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Abstract—Many techniques exist for adapting videos to satisfy
heterogeneous resource conditions or user preferences, whereas
selection of the best adaptation operation among various choices
usually is either ad hoc or inefficient. To provide a systematic solu-
tion, we present a conceptual framework based on utility function
(UF), which models video entity, adaptation, resource, utility, and
the relations among them. In order to support real-time video
adaptation, we present a content-based statistical paradigm to
facilitate the prediction of UF for real-time transcoding of live
videos. Instead of modelling the UF through analytical models, as
in the conventional rate-distortion framework, the proposed ap-
proach formulates the prediction as a classification and regression
problem. Each video clip is classified into one of distinctive cate-
gories and then local regression is used to accurately predict the
utility value. Our extensive experiment results based on MPEG-4
transcoding demonstrate that the proposed method achieves very
promising performance—up to 89% accuracy in choosing the
optimal transcoding operation (in both spatial and temporal
dimensions) with the highest quality over a diverse range of target
bit rates.

Index Terms—Content-based prediction, universal media access,
utility function, video adaptation.

I. INTRODUCTION

AN EMERGING multimedia framework, in which multi-
media content is accessed from heterogeneous networks

and terminals in a seamless way, is often referred to as uni-
versal multimedia access (UMA) [9]. In UMA, media content
adaptation is considered to be a core technology for coping
with variations of environment resources and user preferences.
Media adaptation is a process that transcodes the original
encoded media into a new version in order to match resource
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constraint (e.g., bandwidth and resolution) or user preference.
Many adaptation methods exist for adjusting the bit rate of
compressed video streams. For example, requantization of
transform coefficients [19], frame dropping (FD) [13], DCT
coefficients dropping (CD) [6], and resolution reduction [20]
are commonly used. More discussion involving transcoding for
UMA can be found in [2]. To address heterogeneous resources
and user conditions, some recent developments in scalable
video coding have been made with greater flexibility and
improved video quality [5]. Nevertheless, most existing adapta-
tion techniques have a common problem—they concentrate on
optimization of pre-selected adaptation operations, rather than
systematically choosing the optimal adaptation operation from
multiple options. The issue becomes more prominent when the
number of adaptation dimension increases, including spatial,
temporal, and signal-no-noise ratio (SNR). In the literature,
there are a few efforts to address this issue. In [15], a rate-dis-
tortion (R-D) optimization method was proposed by modelling
the mean-squared-error distortions caused by quantization and
frame skipping. In [12], a dynamic programming scheme was
used to achieve optimal rate control where frame rate, spatial
resolution and quantization step size were jointly considered
in modelling the distortion. A distortion measurement was
used to estimate the video quality in the full resolution, while
some weights were assigned to address the perceptual effects
of spatio-temporal scale variation. In [7], variable frame rate
coding was realized, where the quantization step size was
determined by an analytical distortion model for each frame,
and the frame with quantization step size exceeding some
threshold was skipped. Nevertheless, all of these approaches
rely on the availability of some analytical models. Construction
of adequate analytical models of R-D relationship is known to
be nontrivial. It is even more difficult when video undergoes
multidimensional adaptation.

In this paper we present a general framework, called
utility-based video adaptation, as a systematic solution for the
issue of spatio-temporal combined adaptation. Specifically
three key aspects involved in adaptation problems—adaptation
(A), resource (R), and utility (U)—are modelled and represented
using a utility function (UF), which describes the tradeoff rela-
tionship between resources and utilities along each adaptation
dimension. UF plays a key role in choosing the optimal adap-
tation among multiple options that meet resource constraints or
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Fig. 1. Three-tier adaptation architecture using the utility-based framework.

user preferences. This approach represents a simple extension
of conventional R-D framework to allow incorporation of
diverse types of resources (e.g., complexity and bandwidth)
and adaptation operations. In the utility-based framework, one
key issue is how to generate UF in real time to accommodate
live videos. For stored videos in on-demand applications, UF
can be generated by exhaustive off-line simulations. Such an
approach may require significant computational complexity,
which is unacceptable for live videos. In this paper we present
a novel real-time UF-prediction method that utilizes the strong
correlations between content features and the UF characteris-
tics of a video. The prediction method, first described in [17],
combines real-time compressed-domain feature extraction,
pattern discovery, classification, and statistical regression. We
formulate the problem as a pattern classification and prediction
question, taking the automatically extracted content features
as input and then making predictions about the UF. The only
on-line computation required is for content feature extraction
and pattern classification. Therefore, the proposed approach
is fully automatic and can be done in real-time. Our extensive
MPEG-4 transcoding experiment results show a very promising
accuracy (up to 89%) in choosing the optimal operation from
several competing options. The main contributions of our work
include the formulation of UF for the joint spatio-temporal
adaptation and the novel algorithms for predicting the optimal
adaptation operation based on the content feature extracted
from the compressed streams.

The rest of this paper is organized as follows. The frame-
work of utility-based transcoding is introduced in Section II.
In Section III, the statistical approach to UF prediction is de-
scribed, including feature extraction, unsupervised, and super-
vised learning methods and statistical local regression. The ex-
periment setup and results are presented in Section IV. The con-
clusion and future work are given in Section V.

II. UTILITY-BASED TRANSCODING

The UF-based adaptation approach mentioned above fits a
popular three-tier server-proxy-client architecture very well, as
shown in Fig. 1. The adaptation engine deployed in the proxy
adapts incoming videos to satisfy dynamic resource constraints
that are not known a priori. The role of the UF is to describe
the relationship between required resources and resulting video
utilities when the video is subject to various adaptation opera-
tions in multiple dimensions. For stored videos, UF can be gen-
erated offline at the server and sent to the adaptation engine. The
engine will then select the optimal adaptation operation based
on the information in the UF. For live videos, UF needs to be

Fig. 2. Definition of adaptation, resource, and utility spaces involved in video
adaptation problems in the utility-based framework.

Fig. 3. Use UF to describe relations among adaptation, resource, and utility.

obtained on the fly through some estimation and update pro-
cesses. In this paper, we specifically propose a content-based
prediction method that estimates the UF according to the con-
tent features and statistical classification tools. Such real-time
prediction methods can be implemented at either the server or
the proxy.

A. Adaptation, Resource, Utility and Their Relations

UF is defined in the adaptation-resource-utility (ARU)
space, where relationships among diverse types of adaptations,
resources (e.g., bandwidth, power, and display) and utilities
(e.g., objective or subjective quality) are modeled. We use the
term “space” in a loose sense here to indicate the multiple
dimensionalities involved. Fig. 2 depicts the notions of ARU
involved in a video adaptation problem. The entity, , refers
to the basic unit of video data that undergoes the adaptation
process. Adaptation operators are the methods to reshape the
video entities, such as requantization and FD. All permissible
adaptations for a given video entity constitute the adaptation
space. Resources are constraints from terminals or networks,
including bandwidth, display resolution, power, etc. Utility
represents the quality of an entity when it is rendered on an
end device after adaptation, such as PSNR, perceptual quality,
or even high-level user satisfaction. The mapping relationship
among ARU spaces is illustrated in Fig. 3. Typically, there exist
multiple adaptation solutions that satisfy the same resource
constraints, while yielding different utilities. In Fig. 3, the
points in the oval shaped region in the adaptation space indicate
such a constant-resource region. Likewise, different points in
the adaptation space (the shaded rectangle) may lead to the
same utility value. It is such a multioption situation that makes
the adaptation problem interesting—we want to choose the
optimal one with the highest utility or minimal resource.

We are interested in describing the relationship between rate
and utility associated with each adaptation operation. We rep-
resent such relationship by using UF. The right figure in Fig. 3
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Fig. 4. Definition and representation of utility function.

shows a simple example of UF, in which only one dimension
is shown in both resource and utility. This is equivalent to the
known R-D curve when R is bit rate and D is related to video
quality. Each point in the UF is associated with one specific
adaptation operator, which may include combinations of mul-
tiple operations (such as FD and coefficient dropping). A more
detailed discussion of the UF function can be found in [4].

B. FD-CD Adaptation

To illustrate our method of utility-based adaptation without
losing generality, in this paper we consider a specific case in-
volving two types of adaptations—FD and AC DCT coefficient
dropping (CD) and their combinations (FD-CD). FD adapts
the source stream by skipping frames, while CD transcodes the
source stream by truncating some high-frequency DCT coeffi-
cients. For CD, there is more than one choice during coefficient
dropping. Therefore, in order to eliminate the ambiguity and
obtain the optimal CD performance, the Lagrange optimization
method is employed. Typically, suitable rate-control techniques
are needed to meet a specific bandwidth constraint after FD-CD
adaptation. (Due to space limitations, details about the FD-CD
algorithm and its implementations can be found in [16].) The
advantage of FD-CD adaptation firstly lies in its simplicity,
allowing real-time implementation. Also, FD can meet a coarse
level of the target rate since its processing data unit is a frame.
CD is able to meet the target rate with a finer granularity by
adjusting the amount of dropped coefficients. The combination
of FD-CD accommodates a wide range of bit-rate constraints.
Furthermore, FD-CD provides adequate flexibility in balancing
the trade-off between spatial and temporal quality. For simpli-
fication, we assume the entity undergoing adaptation is a group
of pictures (GOP) in the MPEG-4 sequence. Namely, the same
FD-CD operation parameters will be applied to the whole GOP.

C. FD-CD Representation Using Utility Function

Using the utility-based adaptation framework, a two-dimen-
sional (2-D) adaptation space can be constituted for FD-CD, in
which both FD and CD entail a finite set of adaptation oper-
ations. Specifically, an FD-CD adaptation method can be ex-
pressed as , where and represent a specific FD
method and a coefficient dropping method respectively. For in-
stance, (all B-frames dropped, 10%) means all of the B
frames in a GOP are dropped and 10% of the bits from each
remaining frame will be reduced by coefficient dropping. A
typical UF is shown in Fig. 4. For a specific video clip, given

an adaptation operator , its corresponding resource and utility
value are denoted as and . In the case of FD-CD, we have
coarse discrete values of FD (i.e., “no frame dropping”, “drop
all B and P frames”, “drop all B frames”, and “drop 1 B frame
only”), and finer discrete values of CD (i.e., “drop of DCT
coefficients”). Thus, in Fig. 4, points with the same FD are con-
nected to a curve, and the adaptation operations between two an-
chor nodes are obtained through linear interpolation. The whole
set of the curves define the UF, which represents the utility-re-
source relation associated with the given video in response to
the available adaptation operations (FD-CD). Given a resource
constraint , all of the possible operators meeting the same re-
source constraint, such as and in Fig. 4 can be found from
the UF. If an operation is selected using the actual UF, it will
achieve the target resource and the utility when it is applied to
the video. If the operation is selected based on predicted UF, the
actual resource and utility resulting from the adaptation may be
slightly different from the target values due to prediction errors.
Such utility-based adaptation mechanism was also accepted as
a part of MPEG-21 digital item adaptation (DIA) [10]. More in-
formation about the DIA utility-based description tool can be
found in [8].

To obtain a more efficient representation, we further simplify
the representation of the UF by using the linear approximation
of each curve as shown in Fig. 4. The approximation is defined
by two end nodes of each curve. Therefore, the UF can be de-
noted as

where each curve ( , ) in Fig. 4 is associ-
ated with two end points. Such approximation representation is
very beneficial in reducing the dimensionality of the represen-
tation and improving the efficiency of the statistical-prediction
method described later. Our experiment demonstrates that such
linear approximation provides a very satisfactory result in UF
prediction (shown in Section IV-B). The ordering of the nodes
does not matter, as long as a consistent scheme is maintained.

D. Issues in Computing the Utility Function

In practice, the generation of the UF is a nontrivial process.
It may be done by exhaustive computation of all of the adap-
tation points, each of which requires transcoding of the video,
decoding the transcoded bit stream, and computing the distor-
tion. This process is very time consuming and typically cannot
be done efficiently. To avoid exhaustive computation, there are
two possible solutions: analytical modeling or empirical estima-
tion.

1) Approximate Analytical Modeling: In [7], some analyt-
ical source models were developed by extending the theoretical
R-D curves derived from ideal statistical distributions to ap-
proximate models using empirical data. Certain statistical
models (e.g., Gaussian, Laplacian, or variations) were assumed
for video signals and parameters of the models were computed
and updated from input video. Given the approximate R-D
information, some recent methods have been developed to
automatically adjust the frame rate and quantization step size
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under low-bit-rate conditions [12]. Nevertheless, such analyt-
ical models may not be valid in general due to several reasons.
First, the adopted signal models like Gaussian or Laplacian may
not be valid for realistic signals. Second, the R-D relationship
is greatly affected by the specific coding algorithm, which has
become increasingly complex in recent video coding technolo-
gies. Simple statistical signal models may not be valid for such
complex coding methods. Lastly, it is difficult to extend the
analytical models in order to take into account different coding
structures, utilities (e.g., subjective measures), and resources
(e.g., power).

2) Empirical Estimation and Content-Based Prediction:
Another approach to R-D estimation is based on empirical
learning—namely, learning from the training data. Such an
approach does not use explicit statistical models for the video
signals to derive the R-D curves. Instead, collection of training
video clips are used to generate samples of video content
features and the resulting UFs, represented by some efficient
schemes described in the previous section. Machine learning
techniques are then applied to develop mapping functions from
the content features to the UFs. We refer to the aforementioned
approach as content-based utility function prediction.

The above prediction methods explore the potential correla-
tion between content features and the R-D characteristics of a
video. Such correlation has been observed in our experimental
observations (Section IV). Here, for video content, we refer
to low-level features such as motion, spatial complexity, and
characteristics of the coded stream (e.g., number of inter-frame
coded macroblocks, motion vector statistics, etc.). Such fea-
tures can be efficiently computed from the compressed streams.
In our prior work [3], we have explored such an approach in
which visual features from the video objects are used to predict
the subjective quality of the objects after undergoing MPEG-4
transcoding. Nevertheless, the work in [3] did not explore sys-
tematic representations of the UFs for FD-CD adaptation and
did not address issues related to prediction of the optimal spatio-
temporal adaptation operation.

III. UTILITY FUNCTION

A. Problem Description

The issue of UF prediction can be formalized as follows:
given the content feature of one video clip, develop a suit-
able mapping from the content feature space into the UF space,
i.e.,

(1)

where is a -dimension UF row
vector and is the component of , and similarly

is the -dimension content fea-
ture row vector and is the component of . Equation
(1) is a typical multivariate regression problem. For each
in , we want to find a mapping , such that

(2)

By using Taylor expansion, this mapping can be written as

(3)

where is the dot product of two vectors, and is
the -dimension partial differential row vector. By keeping the
components in (3) up to first order and ignore the higher orders,
this mapping can be considered as a classic linear regression
problem. Based on (3), we can derive the following:

(4)

By applying the standard least-square error (LSE) method,
the optimal estimation of , indicated as , can be found to be

(5)

where is the set of observed content feature vectors in the
training data with each row corresponding to a training sample,
and is the observed UF. Moreover, the Taylor expansion
works only in a small neighbor of the center . Thus, the
first-order approximation is effective if the content feature space
can be divided into some small areas, and the regression proce-
dure is applied for each area separately. Specifically, this can
be done by forming such subareas , , and
conducting the above approximate estimation method for points
within each subarea. Therefore, the problem can be modeled as
a -segment piecewise linear regression problem and the pa-
rameters ( and ) can be obtained for each subset. In forming
the partitions of the space, we can consider clustering in the CF
space, clustering in the UF space, or a hybrid one that partition
the CF space subject to some compactness constraints of cor-
responding UF values. In this work, in order to apply the local
regression method discussed above we chose clustering in the
CF space, plus combinations of classification techniques map-
ping content features to the CF clusters. Our experiment results
presented later indeed confirm the superiority of this choice.

Fig. 5 shows the overall architecture of the proposed frame-
work. The top diagram shows the procedures of extracting con-
tent features, classifying the video to one of the UF classes, and
local regression for predicting the UF. In the bottom diagram,
an offline mechanism is shown to illustrate the use of a training
pool in developing the UF clusters, the classifier for mapping fu-
ture clips, and the local regression method for each cluster. Each
training clip is associated with the content features and the ac-
tual UFs that are obtained in advance through exhaustive com-
putation of all the adaptation operations. Details of each com-
ponent mentioned above will be described in the following sub-
sections.
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Fig. 5. Overall architecture of the proposed framework.

B. Content Feature Extraction

We adopt the content features based on the set adopted in our
prior work [3] with minor modification. Three groups of features
are considered: motion intensity, AC DCT energy, and quanti-
zation parameters. The first two groups of features embody the
spatial texture complexity and temporal motion intensity infor-
mation. The third group also indirectly reflects the scene com-
plexity subject to the specific rate control algorithm used. They
are extracted directly from the encoded stream or the stream
metadata without decoding the video to the pixel domain. Our
experimental results show that the performance of prediction
can be improved if we also include the peak SNR (PSNR) infor-
mation from the metadata associated with the original encoded
stream.

Content features are extracted from each local video segment
that is one second long. The length of the local segment is cur-
rently empirically determined, to keep an adequate balance be-
tween efficiency and accuracy. Note to ensure the video content
in each segment is more or less consistent, we avoid shot bound-
aries within a segment by running automatic shot boundary de-
tection and keeping the shot boundaries aligned with the seg-
ment boundaries. Although the shot boundary detection tool is
not perfect, performance of the existing detection tools is quite
high (precision up to 97% and recall up to 98% in [22]). Specif-
ically, the following features are used in our system:

1) average motion intensity approximated by computing mo-
tion vector magnitude;

2) motion variance within the adaptation unit;
3) average percentage of macroblocks which have non-zero

motion vector;
4) average I frame AC DCT coefficient energy;
5) average P frame AC DCT coefficient energy;
6) average quantization step size;
7) average PSNR if available in the stream metadata.

C. Unsupervised Clustering

The average values are computed over the frames in the one-
second segment. To further improve efficiency, we only process
the I and P frames. The AC DCT energy of I and P frames are
kept separate because our statistical feature analysis (principal
component analysis) shows they have distinctive contributions
to the final performance. This is reasonable considering the DCT
energy in the I frame is more related to the texture complexity
due to the use of intra-frame coding, while the DCT energy in

Fig. 6. Difference between CF clustering and UF clustering. Shaded points
show a cluster formed in one space and the corresponding values in the other
space.

the P frames is mainly related to motion compensation residues
because of the use of inter-frame coding.

The purpose of unsupervised clustering is to partition the
content feature space into separate subspaces so that the local
regression technique described in Section III can be applied in
each local area. We adopt the K-harmonic mean (KHM) [21]
clustering method, which in principle is related to the popular
K-mean method. The main improvement of KHM over K-mean
is by using the -order harmonic distance, rather than the
Euclidian distance. It was shown in [13] that KHM outperform
K-mean in reducing the sensitivity to initialization and avoiding
local optimal points. Note the above clustering process is per-
formed in the CF space, instead of the UF space. As shown
in Fig. 6, clusters formed in the CF space will ensure points
in the same cluster have similar CF values. This is important
for keeping a subarea of small variation of CF values and thus
the first-order approximation by Taylor expansion described
in Section III-A remains valid. Although the alternative of
doing clustering in the UF space can achieve compact data
sets with similar UF values. The corresponding values in the
CF space may be spread over a large range, and thus violate
the assumption of proximity of the local regression method
mentioned above. We will present performance comparison of
these competing options later.

Another general problem of unsupervised clustering is deter-
mining the number of cluster, . A value that is too large
will lose generality and result in overfitting, while a value
that is too small will result in significant bias. In our experiment,
we determine the number of cluster through empirical trials and
find yields satisfactory performance. We expect the ad-
equate choice of depends on the characteristics of the video
content and dynamic variations of the video over time. It is con-
ceivable to propose some prediction schemes to determine the
cluster number based on computable content features. Study of
such methods and analysis of the effect on the UF-prediction
performance is beyond the scope of the current work.

D. Supervised Classification by SVM

The purpose of classification is to categorize an incoming
video clip into one of the classes and then apply the corre-
sponding regression model to predict the UF. Note if the classes
are formed by clustering in the CF space, the same clustering
method can be used for such a classification purpose. But if the
clusters are formed in the UF space, the corresponding points in
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TABLE I
SUMMARY OF DATA SET

the CF space may not be compact and therefore we need a sep-
arate process for classification. We employ support vector ma-
chine (SVM) for the classification task. Basic SVM classifiers
are for two-class discrimination. There are several ways to ex-
tend a binary classifier to support multiple-class separation, such
as classifiers for one against others [14], or ones that fuse a set of
two-class classifiers by methods like the Max Wins algorithm in
[1]. We adopt the directed acyclic graph SVM (DAGSVM) al-
gorithm presented in [11] with minor modification to resolve the
ambiguous region issue. In DAGSVM, the multiple-class clas-
sifier is constructed by using a decision directed acyclic graph.
The classifier starts with separation between two most distin-
guishable classes using a regular two-class SVM. The negative
class is excluded and the same two-class discrimination proce-
dure is repeated for the remaining classes. It has been known
to be a fast multiclass classifier with satisfactory performance
[11].

IV. EXPERIMENT RESULTS

A. Experiment Setup

In our experiment, we selected video from three movies to
form the training and testing pool. The details of the video pool
are summarized in Table I. There were 2066 clips in total, each
of which was 1-s long. The clips were carefully selected to cover
a wide range of content features. Every clip was extracted from
within a shot and thus no abrupt transitions like shot changes
occurred within a clip. The proposed algorithm was tested
using a standard cross validation procedure in which training
and testing was done with random partitions of the pool (70%
for training and 30% for testing) over multiple runs. First, we
need to compute UFs and extract content features for each set
of training clips. In computing UFs, we defined an adaptation
space of FD-CD similar to that described in Section II-C (see
Fig. 4). Based on the given GOP structure ( , ,

), we adopt four FD operators: “no frame
dropped”, “the first B frame dropped in each sub GOP”, “all B
frames dropped”, and “all B and P frames dropped\rdquo”. In
the CD dimension, we adopted six CD levels: from 0% to 50%
with 10% increment. As a result, there were totally 24 anchor
nodes and four operation curves in each UF. Further details of
the implementation are described in [16]

Evaluation of the proposed prediction method can be based on
various performance metrics. For example, errors in predicting
the UF can be defined based on the metric as follows:

(6)

TABLE II
ALGORITHM SPECIFICATION

Fig. 7. Comparison of the prediction performance in terms of prediction error.

where is the actual UF and is the predicted one.
is the number of the test clips. Alternatively, the utility ranking
of permissible operators at fixed bitrates can be evaluated, com-
paring results using the predicted UF versus the ground-truth
UF.

Table II is the specification of the algorithms employed in the
experiment.

B. Performance

Fig. 7 shows the prediction errors from four methods: our
proposed method, content-feature clustering-based regression
(CFCR); our proposed method but without local regression,
content-feature clustering-based classification (CFCC); an
alternative approach using clustering in the UF space instead
of the CF space, UF-clustering-based classification (UFCC),
which is adopted in [3]; and UF-clustering-based regression
(UFCR). The prediction error is measured by the distance
between the true UF and the predicted UF [see (6)]. The
experiments were run ten times and the average performance
was computed. The proposed method (CFCR) achieves the
best result. That is to say, when classification is combined with
regression, clustering in the CF space is the best. This validates
our decision in adopting the CF-space clustering method.
Nevertheless, it is interesting to note that without regression,
techniques using clustering alone (UFCC and CFCC) favors
clustering in the UF space. This is consistent with the UF-space
clustering techniques used in our prior work [3]. Note in the
pure clustering approach, the representative UF of each cluster
is used as the predicted UF for all the points mapped to the
same cluster.

Fig. 8 shows comparison between some predicted UFs and
the corresponding ground truth. The predicted UFs indeed
match the true values very well. Typically, the prediction of
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Fig. 8. Matching predicted UF to the ground truths.

Fig. 9. Performance of prediction accuracy in choosing the optimal operator.

the utility value ( axis) is not as good as the prediction of the
resource value ( axis). However, the ranking of utility values
among different transcoding options are quite consistent. Such
ranking information provides the most important input to our
adaptation system for selecting the optimal transcoding option
meeting a given target resource constraint.

In addition, we also measured the accuracy in selecting the
optimal operator given various target bit rates. Five typical band-
widths were used as the test target rates: 1.2 M, 1.0 M, 800
K, 480 K, and 320 kbps. The original input video rate before
transcoding was 1.5 Mbps. Our proposed method (CFCR) was
compared with two alternatives: CFCC and the most frequent
adaptation method. The latter did not take into account con-
tent features in each video, and simply selected the operation
that achieves the highest quality for the most number of video
clips in the training pool. Fig. 9 shows our method outperforms
the other two and exhibits significantly higher accuracy (up to
89%).

From both the above evaluation criteria, the results are quite
encouraging—the proposed content-based prediction method
achieves very good accuracy in predicting the UF values as
well as the ranking among competing adaptation operations.

Besides prediction performance, computational complexity is
another important factor for a real-time application. Because the
MPEG-4 codec we used was not a real-time implementation, we

did not provide the real-time benchmark data. However, all of
the computation processes in our system are light-weight. As
shown in Fig. 5 the main costs in our system include feature
extraction and online prediction. The online-prediction process,
including classification and regression, can be implemented effi-
ciently. Specifically, SVM classification only needs to calculate
the kernel function and dot product between the content features
and a sparse set of support vectors; linear regression involves
only a multiplication between the model matrix and content fea-
ture vector. For feature extraction, partial bit-stream decoding
is necessary in order to obtain the content features, plus some
minor extra calculation such as computing averages. The com-
bination of all these computation steps is still much lighter than
the complexity of a regular decoder (because the most complex
component, motion compensation, is not needed). Considering
video decoders can be implemented on most platforms with a
real-time performance, it is reasonable to conjecture that our
system can be implemented in a real-time fashion as well.

V. CONCLUSIONS AND FUTURE WORK

In this paper we present a utility-based video adaptation
framework as a systematic methodology to meet diverse re-
source conditions and user preferences in UMA. The framework
explicitly models the major concepts involved in adaptation
processes—adaptation, resource, and utility using a UF. In
order to address the computational complexity issue in UF gen-
eration and support the real-time adaptation scenario, we further
propose a general content-based UF-prediction approach using
automatic content feature extraction, and regression over clus-
tering and classification. Our experiment results using MPEG-4
FD-CD transcoding demonstrate very promising prediction
accuracy over diverse types of video content. The proposed
content-based utility-prediction framework is general and can
be expanded to handle heterogeneous scenarios where various
resources, adaptations, or utilities are employed. Recently, we
have successfully expanded our framework to scalable video
coding and subjective evaluation utility case with satisfactory
results [18]. Future work will include extensions that consider
multiple utilities and resources at the same time. An example
scenario is to find the balance between bandwidth demand
and power consumption in selecting appropriate adaptation for
handheld devices.
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