) ( ) ( ) ( ( ), ( ))
( ) ( ) ( )               ( ( ), ( ))

a a a a a a a a

a a a a a a

x k A x k B u k B r k x k u k
z k C x k D u k x k u k

+ = + + + Δ
= + + Δ

        (3) 
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Let us assume the admissible uncertainties are of the form  

( ( ), ( )) ( ) ( ) , 1, 2ai a i a ix k u k a x k b u k iΔ ≤ + =  

where 0, 0,  1, 2i ia b i≥ ≥ =  are known constant numbers, i  represents the Euclidean 
vector norm. 
Denote the corresponding uncertainty sets by  

 
( ( ), ( )) : ( ( ), ( ))
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Using the Lemma 1(Wang and Zhan, 1996), the uncertainty sets are represented as 
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Assumption 1: Let us introduce the following structure assumption for the uncertain 
parameters , , 1, 2ik ikM M i = . 

[ ]1 2 1
1 2

1 2 2

k k a
k

k k a

aM bM H
M aE bE

aM bM H
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where ( ( 1))

1
pn p N n

aH + + ×∈\ , 2
s n

aH ×∈\ , ( ( 1))
1

pi n p NE × + +∈\  and 2
i mE ×∈\  are known 

constant matrices which characterize how the uncertain parameter in kM  enters the nominal 
matrices 1 2 1, , , ,A B B C D  and 2D . n i

kM ×∈\  is a unknown time-varying matrices 
satisfying ( ) 1kMσ ≤ ; ( )σ •  stands for its largest singular value. 
We provide a solution to the problem of robust H∞  preview control for the system ( )aΣ  in 
order to guarantee the stability of the closed-loop system in the presence of uncertainty. From 
Assumption 1, the system ( )aΣ  can be represented as 
 

( )alΣ : 1 1 1 1 2 2

2 1 1 2 2

( 1) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

a a a k a a a a k a a a

a a a k a a a a k a

x k A H M E x k B H M E u k B r k
z k C H M E x k D H M E u k

+ = + + + +
= + + +

    (4) 

 
where [ ]1

T
aH I= 0 , 2aH H= , [ ]1 1aE aE= 0 , 2 2aE bE= . 

Then we examine the robust H∞  control problem for system( )alΣ . To do this, let us 
introduce the following auxiliary system: 
 

 ( )a
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where ( 1)( ) pn p N

ax k + +∈\ is the augmented state, ( ) nw k ∈� \ is the disturbance input,  
( ) s i

az k +∈� \  is the controlled output,  and 0ε >  is a scaling parameter to be chosen. 
For an proper 0ε > , if we design the H∞  feedback controller for the auxiliary 
system( )a

alΣ� , the system ( )aΣ is quadratically stabilizable with unitary H∞  disturbance 
attenuation(Shi, and Shue, 1999). ( )ar k  is ignored because it is the distant future signal 
which has no effect on the system at the current state. 
The required controller can be obtained via the Hamiltonian approach. The cost function to be 

minimized by the control vector is assumed to be 
0

1 ( ( ) ( ) ( ) ( ))
2

fN
T T
a aJ z k z k w k w k= −∑ � �� � , and 
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we assume that disturbance input, control input and previewable disturbance input are 
uncorrelated. 
< Theorem 1 >: The optimal solution of the system ( )a

alΣ�  is achieved when  

{ }1 1
2 1( ) ( ) ( 1) ( )T T

a a n au k R N B k P k x k− −= − + Φ + Γ                 (6) 

where                     1
2 2 1( ) ( ) ( 1)P k k P k−= Γ +Γ Φ + Γ                      (7) 

( ){ }11 1 1
2 2 1 2 1( ) ( 1) n a n n a nk I P k B R B B I Q B−− − −Φ = + + − − , 

( ) 11
1 2 1 2 12
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2 1 12 2 12
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⎣ ⎦⎣ ⎦ ⎣ ⎦
. 

Proof : Details of proof are given in (Ryu et al., 2006). 

 

Target System 

The plant to be controlled is the 2-DOF vehicle suspension model as shown in 
Hac(1992). Using the following state vector x , and the controlled output vector z  

[ ]1 1 2 2, , , Tx x x x x= � � , [ ]1 1 1 2 2 2 3, ( ), ( ), Tz x x x x r uρ ρ ρ= − −��  

where the superscript T  denotes transposition, the state-space and the controlled 
output equation with uncertainty can be written as: 
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�
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Here, the parameters 1 1,000[ ]m kg= , 2 100[ ]m kg= , 1 36,000[ / ]k N m kg= i , 

2 360,000[ / ]k N m kg= i ,  3,000[ / ]b N s m kg= i i . And an uncertain parameter 
( )b bΔ = + Δ  is subject to the bound of 0.4 1.6b b bΔ∗ ≤ ≤ ∗ .  

The vehicle is assumed to travel over a single bump described by: 
0.025(1 cos 20 ( 0.3))   for 0.3 t 0.4

( )
0 otherwise

t
r t

π− − ≤ ≤⎧
= ⎨
⎩
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Simulation Results 

Using the above auxiliary system (5), the robust H∞  preview controller is designed 
by Hamiltonian formulation. The weighting parameter is selected as 3

1 10ρ = , 
4

2 10ρ = , 3 0ρ =  with a preference for ride comfort and the vehicle velocity 
20 / secv m= . a and ε  is selected as 31.02*10−  and 41*10− , respectively. 

Figures 1 and 2 show the simulated behavior of the conventional LQ preview and the 
robust H∞  preview control with preview time 0.2sec. For the case when b  has 
uncertainty of -60%, Figure 1 shows the vertical acceleration of vehicle body which is 
related with ride comfort. Figure 2 shows the position of the wheel which is related 
with vehicle handling. Figure 3 and 4 show the feedback and feedforward input to the 
system. The feedforward input of robust preview controller is increased with 
uncertainty, because no uncertainty exists at previewable disturbance input and 
therefore the controller gives more weight to it. If, however, the uncertainty exists at 
matrix E, then the feedforward input is decreased with increasing uncertainty. From 
this simulation results, we conclude that the proposed robust H∞  preview controller 
can stabilize the uncertain system, while the conventional LQ preview controller fails. 
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 Figure 1. Vertical Acceleration          Figure 2. Position of the Wheel 

of the Vehicle Body  
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   Figure 3. Feedback Input             Figure 4. Feedforward Input 
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Conclusions 

This paper proposed the robust H∞  preview control method, which guarantees the 
robust stability, in the feedback form for vehicle suspension systems. The results show 
that the robust H∞  preview controller can be easily designed using the well-
developed robust feedback control method with the augmentation of preview 
information to the state. The proposed controller has a unitary H∞  disturbance 
attenuation for the auxiliary system to satisfy the small gain theorem. Moreover, the 
simulated results show that the proposed robust H∞  preview controller assures 
robust stability even with relatively large uncertainties. 
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