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Abstract—The power consumption of microprocessors is
increasing at an alarming rate leading to 2X reduction in the
power distribution impedance for every product generation.
In the last decade, high I/O ball grid array (BGA) packages
have replaced quad flat pack (QFP) packages for lowering the
inductance. Similarly, multilayered printed circuit boards loaded
with decoupling capacitors are being used to meet the target
impedance. With the trend toward system-on-package (SOP)
architectures, the power distribution needs can only increase,
further reducing the target impedance and increasing the isolation
characteristics required. This paper provides an overview on the
design of power distribution networks for digital and mixed-signal
systems with emphasis on design tools, decoupling, measurements,
and emerging technologies.

Index Terms—Impedance, mixed signal, power delivery, power
distribution.

I. INTRODUCTION

AMAJOR bottleneck faced by systems today is the supply
of clean power to the integrated circuits. The replacement

of the quad flat pack (QFP) with ball grid array (BGA) pack-
ages in the 1990s has resulted in a substantial decrease in the in-
ductance from the 50 nH range to the tens of pico-henry range.
Today, the core power supply inductance has been reduced to

pH for high-performance computer products using state of
the art packages and boards [1]. With the trend in microproces-
sors toward higher power and lower supply voltages, the power
supply inductance has to continuously decrease. In addition, the
noise in the system is being generated by bouncing planes due to
the propagation of electromagnetic waves, resulting in signifi-
cant coupling and radiation. With increase in frequency and con-
vergence toward mixed-signal systems, supplying clean power
to the integrated circuits and managing the noise coupling in
the system can be a major bottleneck, which is the subject of
this paper.

The power consumption and supply voltage for some micro-
processor products in the last decade are shown in Fig. 1. The
power has increased from 5 to 150 W, the supply voltage has
decreased from 5 to 1.2 V and the frequency has increased from
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16 MHz to 3 GHz from the 386 to the Itanium processor fami-
lies. This has resulted in an exponential increase in the current
being supplied to the microprocessor. In the mid-1990s, design
of power distribution networks using the target impedance was
proposed by Smith et al. [2]. The target impedance, which is cal-
culated from the power supply tolerance (5% of supply voltage),
current and switching activity (50%), has to be satisfied by the
system over a broad range of frequencies, from dc to at least the
first harmonic of the clock frequency. The target impedance is
a useful quantity for evaluating the relative merit of a system.
Using the parameters from the 2001 International Technology
Roadmap on Semiconductors (ITRS) [3] for high-performance
products, the target impedance is expected to decrease for every
product generation, as shown in Fig. 2, reaching 0.1 m in 2010
for a microprocessor operating at 218 W @ 0.6 V with a clock
frequency of 10 GHz. As a comparison, the Itanium micropro-
cessor which operates with a power of 150 W @ 1.2 V has a
target impedance of 1 m . Similarly, for the 22-nm technology
from ITRS in 2016, the target impedance to be met is 60 .
The impact of reducing power supply noise through reduced
impedance on microprocessor performance has been described
in detail by Waizman et al. [4] wherein it was shown that the
frequency of the microprocessor can be increased by reducing
the power supply tolerance.

With the evolution in technologies, system-on-package
(SOP) is fast becoming a promising solution for integrating
heterogeneous functions such as high-speed digital processing,
memory, radio-frequency circuits, sensors, microelectrome-
chanical systems (MEMS), and optoelectronic devices. This
integration is required for convergent microsystems that sup-
port communication and computing capabilities in a tightly
integrated module. By embedding functionality in the package
(such as inductors, capacitors, resistors, waveguides, and
filters), SOP provides for the co-design of the chip and the
package for system integration. A major problem with such
heterogeneous integration is the noise coupling between the
various dissimilar blocks constituting the system. The noise is
primarily generated by the high-speed digital processor and
coupled through the power distribution network, resulting in
significant jitter for the phase-locked loop (PLL) and phase
noise for the RF oscillator, resulting in the reduction of timing
margin, noise margin, and degradation in the bit error rate
(BER). The noise coupling is conceptually depicted in Fig. 3
where the maximum power supply noise is transmitted through
interconnections and vias at resonance in the power/ground
planes of the package. Due to the low noise floor required for
analog circuits, at frequencies below the substrate resonance
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Fig. 1. Microprocessor power distribution trends (Courtesy: L. Smith-SUN).

Fig. 2. Target impedance projections based on ITRS’01.

frequencies, considerable noise coupling occurs in the form of
crosstalk and through the common inductive impedance of the
power/ground return current path. In addition, the resonance
generates edge radiation, causing electromagnetic interference
in the system.

Any system can be partitioned into the chip containing the
active circuits, the package supporting routing with embedded
passives and the board providing connection between chips and
to the outside world. With the evolution in system integration
technologies, the goal is always to reduce the interfaces by
eliminating the packaging levels in a system. This translates to
higher system speed. The power distribution network consists
of interconnections in the chip, package and board, which
together provide the required target impedance over a range in
frequencies. With the trend toward SOP, the power distribution
network in the chip and package has to be viewed as a single
network, warranting a chip-package co-design methodology
for minimizing the resonance in the system. This requires a
clear understanding of the system blocks, design tools and

technologies available for power distribution, in terms of their
status and challenges, which is the focus of this paper.

This paper is organized as follows. In Section II, the issues
related to the powering of microprocessors and systems are dis-
cussed with emphasis on the chip and package/board power dis-
tribution. Section III describes the modeling of power distribu-
tion networks. In Section IV, recent results and challenges for
SOP are described followed by the conclusions in Section V.

II. POWERING OF MICROPROCESSORS AND DIGITAL SYSTEMS

The elements of the power distribution network are shown
in Fig. 4, which consists of the chip level power distribution
with thin-oxide decoupling capacitors, the package level power
distribution with planes and midfrequency decoupling capaci-
tors and the board level power distribution with planes, low-fre-
quency decoupling capacitors, and voltage regulator module.
The frequency ranges covered by these elements are also shown
in the figure where the power distribution operates at a higher
frequency as the proximity to the active devices decreases. This
is due to the parasitic inductance and resistance of the intercon-
nections between the active circuitry and the various elements
of the power distribution network. The status and challenges for
each block in the power distribution are explained in detail in
this section.

A. Voltage Regulator

The trend of increasing power and lowering supply voltage
requires designers to move ac-dc and dc-dc converters closer to
the electronics they feed. A representative class of low-voltage
high-current application is the core supply of central pro-
cessing units (CPU), digital signal processors (DSP), and large
switching chips. The voltage may be in the 0.8 to 2.5 V range
with the current being in excess of 100 A for the largest devices.
Since the core voltage is often unique and may be required
only by the particular device, the dc-dc converters usually feed
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Fig. 3. Power distribution noise coupling in SOP.

Fig. 4. Chip, package, and board power distribution network.

only one load, and hence, are also called point of load (POL)
converters.

Besides the large current requirements, modern electronic
circuits contain elements with several different supply volt-
ages. Legacy 5 and 3.3 V logic devices are still common,
but newer devices often require 2.5, 1.8, 1.5 V or even lower
supply voltage. The pressing need for optimizing device speed
while minimizing current consumption leaves little room to
combine supply rails with similar but not exactly the same
nominal voltage. The solution is, therefore, to place several
dc-dc converters on the board to create the different supply
voltages. The topology of these dc-dc converters is determined
by two major system constraints, namely: 1) most of the supply
voltages are lower than the voltage of the primary source to
the board (output of ac-dc converter or battery), therefore,
these converters usually have to step down the voltage and

2) isolation is very seldom required in these converters. In
ac-powered systems, the isolation can be easily provided in the
ac-dc converters.

Due to the aforementioned constraints, the single-phase, non-
isolated buck converter is the most widely used dc-dc converter
topology today, though for high-current applications multiphase
converters are also becoming popular. In a few applications,
step-up boost converters and polarity-reversing buck-boost con-
verters are also used.

The challenges for the dc-dc converters are multifold. As a
first challenge, the converters have to feed the low-voltage load
with reasonable efficiency over a widely varying load-current
range, which often requires synchronous rectification to keep
losses low. The requirement of high efficiency in POL appli-
cations, however, is more a convenience than a technical ne-
cessity for reducing heat dissipation in the converter. Since the
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POL converters have to be placed close to the load, which will
eventually dissipate the full output power, increasing the effi-
ciency of the POL converter barely reduces the total power dis-
sipation. However, higher converter efficiency can result in a
smaller converter volume, which is usually the driving factor.
Depending on the size and cost of the converter, their efficien-
cies are in the 85–95% range. A second challenge is to opti-
mize the converter’s control loop to provide sufficiently low
output transient ripple against the varying load current. Espe-
cially in the case of cascaded dc-dc converters, where the con-
verter’s input may have little transient filtering, the upstream
converter’s output has to deal with large current fluctuations.
For example, a POL converter with 1.0 V output voltage and
30 A maximum current rating with a maximum of 60 m
load transient noise (excluding switching ripple), requires an
output impedance below 2 m (including the capacitors). At
dc, providing low-output resistance is relatively easy. With in-
creasing frequency, however, the drooping loop gain creates an
increasing output impedance of the converter. For guaranteeing
unconditional stability against the unknown load impedance,
some converters have very low bandwidth. If the converter’s
output impedance, for instance, exceeds the required 2 m at 1
kHz, the on-board capacitors have to provide the impedance. At
1 kHz, 80 000 F capacitance is required for providing a 2–m
capacitive reactance. As an illustration, Fig. 5 shows the small-
signal output impedance of a POL converter at 1.5-V 20-A load,
with a 680- F external capacitor. A third challenge is to keep the
conducted and radiated emissions of the converters under con-
trol. The converters are often placed very close to high-speed
low-swing digital interconnections and sensitive analog circuits.
Since the peak ac current ripple is always higher in the con-
verters than their dc output current, care has to be taken to mini-
mize the switching noise the converters introduce to nearby cir-
cuits. To reduce this interference, spread-spectrum converters
have been introduced [5].

B. Bypass Capacitors

For wide frequency portions, the target impedance require-
ment may be flat, which corresponds to resistive impedance.
Most available decoupling capacitors, however, have moderate
or high quality factor (Q), making it a challenge to create
the flat impedance profile required. It has been shown ([6],
[7]) that bypass capacitors with help to create flat
impedance profiles with a minimum number of components.
For fixed equivalent series resistance (ESR) and equivalent
series inductance (ESL), the Q of the capacitor varies inversely
with capacitance. Therefore, creating smooth impedance
transitions with large bulk capacitors, even with a low ESR,
is an easier task. Providing a smooth impedance profile with
multiple lower-valued low-ESR ceramic capacitors is difficult
and challenging, especially when the frequency dependency of
capacitance, resistance and inductance are taken into account.
In [6] the bypass quality factor (BQF) was introduced as a mea-
sure of effectiveness of the capacitor to cover a wide frequency
range where (C: Capacitance; L: Inductance),
indicating that a capacitor is more effective if the C/L ratio is
higher.

Fig. 5. Measured small-signal output impedance of a V = 3:3, V =

1:5 V, 20-A POL converter with full dc load.

For several hundred microfarad and higher capacitance
values tantalum, niobium and various electrolytic capacitors
have been used. The large capacitance dictates relatively large
capacitor bodies, which in turn represents large inductance.
Electrolytic capacitors in standard radial packages require a
bottom seal in the can, creating few nano-henries of inductance.
Tantalum and niobium capacitors are usually offered in brick
case styles. The typical construction has a clip connection for
the anode, introducing more than one nano-Henry inductance
in spite of the smaller case style. Recently low-inductance
face-down constructions have been introduced with signifi-
cantly lower inductance [8].

Using multiple via connections can decrease the overall loop
inductance [9]. With state-of-the art low-inductance capacitor
constructions, the inductance limitation becomes the external
connections formed by pads, escape traces, and vias. Using mul-
tiple via connections can decrease the overall loop inductance.
This realization has given rise to capacitor case styles with mul-
tiple terminals. Today the lowest inductance can be achieved
with the various C4 or BGA capacitor packages [10]. When con-
nected to the power/ground planes inside a board or package
substrate, the vertical via connections remain as the ultimate
limiting factor for lowering inductance. This limitation can be
removed by using embedded discrete or distributed capacitors,
which is a major challenge due to the high capacitance values
required.

High frequency measurements represent a very important part
of evaluating the effectiveness of decoupling capacitors. Mea-
sured data show that the magnitude and slope of change in resis-
tance and inductance above the Self Resonant Frequency (SRF)
depends on the ESR and on the relative dimensions of the ca-
pacitor body, pads, vias, and closest planes. Since ESR(f) and
ESL(f) are frequency dependent parameters that depend on the
geometry, it is important to measure the parts in a fixture, con-
taining pads, vias and planes with geometries similar to actual
usage. This ensures that the measured complex impedance re-
flects both the device under test and the fixture. Since only the
resistance of the fixture can be de-embedded and not the induc-
tance, through appropriate compensations [11], the capacitance
versus frequency and inductance versus frequency functions can
be extracted over a wide band range. The low impedance values
associated with today’s bypass capacitors can be conveniently
measured using Vector Network Analyzers in two-port connec-
tions [12]. Fig. 6 shows the construction and connection to a
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Fig. 6. Top left: Photo of test fixture with a mounted capacitor and two probes. Top right: Vertical stack up of fixture. Lower left: Added inductance statistics of
ten samples with horizontal orientation. Lower right: Added inductance statistics of the same samples with vertical orientation.

small test fixture. Capacitors were connected to the fixture’s sur-
face pad with uncured conductive epoxy. The measured data in
Fig. 6 compares the added inductance of parts with horizontal
and vertical orientation.

C. Package and Board Planes

Package planes are effective for power distribution in the mid-
frequency range. However, a major problem with power/ground
planes is their behavior as electromagnetic resonant cavities,
where dielectric constant of the insulator and the dimensions of
the cavity determine the resonance frequency. When excited at
the resonance frequency, the planes become a significant source
of noise in the package and the board and also act as a source of
edge radiated field emission. The standing waves in the cavity at
resonance can produce significant coupling to neighboring cir-
cuits and transmission lines [13].

Fig. 7 depicts the voltage distribution of simultaneous
switching noise on the power and ground planes for an
open-ended board of size . As can be seen from the
figure, voltage distribution depends on the resonance mode,
while the resonance frequency is determined by the mode
number, dielectric constant of the insulator, and physical size
of the planes. Since the size of the package is smaller than the
board, the plane resonance frequencies of the board appear at a
lower frequency than the package. When numerous decoupling
capacitors are connected to the package power/ground plane

cavity through the power/ground vias, the resonance frequency
and the associated field distribution change due to the change
in the effective capacitance and inductance of the plane cavity.
The degree of the field distribution change and the resonance
frequency shift depends on the effective ESL of the decoupling
capacitors and vias. Furthermore, the field distribution and
the resonance frequencies can be slightly modified by the die
attachment onto the package substrate. Unless the bonding
inductance is extremely small, the number of the power/ground
bonding pads is large, or the on-chip decoupling capacitor
is large, the change in the field distribution and resonance
frequency are minimal.

At the plane resonance frequency, the power distribution
impedance reaches its highest value, with the maximum value
dictated by the losses in the structure. The loss includes
radiation loss, conductor loss, dielectric loss, and component
loss. The loss lowers the quality factor at resonance and hence
reduces the noise [14]. In general, radiation and dielectric
loss do not provide enough damping to completely eliminate
resonance. Conduction loss can damp the resonance between
power and ground planes when thin dielectrics are used [14].

At the modal resonance frequencies of the power and ground
planes, the self-impedance and transfer-impedance magnitudes
may be large enough to create signal-integrity and Electromag-
netic Interference (EMI) problems. The resonance may be sup-
pressed in several ways. It has been shown that dielectric thick-
ness below um forces a large part of the electromagnetic
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Fig. 7. Voltage distribution and resonance frequencies generated by the power/ground plane cavity resonance on a open-ended PCB of size (a� b). Depending
on the resonance mode, the voltage distribution and the resonance frequency varies.

field to travel in the conductor rather than in the dielectric, thus
effectively suppressing the plane resonance through conductive
loss [15]. Lossy dielectric layers have also been proposed [16],
though their potential impact on signals have not been pub-
lished yet. For power-ground laminates with thickness greater
than 50 m, the plane resonance needs to be suppressed by
other means. The smoothest impedance profile can be achieved
with the lowest number of parts if the cumulative ESR of by-
pass capacitors equals the characteristic impedance of the planes
[17]. This requires either ceramic bypass capacitors with con-
trolled ESR, or low-inductance external resistors in series with
low-ESR bypass capacitors [17].

D. Chip Power Distribution

High performance on-chip power distribution networks are
typically constructed as multi-layer grids as shown in Fig. 4.
Designing on-chip power distribution networks in high perfor-
mance microprocessors has become very challenging due to
the continual scaling of CMOS process technology [18]. Each
new technology generation results in rapid increase in circuit
densities and interconnect resistance, faster device switching
speeds, and lower operating voltages. These trends lead to
microprocessor designs with increased current densities and
transition rates, and reduced noise margins. The large currents
and interconnect resistance cause large resistive IR voltage
drops while the fast transition rates cause large inductive LdI/dt
voltage drops in on-chip power distribution networks. Along
with large voltage drops due to large dI/dt, Electro-migration
(EM) is one of the critical interconnect failure mechanisms in
integrated circuits [19]. Electro-migration, which is the flow
of metal atoms under the influence of high current densities,
causes increased resistance and opens in on-chip interconnects,
causing further IR drops and potential reliability problems.

On-chip power distribution systems for high performance
CMOS microprocessors must provide a low impedance path
over a wide frequency range. The impedance of the power
distribution inductance increases with frequency according

to , where , is the frequency, and is
the inductance. On-chip decoupling capacitance is used as a
local power source, which effectively lowers the power distri-
bution impedance at high frequencies. Hence, high frequency
switching currents are “decoupled” from the inductance in the
power distribution system and switching noise is, therefore,
reduced. The on-chip decoupling capacitance includes both the
intrinsic decoupling capacitance (N-well and quiet circuit) and
the add-on capacitance [18]. Intrinsic decoupling capacitance
alone is not sufficient for acceptable noise suppression in high
performance microprocessor designs. Additional capacitance,
many times in the form of thin-oxide capacitors, which uses
a thin-oxide layer between the n-well and poly silicon gate, is
required.

A major problem in combining the chip and package power
distribution is chip-package resonance. The package inductance
and chip decoupling capacitance form a parallel RLC circuit
which resonates at the frequency , where is
the equivalent inductance of the package and is the total non-
switching capacitance on-chip between the voltage and ground
nodes. At this frequency, the power distribution seen by the cir-
cuits on the chip is in its high impedance state. If the chip op-
erating frequency is near or at the chip-package resonant fre-
quency, the circuits will be starved for current. A large voltage
fluctuation can build up over many cycles if the resonant fre-
quency is sufficiently high. In future generations of CMOS mi-
croprocessors, large amounts of on-chip decoupling capacitance
has to be used to aggressively control switching noise that main-
tains the chip-package resonant frequency well below the oper-
ating frequency [20]. A typical signature of ac differential noise
at the center of a microprocessor operating at 3 GHz that con-
sumes 150 W of power with a 1 V supply is shown in Fig. 8.
In Fig. 8, 210 nF of on-chip decoupling capacitance was used
along with a low inductance flip-chip package. The mid fre-
quency step response occurs when chip power changes abruptly
from 0 W to the maximum power. The magnitude is decreased
with on-chip decoupling capacitance. The oscillation frequency
is the chip-package LC resonance. The midfrequency noise is
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Fig. 8. On-chip ac differential noise for ITRS 2003 node. Includes 210 nF of on-chip decoupling capacitance.

eventually damped, resulting in a residual high frequency ac
noise in the steady state. This steady-state response is due to the
periodic switching of the microprocessor. The high-frequency
steady-state noise rides on a dc offset, which is the IR drop due
to the chip power distribution resistance.

In the past, CMOS active power has been the main focus with
respect to power delivery and management. However, as CMOS
scales to 90 nm and below, process related device leakage
current represents a significant passive power component.
This passive power includes many sources of device leakage
current, such as junction leakage, gate-induced drain leakage,
subthreshold channel currents, gate-insulator tunnel currents,
and leakages due to defects [21]–[24]. Two of these leakage
currents, the gate-insulator tunnel current and the subthreshold
channel current, are fundamental to the scaling of technology.
Gate leakage current can be reduced by using high-k dielectric
materials as a replacement for silicon dioxide as the gate
dielectric. The subthreshold component of power remains one
of the most fundamental challenges as it approaches the active
component near the 65-nm technology node. This passive
power component places a further strain on the on-chip power
distribution system as it erodes the dc IR drop noise budget and
compounds the electromigration problem.

On-chip voltage islands (logic and memory regions on chip
supplied through separate, dedicated power feeds) is becoming
a design approach for managing the active and passive power
problem for high-performance designs [24]. In such designs, the
voltage level of an island is independent of other islands and
is supplied from an off-chip source or on-chip embedded reg-
ulators. The design goal is to define regions of circuits within
the chip, which can be powered by a lower supply while main-
taining performance objectives and providing a reduction in ac-
tive and passive power. Performance limited critical paths are
powered by the maximum voltage that the technology is opti-
mized for, while paths with sufficient timing slack are powered
with a lower supply. Voltage islands in on-chip power distri-
bution present challenges since isolation of decoupling capac-
itance reduces its effectiveness for nearby islands. Additional

transients due to the activation and deactivation of islands must
be managed. The distribution of multiple power supplies com-
plicates the on-chip power grid design and introduces a potential
wiring density loss.

III. MODELING OF POWER DISTRIBUTION NETWORKS

Modeling of power distribution networks represents an inte-
gral part of the power delivery design process. In the last 15
years, the modeling methods have evolved to a point where com-
plex power distribution structures can be modeled accurately,
with minimum CPU time. This has led to design methodolo-
gies for the prelayout analysis and postlayout verification of the
packages, which has enabled the design of multigigahertz mi-
croprocessors and systems.

In the early 1990s, the partial element equivalent circuit
(PEEC) based methods were developed for analyzing power
distribution structures. These methods were based on the
seminal paper by Ruehli [25], which enabled the representation
of interconnections using partial inductances. The PEEC-based
methods were used to analyze Delta I or power supply noise
in high-performance computers [26], packaged CMOS devices
[27] and first level packages [29]. In [27], the effect of negative
feedback due to power supply noise on nonlinear CMOS
inverters has been discussed. A birthday cake approach was
used in [29] using PEEC, where multilayered packages were
represented using a network of inductors. Finally, Fast Henry,
a multipole based PEEC method was developed in [30] for
speeding computations. With increase in clock frequencies, the
frequency behavior of the power and ground planes became
important, and hence, their distributed modeling became
necessary.

Distributed modeling of power distribution networks re-
quires the descritization of Maxwell’s equations, which can
be formulated in the frequency or time domain by solving
integral or differential equations. Examples include the finite
difference time domain (FDTD) [28], [33], [44] method and
frequency domain methods such as the transmission line
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Fig. 9. (a) Power islands. (b) Coupling between islands.

method [31], cavity resonator [32], [34] method, transmission
matrix method (TMM) [38], and integral equation method
[37]. Since, package power distribution networks are resonant
circuits with high quality factor, the frequency domain methods
provide better accuracy and efficiency than the time domain
methods. However, since on-chip power distribution structures
are lossy and have low quality factor, time domain methods are
preferable due to the size of the network that requires analysis.
Using these methods, multilayered planes with vias can be
modeled with relative ease [38].

As an example, consider the irregular structure shown
in Fig. 9(a), which was modeled using the TMM [39] for
extracting the coupling between the master and slave power

distribution islands. A rectangular grid was used, as shown
in Fig. 9(a), with a unit cell size of 0.385 cm 0.385 cm,
which corresponds to an electrical size of at 6 GHz. This
resulted in 1087 unit cells for approximating the structure
which included the narrow rectangular strip on layer 1, voltage
regulator on layer 1, the continuous ground plane on layer 2,
and the split plane in layer 3, as shown in Fig. 9. The seven vias
connecting layers 1 and 3 were represented as short circuits and
modeled in TMM by enforcing the continuity of the currents
and voltages at these sections. TMM was used to compute the
3 3 impedance matrix which provides the self and transfer
impedance at the three port locations. The transfer impedance
of the master and slave sections in layer 3 was simulated across
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Fig. 10. SOP integrating digital and RF functions.

the master and slave split sections from 10 MHz to 6 GHz.
In Fig. 9(b), the transfer impedance between the master and
slave split sections shows little coupling at low frequencies
since separate islands were used to supply power to the master
and slave sections. However, substantial coupling between the
master and slave sections can be observed at high frequencies
even though these sections are separated. This is because the
narrow strip from the voltage regulator that is used to maintain
the same potential on the two islands induces inductive and
capacitors coupling between the islands. When the two islands
resonate, they couple energy through the coupling capacitance
[39], which is a source of problem for sensitive digital and
mixed-signal packages.

Model reduction [35] and macromodeling methods [36],
[40]–[42] have been developed and applied to power distribu-
tion structures for reducing the problem size and for black-box
representations. The frequency response from linear time
invariant networks have been interpolated using vector fitting in
[36] and broad-band macromodeling in [41], which enables the
representation of the network as a reduced spice netlist to which
other circuit elements can be connected. In [40] and [42], radial
basis functions and spline functions (with time derivatives)
have been used for the macromodeling of nonlinear drivers.
Macromodeling of nonlinear drivers results in a computational
speedup of – as compared to transistor level circuits
with no reduction in accuracy. The noise on the power supply
rails of a transistor circuit affects its output current slew rate

through negative feedback effect [27], and hence the
modeling of power distribution networks in the presence of
nonlinear circuits becomes necessary.

Simulation of power supply noise requires the frequency re-
sponse of the power distribution network and the current source
exciting it. A good estimation of the current source is neces-
sary without which the modeling of power supply noise is not
possible. Surprisingly, though many methods have been devel-
oped for modeling the interconnections in the power distribution
network, few methods are available for representing the source
waveform. In [43], a preliminary method has been described
for extracting models for the noise current signatures. After de-

noising the measured voltage waveform through wavelet trans-
form and thresholding, noise current source models have been
developed using the complex pencil of function method in [43].
Considerable work is still required in this area.

Modeling of power distribution is incomplete without ana-
lyzing the on-chip power distribution network. The interaction
between the on-chip and package power distribution is impor-
tant for addressing issues such as chip-package resonance, I/O
planning and decoupling capacitor optimization. Though nu-
merous methods have been developed by the IC community for
modeling on-chip power distribution, the effect of package par-
asitics is completely ignored. Hence, the burden is on the pack-
aging community to ensure that the package power distribution
models interface well with the on-chip power distribution tools.
Some aspects of chip—package co-simulation is available in
[53]. In [44], the models in [53] have been extended for analyt-
ically extracting the parasitics of the on-chip power distribution
through conformal mapping and simulation of the noise voltage
using FDTD method.

As the technology migrates toward mixed-signal integration,
numerous challenges arise for the modeling and simulation
of power distribution networks. A major issue is the accuracy
where noise levels in the dB range need to be computed,
which requires sophisticated modeling methods. Methods
for computing the electromagnetic coupling between power
islands and their impact on digital and analog circuits need to
be developed. Since on-chip and package power distribution
need to exist in perfect harmony, co-design methods need to
be developed wherein the modeling of the chip and package
power distribution can be combined. This can lead to optimum
assignment of the I/Os and the distribution of capacitance
between the two networks. Since testing high-frequency
mixed-signal systems is difficult, modeling may be the only
choice for evaluating the functionality of these systems.

IV. SYSTEM ON A PACKAGE TECHNOLOGIES

In mixed-signal packaging technologies that integrate het-
erogeneous functions, a major source of coupling is the power



SWAMINATHAN et al.: POWER DISTRIBUTION NETWORKS FOR SOP 295

Fig. 11. Power plane resonance for digital—RF module.

distribution. Unlike digital circuits with large voltage swings,
analog circuits are susceptible to noise through the power supply
due to low voltages used. Hence, good decoupling and filtering
schemes are necessary. With package level integration in SOP
technologies, the coupling mechanisms increase and hence it
becomes difficult to achieve the isolation levels required. With
the reduction in voltage swing for digital circuits and increase in
switching activity, the power supply noise has to be minimized
both for the digital and analog circuits. In this section, the chal-
lenges and possible solutions associated with digital—RF inte-
gration in an SOP platform is discussed.

Consider Fig. 10, which consists of two field programmable
gate arrays (FPGAs) on either side of an RF block. The FPGAs
are digital ICs for transmitting and receiving digital data
streams. The RF block uses embedded passive circuits for
realizing low-noise amplifiers (LNAs). The board in Fig. 10,
which measures the size of a cell phone, was fabricated using
a sequential build-up process with A-PPE dielectric material
on an FR4 printed circuit board with copper metallization.
The board stack-up consists of signal, ground, power and
signal layers with the embedded passives occupying the top
two layers. The dielectric thickness separating the power and
ground layers is 50 m. Both the digital and RF circuits are
powered using a common power supply. The FPGAs were
operated at a frequency of 100 MHz with the RF carrier for the
LNA at 1.83 GHz. The architecture in Fig. 10 mimics that of a
mobile communication/computing device with integrated RF
front end and baseband processing and, therefore, represents a

good test vehicle [46] for illustrating the challenges associated
with power distribution for mixed-signal packages.

The measured transmission coefficient (S21) for the power
and ground planes is shown in Fig. 11. The response exhibits
the typical standing wave pattern described earlier with peaks
occurring at the 1.83-GHz RF carrier range. With digital circuits
switching, substantial energy can be coupled to the RF circuits at
the frequencies corresponding to the peaks in the standing wave
pattern. The isolation level of dB shown in Fig. 11 in the
power distribution network between the digital and RF circuits
is insufficient for most embedded RF circuits, and, therefore,
needs to be improved to dB or better. This is possible only
through the integration of new technologies within the package.
It is important to note that even though the digital interconnects
are routed in the bottom layer with the power serving as a shield
from the embedded passives, substantial coupling can still result
due to the return currents that excite the cavity formed by the
power and ground planes [45], [46].

One method for power supply isolation is through split island
design whereby the power distribution for the digital and RF cir-
cuits can be separated. To enable the use of a common power
supply, embedded filters can be inserted between the power
islands. Four different filtering schemes that are possible are
shown in Fig. 12. The filtering schemes in Fig. 12 have been ex-
perimentally investigated in [47] using discrete devices wherein
it has been shown that the C-ferrite-C filter scheme achieves
greater than dB isolation over a broad frequency range. The
isolation property worsens at the resonance frequencies of the
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Fig. 12. Four possible power supply filtering schemes for SOP. (a) Filter type A: plane split. (b) Filter type B: Ferrite bead. (c) Filter type C: Chip inductor.
(d) Filter type: Trace inductance.

discrete devices and hence there is a clear need for embedded
passive devices for power supply filtering in SOP technologies.
Even with embedded filtering, it is very challenging to achieve
the -dB isolation required.

A technology that is beginning to mature is embedded decou-
pling where capacitance layers can be integrated into the sub-
strate. The capacitance layers help reduce the power distribu-
tion impedance and provide good filtering and isolation capa-
bilities. The advantages of embedded decoupling are two fold,
namely: 1) it minimizes the parasitic inductance between the
chip and the capacitor, thereby improving the capacitance ef-
fectiveness over a broader frequency range and 2) it serves as a
reservoir of charge in the midfrequency range. Two embedded
capacitor technologies are currently available, namely the dis-
crete embedded capacitor [48] where islands of capacitors are
embedded in the package and the distributed embedded capac-
itor where the area between the power and ground planes con-
tains the capacitance [49]. In [49], the distributed capacitance
using nanocomposites is described in detail with the fabricated
test vehicle and cross section shown in Fig. 13. The cross section
consists of three metal layers namely, signal, power, and ground
with a 15–20- m separation between the power and ground
planes. The nanocomposite material with relative permittivity of

fills the region between the power and ground resulting
in a capacitance of nF/cm , while a low dielectric material
is used for the signal layers. Though the capacitance is not high,
the low inductance between the power and ground planes lowers
the impedance of the structure at a high-frequency range (self
and transfer impedance), reduces power supply noise and serves
as a good filter for isolating the digital and RF blocks. In [49], a

reduction in power supply noise has been reported using the
structure in Fig. 13. A major problem with using the structure
in Fig. 13 for multiple layers is the capacitive loading of signal
vias traversing the high dielectric constant layer and pin-hole
defects creating a short between the layers. Patterning the capac-
itance layers and converting the distributed capacitance to em-
bedded discrete capacitors can solve this problem. However, this
requires an additional layer of metallization. In Fig. 13, a better
solution could be the use of a low dielectric constant but thin
dielectric material ( nm) between the power and ground
planes, which can be made multilayered and can reduce the in-
ductance by compared to the solution in [49]. In addition,
to accommodate the capacitance requirements in the future, new

Fig. 13. Fabricated board (top) and board cross section (bottom) with
nanocomposite capacitance layer integrated in the board.

technologies are required that provide embedded capacitance in
the range of 1–10 F/cm .

Recently, electronic bandgap structures (EBG) has been pro-
posed for minimizing the coupling through the power distribu-
tion networks for digital systems [50], [51]. These structures can
be modified and applied to mixed-signal packages for achieving
isolation levels of to dB [52]. Embedded low-pass
filters in the vicinity of a digital IC can be used for ensuring that
the fundamental frequency of the clock does not create inter-
modulation products at the output of an RF circuit. In addition
the EBG structures can be used to provide further isolation at
higher frequencies by ensuring that the harmonics of the clock
do not get coupled. EBG structures are periodic structures in
which propagation of certain bands of frequencies is prohibited.
The EBG structures can be designed as part of the power dis-
tribution network for achieving broadband isolation and is tun-
able, cost-effective, and compact. One embodiment of the EBG
structure consists of a two-dimensional (2-D) square lattice with
each element consisting of a square metal pad with two con-
necting branches, as shown in Fig. 14(a). This structure can be
realized with metal pads etched in the ground plane connected
by narrow branches to form a distributed LC network. In this
structure, narrow branches introduce inductance and the small
gap between neighboring metal pads increases capacitance. The
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Fig. 14. (a) EBG using patterned ground plane. (b) Transmission coefficient (S ) between input port and output port for mixed-signal SOP.

structure is via-less with a thin dielectric (4 mils) separating the
layers. The transfer characteristics (S12) of the EBG structure
for the mixed-signal board in Fig. 10 is shown in Fig. 14(b).
The structure consists of a two-layer board with dimensions of
10 cm by 5 cm. The dielectric material of the board is FR4 with
a relative permittivity , the conductor is copper with
conductivity S/m, and dielectric loss tangent

at 1 GHz. The copper thickness for the power
and ground planes was 35.56 m with a dielectric thickness of
4 mils. The input and output ports were placed on either side
of the board. Preliminary results with no decoupling capacitors
show dB stopband rejection over a frequency range of 3 to
8 GHz. With thin dielectric layers, the stopband can be tuned by
modifying the structure such that the center frequency and band-
width can be controlled. In general, at least six metal patches
are required to obtain isolation levels of dB between two
points on the structure in Fig. 14(a).

It is important to note that the primary source of power
supply noise is the inductance in the package and board. The
power supply noise varies linearly with inductance
and provides high impedance to the integrated circuit at high
frequencies. With CMOS scaling and integration in an SOP
platform, power supply inductance has to be reduced from the
10-pH range in today’s high-performance computers to the sub-
picohenry range. This is possible only through the elimination
of the first level package, direct chip attach on the board, and
the availability of integrated boards with high-density wiring
and micro-via technology. Though numerous mechanical and
reliability problems need to be solved, wafer level packaging
provides for a good electrical solution with minimum power
supply noise. A conceptual power distribution scheme for a
wafer level package (WLP) on an integrated board is shown in
Fig. 15(a) which uses rigid or compliant interconnects between
the WLP and board on 100–200- m pitch and uses multiple
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Fig. 15. Power integrity simulation using various wafer level interconnect inductance for 5-GHz chip operation. (a) Simulated wafer level packaging structure.
(b) Differential noise induced on power supply with 40% switching activity.

planes in the board with the voltage regulator module placed
close to the WLP. The goal is to minimize the inductance
by using short horizontal (planes) and vertical (micro vias,
solder bumps, nanosprings) interconnections for minimizing
inductance, which allows for a noise free environment in
which to integrate RF electronics with embedded functions
in the same package. An important parameter for wafer level
packaging to be attractive is the loop inductance between the
voltage and ground rails, which is dictated by the compliant (or
rigid) interconnect length and pitch. Preliminary simulations
[53] based on ITRS 2005 (and beyond) indicate an inductance
of 50 pH per interconnection for 5% noise tolerance on a
100–200- m pitch. In [53], the power supply noise was simu-
lated for various interconnect technologies with inductances in
the range 20 pH– 2 nH to determine the optimum inductance
required for the ITRS’05 node. The simulation assumed that
the number of layers in Silicon was 4, the size of the chip was
20.1 mm 27 mm, the number of power/ground interconnects
was 2464, the number of CMOS inverters switched was
77616, 40% of the total power was switched and the on-chip
decoupling capacitance was 400 nF. The switching frequency
assumed was 5 GHz with the driver rise and fall time of 20 ps
and period 200 ps. The droop in the voltage across the voltage
and ground rails of the chip are shown in Fig. 15(b) along with
a specified noise tolerance of 55 mV. A noise tolerance of 5%
(of Vdd) indicates a WLP interconnect inductance of 50 pH,
which translates to a 50- m diameter bump on 100- m pitch,
details of which are available in [54].

V. CONCLUSION

In this paper, the status and challenges associated with power
distribution has been discussed. Power distribution issues asso-
ciated with the powering of digital and mixed-signal systems has

been addressed with emphasis on the voltage regulator module,
decoupling (surface mount and embedded), chip power distri-
bution, modeling methods, and new technologies.
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