759

Analytic Approximations for Valuing Ratchet
Caps in the LIBOR Market Model

H A = (KAIST)

J



761

Analytic Approximations for Valuing Ratchet Caps in the LIBOR Market Model

Suk Joon Byun’

Graduate School of Management

Korea Advanced Institute of Science and Technology

Abstract

This paper provides two analytic approximation formulas for pricing ratchet caps in the LIBOR market
model. The approximate values of a ratchet caplet are represented as sums of Black’s (1976) regular
caplet prices. So, these pricing formulas are extremely fast and easily implemented. The formulas can be
easily extended to incorporate multiple factors. [llustrative numerical examples are provided and

comparisons with results from Monte-Carlo implementation of the LIBOR market model are presented.
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The LIBOR market model or the BGM model, developed by Brace, Gatarek, and Musiela (1997),
Jamshidian (1997), and Miltersen, Sandmann, and Sondermann (1997), has become an increasingly
popular model for pricing interest rate derivatives over recent yecars. The pricing of interest rate
derivatives in the LIBOR market model has usually resorted to Monte Carlo or finite difference methods
as studied in Hull and White (2000), Hunter, Jackel and Joshi (2001), Pietersz, Pelsser and van
Regenmortel (2002), Kurbanmuradov, Sabelfeld and Schoenmakers (2002) and others. While these
numerical methods are flexible and yield accurate prices, they are very time consuming and expensive to
use. The purpose of this paper is to develop accurate and computationally efficient approximation
methods for pricing and hedging interest rate derivatives in the LIBOR market model. Although this
paper focuses only on the ratchet caplet but the main idea in this paper will be easily applicable to other
intcrest rate derivatives.

In this paper we suggest two approximation methods for valuing ratchet caps in the LIBOR market
model. The results arc surprisingly simple and the approximate values are represented as weighted sums
of Black’s (1976) regular caplet prices. The weights are from Gauss-Hermite quadrature formula which
can be easily calculated from standard numerical packages. So, our approximation methods are extremely
fast and casily implemented.

The outline of this paper is as follows. Section | introduces the ratchet caplet. The developments of the
first and second approximation methods are contained in Sections II and 1V, respectively. Multi-factor
extensions of two approximation methods are described in Sections Il1 and V, respectively. Comparisons
with results from Monte Carlo simulation are presented in Section V1. We conclude the paper in Section

VIL
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I. Ratchet Cap

One of the most interesting nonstandard caps is a ratchet cap. This is like a regular cap except that the cap

rate equals the LIBOR rate at the previous reset date plus a spread. Define 1, =0 and consider a ratchet

cap with reset dates 1, f,,..., ¢, anda final payment date ¢,,,. Suppose that the principal is L and

the spread is s. Define R, as the interest rate for the period between time 7, and ¢, observed at
time f, expressed with a compounding period of &, =¢,,, —t,. The ratchet cap leads to a payoff at
time ¢,,, (k=12,....n) of
LS, max[R, - (R,_, +$),0]
By considering a world that is forward risk neutral with respect to a zero-coupon bond maturing at time
ty+1 > the equivalent martingale measure result of Harrison and Kreps (1979) and Harrison and Pliska
(1981) says that the price of a ratchet caplet that provides a payoff at time ¢,,, is
LS, Pty ) E[max[R, — (R, +5),0]]

where P(t,t,,,) is the price at time ¢ of a zero-coupon bond with principal $1 maturing at time ¢,
and E denotes the expected value in a forward risk neutral world with respect to  P(z,¢,,,) . By the law
of iterated expectation, we have

L& P(t.ty)E[E[max[R, — (R,y +5),0]| R, ] 8y
We note the fact that if we know R,_, then the ratchet caplet is exactly a regular caplet with a cap rate

of (R;_, +s). Thus, if the conditional distribution of the rate R,, given R,_,, is assumed to be

lognormal, then the conditional expectation in equation (1) can be evaluated using Black’s (1976) model.
This paper gives two analytic approximation formulas for the equation (1) by differently approximating

the probability density function of R,_, in a forward risk neutral world with respectto  P(z,¢;,,) .
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11. First Approximation Method

Define F, (1) as the forward interest rate as seen at time ¢ for the period between f, and 1,
expressed with a compounding period of §, =¢,,, -1, and ¢, (/) as the volatility of F,(s) at time
t. The processes followed by £, (1) and F,_ (¢} in the forward risk neutral world with respect to

P(t,1,,) are
=g (N)dz (2)

dF, (1) _ =8, F (D6, (06, (1)
Fo_ () 1+ 38, F, (1)

dt+ ¢, ()= 3)
where dz is a Wiener process.
It is usual to assume that ¢, (1) = A, _,, where m(r)= min{k i< tk} is the index for the next reset

date at time . This means that ¢, (¢) is a step function only of the number of whole accrual periods

between the next reset date and time 7, . The A, can be obtained iteratively by

ot =Y ) @)
i=1

where o, is the Black (1976) volatility for the regular caplet that corresponds to the period between
times ¢, and ¢,,,. Expressed in terms of the A, ’s equations (2) and (3) are, respectively,

dF ) _
Fk (f) k—m(t)

-

dFk—](t) - —5/(Fk (t)Akfm(!

A
YiYk-1-m(t) ;
L+ ‘/(—l—m(l)az

Fo (6 1+ 8, F, (1)
or
dinF (1) = -%Ai,m(,)dz + Az %)
=0 FrON Cmin N iciemy 15
dinF,_ (1) = —-—A dt + A dz 6
n £, (t) 1+0,F () 5 Nheteminy k—1-=m(1) (6)

If we assume in the drift of InF,_,(¢) in equation (6) that F,(f) = F,(t,) for ¢, <t <t,_,, then the
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drift remains constant within each accrual period and we have

1an(:‘)_1an(;0)+2[ A6, A e, \/ﬁ} 6

j=0

S| 6k F )N Ny
InF(t,)=InF,_(t,)+ [ 5 z E ———A 5, +A £ (8)
k=t \go1 k-1\p ; 146, F, (1) 2k12 kj?“/_—

where ¢, (0< j<k~1) are random samples from a standard normal distribution.
Let X =InF,(¢,) and Y =1InF,_{t,,). Then a two dimensional random variable (X,Y) has a
2

bivariate normal distribution with means g, and u,, variances o% and o, and correlation

coefficient pyy where

k=l
1
iy =1an(zO)+Z{ 2Ak i @J

j=0

Ok Fr(t)N i jahy_ja L
My =InF,_ x(’0)+ZH 173 th ) - "EAzk—j—Z 5
ko

oy = 2[/\2/«1»151]

k=2
0)2’ = { k- /-’5 ]
j=0
Pxy = ZAk j- N - j 25
x93

Using equation (4) and simplifying yields
o =olt
oy =0t

1
Hy =1“Fk(‘o)‘50'§(

O, F, (ty)pyyOyO 1
sy =InF,_(ty) - Kk )PxyOy Y——o‘,zf
1+ 38, F (ty) 2

Therefore, the expectation in equation (1) is
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E[Elmax[F, ()~ Fia) =50l Rl [ fmaxe e =s0) /ey 00— ()

—n|-w

where the conditional probability density function f(x|y) of X given Y =y is normal with mean

Oy 2 . - , - .
Hy + Py —“(_v—;/)v) and variance oy (1 - p_z\.y) and the marginal probability density function
oy

fy{(») is normal with mean g, and variance 0)2». The inner integral in equation (9) can be explicitly

evaluated as

'[max(e-“ e —5.0) /(x| y)dx = E(e” | y)N(d,) - KN(d,)

—w

where N(e) is the standard normal distribution function and

_ 1n[E(e“’ | y)/'KJ+ or(l-piy)/2

d
ay1-Piy

InlEe’ | )/ K|~ (1-pi)/2
dy = n[ (e’ | ») J oy{l-pyy) —d -0y ,1‘,0,2\')'
oyvyl-pyy

2
- Ty g
E@e" |y)= exr{u_v + Py ~—G“ (= )+ ——; (1-p3y )}
.

. o 1
=F (to)eXP[PXY —& (}’—#y)"—o',zvp)z(y}
Oy 2

K=¢"+5s

so that

ElEmax{F, () - Fiy ) = 0] Fus )l = [lEGX 10N - KNGy Gy

Note that E(e” |y) is the conditional expectation of F,(¢,) given F, (¢,,). If we change the
variable of integration by writing

1 y-uy

N
]

then
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ElE[max[F, (1,) = F_ (1) = 0] Fooy(ti )] = J--‘/I:[E(ex |;)N(d,)—1<N(d2)L—z2dz (10)
—o0 T

where

_ ln[E(e‘Y | :),/KJ+ ox(1-piy)/2

GXVI'P.Z\'Y

, ) 1
E(e" |z) = [’k(t(,)exp{\/?p,wa“—z _50,2\'/?,7;7}

K =exp(uy + «/anz) +5

The integral in equation (10) can be computed using various standard numerical integration techniques.

The one best suited to evaluating the integral in equation (10) is Gauss-Hermite quadrature. By using N -

point Gauss-Hermite quadrature formula, the approximated value, ¢, , of a ratchet caplet that provides a
payoff at time ¢,,, is

+o0 N
&, = LS, P(t.t,) J'g(z)e"”dz ~ L8P Y wig(z) an

—o i=1

where

g(z) = —}; [ | 2N ) - kN )]

and d,, d,, E(e* |z) and K are as defined in equation (10). The weights w;, (1<i<N) and
abscissas z; (1<i< N) of the Gauss-Hermite quadrature formula can be calculated using GAUHER

function in the Numerical Recipes program given by Press et al (1992). Note that the calculation of one
ratchet caplet prices using N -point Gauss-Hermite quadrature formula with equation (11) requires N

evaluations of Black’s (1976) formula.
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I11. First Approximation Method with Several Factors

The first approximation method in the previous section can be casily extended to incorporate several

independent factors. Suppose that there are p factors and ¢, (1) is the component of the volatility of

F, (1) attributable to the gth factor. The processes followed by F, (1) and F,_ (#) in the forward risk

neutral world with respect to P(r,1,,,) are

> P
TS sy, "
Iv/\' (’) g=1 ‘
P
— 8 F DY 64y (D514 ()

dFk—l([) 7=!

Flath) “ di+ Y Gy (e ()
Fiya (1) I+0, £ (1) ; o '

where dz, (1<q < p) are independent Wiener processes.
Define 2, as the gth component of the volatility when there are i accrual periods between the next

reset date and time ¢, . The 4, ’sand A, ’sare related with
2 S
DI (14)
g=1
We approximate the drift in equation (13) by setting F, (1) = F(t,) for t, <t <y_,. Then the drift
remains constant within each accrual period and we have
k=1 1 )2 J
InF(t) = InF(t)+ Y —EZAi_j,an‘j LD ISR L) (15)
q=I g=1

j=0

InFy_(toy) = InFy (1)

P
~ 0kt )Z Ai-jrghij2q | & P
9= 2
+ -— A o+ Ap in & S. 16
Z 1+ 6, F, (1) 2; k=j-2.q V) ; k-j-2.9 j"l'\/—‘/ (16)

where ¢;  (0<j<k-1, 1<g<p) are random samples from a standard normal distribution.

Let X =InF,(t;) and Y =InF,_(t,). Then a two dimensional random variable (X,Y) has a
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2 .
and o}, and corrclation

coefficient p,, where

The means

k-1 P
I
#szauw+§{—5§ﬁifm%}
9=l

j=0

P
~ S, F (g )Z Ak jet g A2

k=2 I
= 1 3
=lnF_t+E 41 —-—E/l“.» S,
Hy w-1{tg) a 146, F(ty) 2q=1 k-j-2,9 Y

k=l p k-1
2 _ 2 _ 2 _ 2
Ox = Ak-jm1495 | = Z[A —,/~151]“ Oily
j=01 ¢=l ] j=0
k-2 T k-2
2 _ 2 _ 2 _ 2
oy = Ak-j-240, | = [ k—j—25j]_ Crtli-i
j=0] ¢-1 I
1 k-2 p
pXY P Z Z;{k—/—l q’lk—j—l q61
XYY j=0| g=1

uy and u, are simplified as
, 1
Hy = lnPk(t())——io-,\'

5 Fi(tg)PyyOx 0y 1,2
1+ 6, F, (1) 2!

py =InFy (1)~

Note that o%, o7, and u, are independent of the number of factors whereas py, and 4, depend

on the number of factors. The remaining analysis is same as that in the previous section. Therefore, the

approximated value of a ratchet caplet with several factors can be calculated using equation (11) with the

adjustments only of p,, and gy .
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IV. Second Approximation Method

For a more accurate approximation, we reconsider the drift of InF,_,(¢) in equation (6). If we assume in
the drift of InF,_(¢) in equation (6) that F (1) = F (1) for ty <t <t and F, (t)=F, (1) for

f, <t <1, ,then equation (8) becomes

—O, F UIN A, T -
InFo (b y=InF_ (1) + AZAOT L kel 2 A2 S F AL L Eg O
-1 it) v {ly) ( T4 0, (1) 5 N2 % k-2€0+ 9%

=20 _ 5 1
s L ]
where
InFy(t) = InFy(ty) + {——21-/\2“60 + Ak_,goﬁ;}
and ¢, (0<j<k-1) arerandom samples from a standard normal distribution.
Let X =InF,(t;), Y=InF,_ (¢,,) and A=InF,(r,). We note that the conditional distribution of

Y given A is normal. Thus a two dimensional random variable (X,Y) given A =a has a bivariate

normal distribution with means s, and gy, variances o} and oy, and correlation coefficient py

where

=b+k_2 —0xe ANy __I_Az s
Hy 1+5,¢° 5 k29
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“8, F ()AL Ay 1, A, ]
b=InF,_ (t,)+ kK20 = A S+ a—InF () + = A, S
k=130 ( 1+§ka(f0) 2 k-2 4] Ak_l k(()) 2 k-1Y0

The variable b is the value of InF_(¢;) given A =a . Using equation (4) and simplifying yields
oy =ait NSy

_ 2 2
oy =0t — N0

s u
0 PyyOxGy 1 5
p- 2k LxrIxTy 1 5o

ﬂ =
' 1+ 6, 2

Therefore, the expectation in equation (1) is
E[E[max[Fk () = Feo () = )0)| Feoy (4, By )]]

= I f Imﬂxw" —e' - s0)f (x| y.a)dx}f(y]a)] 4(a)dyda (17

—o-w -

where the first conditional probability density function f(x|y,a) of X given Y=y and A=a is

. ez . .
normal with mean py + pyy —-(y—py) and variance oy (1-p%y), the second conditional
gy

probability density function f(y|a) is normal with mean u, and variance o}, and the marginal
P . . 1 .
density function f,(a) isnormal with mean g, =1InF, () ——2—0',7; and variance o} = A} ,4,.

The inner integral in equation (17) can be explicitly evaluated as

jmax(e* —¢’ —50)f(x| y,a)dx = E(e* | y,a)N(d,) - KN(d,)

—o0

where N(e) is the standard normal distribution function and

_ 1nlE(eX |y,a)/KJ+ oy (1= Piy)/2

O'A'VI‘P)Z(Y
dy =d; o xy1- phy

d,

2
o o
EE® | y,a)=expl uy + pyy _dx ()’~ﬂy)+‘”“‘2X (1= Piy)
y



a Oy ! 2 52
=e'expl poy — (V- Uy ) =0V Py
Ty 2

K=e¢"+s
so that

E[E[max[[’k(tk )= Foalto) - 5»0]| Feg ) Fely )]]

+oo+en
= j J.{E(e.\' | e a)N(dy)~ KN(d:)}f (| @) f 4 (a)dyda
If we change the variables of integration by writing
L oy—py 1 a—u,

=278 and h=—

\[i Oy J2 oy,

then
E[E[max[F (1) = Fio ) - s OJ eyt Fen])
- J‘l £ | 2N ) - KNGy e dzdn (18)
s
where
X / 2 2
lnl[:(e Z,h)/K]+ oy(l-piy)/2

d, =

U.\'VI"P.Z\Y
d, =d, 'O—X\“-p}(Y

: 1
E(e’ | z,h) = exp(p + \/EO'Ah)eXP{‘/EP.WU,\'Z “50'}(,0.%7:\

K =exp(py + w/icryz) +5
The one best suited to evaluating the integral in equation (18) is Gauss-Hermite quadrature. By using N -
point Gauss-Hermite quadrature formula, the approximated value, ¢, , of a ratchet caplet that provides a

payoff at time ¢, is

+oo+u N N

A 2o

&= L8Pt | [atzhe = e dedh = L8P0 D Wi 8(zih) (19)
PN =l j=1

where
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1 :
glz.h) = ;[E(e" | 2, N(d)) - KN(d)

and d,, d,, E(e” | z,h) and K are as defined in equation (18). The weights w, (1<i<N) and
abscissas z;, h, (1<i<N) of the Gauss-Hermite quadrature formula can be calculated using
GAUHER function in the Numerical Recipes program. Note that the calculation of one ratchet caplet

prices using N -point Gauss-Hermite quadrature formula with equation (19) requires N 2 evaluations of

Black’s (1976) formula.

V. Second Approximation Method with Several Factors

The second approximation method in the previous section can also be easily extended to incorporate

several independent factors. If we approximate the drift in equation (13) by setting F,(t) = F(¢,) for

1y <t<t and F (t)=F, (1) for t, <t <1, ,then equation (16) becomes

p

“5/(Fk(fo)z;ik—1,q/1k-2,q L& »
InF,_ (t,)=InF,_ (t,)+ 9=] =N 2L 160+ Y A, €00
nF_ () =InF_ () %5, F, () 2; k-2.4 190 Z x-2.4€0.4V 9

g=1

p
wa|| T (tl)z A jrghees-2q 1 <& p
g=! 2 .
+ ~= Y Apiaa 10D Akl i20€5 4]0
Z 146, F,. (1) 2; k=j=2.q \%J o k-j-2.4%4¥Y]

J=l

where

| <& P
InFy (1) =InF(ty) - EZzi-,_qao + ) Akcrgfoq S0

q=1 g=1
and £,, (0<j<k-1, l<qgsp) are random samples from a standard normal distribution.
Let X=InF,(t,), Y=InF,_(t,,)), A=InF,(t), and B=InF,_,(¢,). Then a two dimensional

random variable (4,B) has a bivariate normal distribution with means x, and g, variances o}



2 . ~ .
and o, and correlation coefficient p,, where

: Ly 2
t,=1n [-k(ro)~;zfll4,q50

= og=i

,l
i ‘)‘k Fk ([() )Z iA—l,q /1/\‘-

=1InF, (1) + e =) Ao, s
Hp -1y 1+0,F, (1g) 2; k=24 |90

The means g, and g are simplified as

2

1
‘, =lnF,‘.(l‘0)-——2—O';

S, F (1))P1pT 405 LI

=InfF,_ (t;)—
Ha ) T s E ) 2

And a two dimensional random variable (X,Y) given 4=a has a bivariate normal distribution with

means u, and uy, variances o2 and o}, and correlation coefficient p,y, where

Hy —a+2{———2/1k —j- 1q J

k-2 _ (S a y4
My = E[B | 4= a]+ z [——k—ejzlk—j-l,qﬂkﬁz.q Zik 24

=i Oe pa

k=2| p
0',2, = |:Z /ﬁ»j—z,q‘sj + Var[B | A= a]



775

1 k=21 p
Py = Z{Z ﬂk-j»»l,qik»y'—lq&j:l

O-Xo-y j=1| g=1

c
E[BIA=G]=/‘B +pAB;_i(a—:uA)
A

Var[B| A =a]=o}(-ply)
The means u, and g, aresimplified as

T,
Hy :a—Ea‘\—

o€’ .
uy =E[Bl A= a]+lVar[B} A =a]- 2k PrrOxTy _lag
2 1+8,¢e" 2
Note that o% and g, are independent of the number of factors whereas pyy, oy, and x, depend

on the number of factors. The remaining analysis is same as that in the previous section. Therefore, the

approximated value of a ratchet caplet with several factors can be calculated using equation (19) with the

adjustments only of pyy, op,and py.



V1. Numerical Results

To validate the accuracy of our approximation methods, a comparison was conducted with the data
originally given by Hull [(2002), p.579 - 583]. The principal is $100. The accrual periods are one year in
length. The spread is 25 basis points. The term structure is assumed to be flat at 5% per annum with
continuous compounding. The caplet volatilitics are humped as in Table 1. The arithmetic average of the
volatilitics between one and ten years is 16.71%. Table 1 also shows volatility components in two- and
three-factor models. For the practical usage of our approximation methods, one must decide on the size of
N in the Gauss-Hermite integration. The convergences of our two approximation methods are illustrated
in Table I1. The results are for the tenth ratchet caplet that provides a payoft at time 11 years. Similar
results are obtained for other caplets, other term structures, and other volatility structures. Table 11 shows
that the convergences of our two approximation methods are extremely fast. More experiments show that
6-point Gauss-Hermite integration is sufficient to obtain convergence to the sixth decimal place for the
most cases. We choose Hull and White’s (2000) Monte Carlo implementation in the rolling forward risk
neutral world as our benchmark for the true values. The rolling forward risk neutral world is a world that
is always forward risk neutral with respect to a bond maturing at the next reset date. The true values are
based on 500,000 Monte Carlo simulations incorporating the antithetic variable technique. To simulate
the path followed by the forward rates more precisely, we divide each accrual period into 8 small time

intervals. The error measure that we report is root mean squared relative error (RMSE). RMSE is defined

by

is the relative error, ¢, is the “true” value of the ratchet caplet that provides a payoff at time 1,
calculated from Monte Carlo simulation, and ¢, is the approximated ratchet caplet value.

Table 111 reports results of Monte Carlo simulation and our two approximation methods for one-, two-,
and three-factor models. Two approximated values are computed using 6-point Gauss-Hermite quadrature
formula with equations (11) and (19), respectively. In table III, we first notice that the ratchet caplet prices

of Monte Carlo and our approximation methods are very close, suggesting the usefulness of our
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approximation methods. Table Il also shows that, as we expect, the second approximation method is
more accurate than the first approximation method. The most dramatic comparison is that of computing
times. In Monte Carlo simulation, total computing times for pricing 9 ratchet caplets on a 1.8 GHz
Pentium PC are 282, 427, and 485 seconds for the one-, two-, and three-factor models, respectively. The
computing times of our two approximation methods are less than hundredth of one second. If we use 100-
point Gauss-Hermite quadrature formula rather than 6-point, then total computing times for pricing 9
ratchet caplets are 0.003 and 0.312 seconds for the first and second approximation methods, respectively.
Note that the computing times of our two approximation methods are independent of the number of
factors.

Tables 1V through VI contain a sensitivity analysis of the ratchet caplet values for a range of parameter
values. Table 1V shows the valuation when the term structure 1s flat at 20%. Table V shows the valuation
when the average volatility is 30%. Table VI shows the valuation when the term structure is flat at 20%
and the average volatility is 30%. The general observations drawn from Table 11 also hold here. Figure 1
graphs RMS errors of our two approximation methods with different values of the interest rate. Figure 2
graphs RMS errors of our two approximation methods with different values of the average volatility. We
can see that pricing errors are insensitive for the interest rates and slightly larger errors occur when the

volatilities are high.



VIL Conclusion

In this paper, we have presented two analytic approximation formulas for pricing ratchet caps in the
LIBOR market model. The results are surprisingly simple and the approximate values of a ratchet caplet
arc represented as weighted sums of Black’s (1976) regular caplet prices. The weights are from Gauss-
Hermite quadrature formula which can be casily calculated from standard numerical packages. So, these
approximation formulas are extremely fast and casily implemented. The formulas can be easily extended
to incorporate multiple factors. Comparisons with results from Monte-Carlo simulation show that, for the
volatility and interest ratc environments that are typically encountered in the market, our approximation
methods give very accurate results. Although this paper focuses only on the ratchet caplet but the main

idea in this paper will be casily applicable to other intercst rate derivatives.
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Table I: Volatility Data

The “humped™ volatility data originally given by Hull [(2002), p.579 — 583]. The arithmetic average of
the volatilities between one and ten yecars is 16.71%.

One
Year (1) o, () factor Two factors Three factors
A (%) | Ay (%) | A2 (B) | Aa (B) | Az (%) | A4-i3(%)
1 15.50 15.50 14.10 -6.45 13.65 -6.62 3.19
2 18.25 20.64 19.52 -6.70 19.28 -7.02 2.25
3 17.91 17.21 16.78 -3.84 16.72 -4.06 0.00
4 17.74 17.22 17.11 -1.96 16.98 -2.06 -1.98
5 17.27 15.25 15.25 0.00 14.85 0.00 -3.47
6 16.79 14.15 14.06 1.61 13.95 1.69 -1.63
7 16.30 12.98 12.65 2.89 12.61 3.06 0.00
8 16.01 13.81 13.06 4.48 12.90 4.70 1.51
9 15.76 13.60 12.36 5.65 11.97 5.81 2.80
3 10 15.54 13.40 11.63 6.65 10.97 6.66 3.84




Table IX: Convergence of Gauss-Hermite Integration

781

The principal is $100. The accrual periods are one year in length. The spread is 25 basis points. The term
structure is flat at 5% per annum with continuous compounding and the caplet volatilities are as in Table I.

The approximated values are for the tenth ratchet caplet that provides a payoff at time 11 years.

N One factor Two factors Three factors
A1V A2V A1 A2V A1 A2Y
1 0.135494 0.135405 0.143924 0.144066 0.153344 0.153334
2 0.151293 0.151573 0.159000 0.159512 0.167570 0.167961
3 0.151651 0.151871 0.159303 0.159755 0.167815 0.168150
4 0.151653 0.151872 0.159304 0.159755 0.167815 0.168150
5 0.151653 0.151872 0.159304 0.159755 0.167815 0.168149
6 0.151653 0.151872 0.159304 0.159755 0.167815 0.168149
7 0.151653 0.151872 0.159304 0.159755 0.167815 0.168149
8 0.151653 0.151872 0.159304 0.159755 0.167815 0.168149
9 0.151653 0.151872 0.159304 0.159755 0.167815 0.168149
10 0.151653 0.151872 0.159304 0.159755 0.167815 0.168149
20 0.151653 0.151872 0.159304 0.159755 0.167815 0.168149
50 0.151653 0.151872 0.159304 0.159755 0.167815 0.168149
100 0.151653 0.151872 0.159304 0.159755 0.167815 0.168149

(1) First approximated values are computed using N-point Gauss-Hermite quadrature formula with

equation (11)

(2) Second approximated values are computed using N-point Gauss-Hermite quadrature formula with

equation (19).
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