A Model Context-Based Solution Framework
in Decision Support Systems

Keun-Woo Lee and Soon-Young Huh

Graduate School of Management, Korea Advanced Institute of Science and Technology
207-43 Chongyang-ni, Dongdaemoon-gu, Seoul, 130-722, South Korea
Tel: +82-2-958-3650, Fax: +82-2-958-3604, E-mail: {kwlee, syhuh}@kgsm.kaist.ac.kr

Abstract

Research in the decision sciences has continued to develop
a variety of mathematical models as well as software tools
supporting corporate decision-making. Yet, in spite of their
potential usefulness, the models are little used in real-world
decision making since in the presence of a decision model,
the flexible selection and execution of solvers is still unsat-
isfactory model and thus solution processes are still too
complex for ordinary users to apply appropriate solvers
to the model. This paper proposes a model context-based
solution framework that enables the user to solve decision
problems using models and their associated multiple
solvers without requiring precise knowledge of the model-
solution processes. Specifically, for intuitive model-solution,
the framework enables a model management system to
suggest the compatible solvers of a model autonomously
without direct user intervention and to solve the model by
matching the model and solver parameters intelligently
without any serious conflicts. Thus, the framework would
improve the productivity of institutional model solving tasks
by relieving the user from the burden of leaning model and
solver semantics requiring considerable time and efforts.

Keywords:

Model management systems; Model-solver integration;
Decision support systems

Introduction

As business environments become more competitive and
rapidly change, decision support systems (DSS) for precise
and agile decisions have been increasingly adopted in many
organizations [21,22]. In a DSS, for user-friendliness and
intuitive solution, a decision problem is formulated as a
model — a structured form composed of a set of declarative
modeling language statements [10,13] that are easy to
understand and execute. Specifically, a model management
system (MMS) is dedicated to managing the entire life
cycle of models as a part of the three component modules
of a DSS together with a database management system
(DBMS) and dialogue management system [21].

In the model management research area, there have been a
wide spectrum of studies ranging from the modeling lan-
guages for effective modeling of management sci-
ence/operations research (MS/OR) problems [6,9,10], and

the model representation scheme for easier creation, re-
trieval, and execution of models [10,13,20], to the DSS
component integration framework for the reuse of models
with different data sets for different problems [7,17,19].
However, there has been little effort focusing on the precise
and flexible decision making support by the reuse of solvers
{8,13], i.e., problem-solving algorithms against diverse
models and data sets. The reuse of solvers brings in two
kinds of model-solver integration perspectives. While a
solver can be applied to and reused in multiple models that
have similar problem structures, a single model may have
multiple-problem solving purposes and thus needs multiple
solvers. Such a flexible integration framework can make the
decision support process more user-friendly and stream-
lined, and result in a more simplified system architecture
that leads easier implementation and maintenance of DSS.
To sufficiently attain these benefits from the flexible model-
solver integration, the user should be knowledgeable of
what a model and its component statements mean and
which solvers are applicable to the model under certain
purposes. Once an applicable solver is chosen, the user
should be able to understand how to solve the model,
flexibly with the individual model component statements
and solver parameter values, to best meet the problem-
solving purposes [1,13]. In reality, however, since the
semantic understanding of a model or a solver is not a
trivial task, ordinary users, even sometimes knowledgeable
professional users, often have difficulty in picking out the
applicable solvers from the organizational solver library
and adequately applying them to a given model (2]. Under-
standing such a burdensome model and solver semantics
makes users less active and often poses obstacles in utiliz-
ing models in solving decision problems even though they
admit the overall usefulness of the models.

Moreover, as more organizations have constructed the DSS
distributed across their internal/external networks [12,14],
models and solvers have been created based on different
modeling paradigms and different system platforms. Such
heterogeneity of models and solvers makes it more difficult
to utilize them in solving decision problems. Thus, the
MMS as a dedicated tool for managing the models should
be able to support the following two capabilities to make
the overall model solution process easy and productive.
First, for a specific model under consideration, the MMS
should be user-friendly enough to suggest autonomously a
set of solvers that are both syntactically and semantically
compatible with the model. This autonomous solver sugges-

— 452 —

tion capability will enable the ordinary user who might not
have enough expertise to identify compatible solvers, to
select appropriate solvers easily and be prevented from
misusing incompatible solvers. Second, when a particular
solver is chosen for the model, adequate parameter match-
ing is needed for model-solution between the model and
solver in such a way that input values in the model are
inserted as the corresponding input parameter values of the
solver. In addition, output values in the solver are to be
transferred as the corresponding output values of the model.
Thus, the MMS should be able to perform the parameter
matching between the model and solver intelligently and
produce the model solution result even though the user has
a little knowledge of the meaning of parameter values of a
solver and cannot perform exact matching between model
parameters and solver parameters.

Recognizing such requirements of the MMS, this research
focuses on the development of a model-solver integration
framework that facilitates the autonomous solver sugges-
tion and intelligent model solution capabilities. In develop-
ing the framework, first, we propose systematic and unified
representation schemes for models, solvers, and their
interactions by employing the generic model concept [13]
as a conceptual framework (Section 2). Specifically, model-
ing conflict issues are explained, which make it difficult to
define a standardized interfacing scheme for the integration
of models and solvers. Second, on the basis of the model
and solver representation schemes, we propose a multi-
agent approach [3,16] as physical system architecture of the
- framework, and explain system procedures used for the
autonomous solver suggestion and intelligent model solu-
tion (Section 3). Finally, we discuss the results and contri-
butions of this paper followed by future research directions
(Section 4).

Generic Model-Solver Representation

This section describes systematic and unified representa-
tions of models, solvers, and their interactions with particu-
lar focus on the modeling conflicts among the models. For
the illustration of the representations and conflicts, an
option pricing example of a financial MMS is provided.

Core Concepts of Model-Solver Representation

We adopt the generic model concept [13] as a conceptual
framework to represent models, solvers, and their interac-
tions, and extend it to be more flexible in selecting and
applying solvers to a model.

In our representations, a model, characterized by an object
type model type, concerns the semantic issues of the deci-
sion problems, and thus is responsible for maintaining and
updating all the problem statements. The model type has a
name, a set of ports, and primitive manipulating operations.
A port, characterized by a port type, corresponds in a one-
to-one mapping relationship to a problem statement of a
model. The ports, as a whole, constitute the external inter-
face of a model, through which the model interacts with its
outside environment (i.e., human modelers, solvers and

databases). With respect to the interaction role, the ports of
a model are classified into two types: input ports (inports)
admit data and output ports (outports) produce problem-
solving results in connection with their environment. The
attributes of the port type are intended to directly capture
the meaning and structure of a single problem statement of
the model. They are a unique name, a set of attributes and
operations to describe the information pertaining to data
values and algebraic expression of the statement.

Inport Values

..............

Model Builder/ Database
Decision Maker

MODEL A SOLVER A
INPORT a
INPORT b

Inport Mapping 2
INPORT2 proe-=em=m==oooe=- 1
INPORT 3 }-4-lrport Mapping 3 __|

Qutport Mapping 1
OUTPORT 1 ,___ff____l:l’__g____ OUTPORT a

Outport Mapping 2
QUTPORT 2 L RITITEL L OUTPORT b

Figure 1 — Model, Solver, and their Interaction.

)
*
+

INPORT ¢

Meanwhile, a solver, characterized by a solver type
(SolverType), focuses on the actual problem solving com-
putation, and is responsible for generating the computation
results of the modeled decision problem. The solver type
has a name, a set of ports for interfacing with model ports,
primitive manipulating operations, and a calculation opera-
tion implementing the solving algorithm. The ports of the
solver type are also classified into inports and outports; the
inports accept input parameters of the calculation operation
while the outports hold the output parameters after the
calculation operation is executed. In the presence of a
model, the inports of the solver correspond to the inports of
the model and the outports of the solver correspond to the
outports of the model. That is, after a compatible solver is
selected for model solution, the model delegates its outports
to the solver by assigning its inport values to the corre-
sponding inports of the solver. The solver then produces the
outport values using its calculation operation and returns
them back to the outports of the model. As such, the model
solution process requires individual ports of the mode! to
correspond to the solver ports in a one-to-one relationship.
We call such a relationship a pert mapping (Figure 1).

In the following section, we describe an option pricing
example of a financial MMS to illustrate these representa-
tions for models, solvers, and their interactions in more
practical viewpoints. Through the example, the modeling
conflict issues, a critical problem for the model-solver
integration, are also explained.

— 453 —

An Option Pricing Example

Consider the financial MMS that supports a user’s evalua-
tion of financial products by calculating their various
numerical analysis factors, such as the net present value
(NPV) {15). In the financial MMS, for user-friendly and
intuitive calculations, each financial product is formulated
as a model composed of a set of declarative modeling
language statements capturing the properties of the product
and the analysis factors to be calculated. Additionally, a set
of pricing algorithms are also provided as solvers for these
financial product models. To exemplify such product
models in the financial MMS, we consider two kinds of
products: a stock option and a currency option [15].
Figure 2 shows an example model for the stock option
using the structured modeling language (SML) [11].

On the other hand, as a solver for the two models, a well-
known pricing algorithm called Black-Scholes method [15]
is provided, and it requires the following three inports to
calculate the NPV: an exercise price, a maturity date, and
a dividend rate. First, the exercise price is the prearranged
price at which the holder of an option can buy or sell the
underlying product. The exercise price is also called a strike
price. Second, the maturity date is the date at or by which
the underlying product can be bought or sold. Usually, it is
represented as a specific date or as a time interval between
the present date and the maturity date. The Black-Scholes
method solver uses the latter representation. Third, the
dividend rate is the rate per annum at which a continuous
dividend is paid by the underlying stock of a stock option.
However, in a real situation, since the dividend of a stock is
paid discretely and irregularly, the Black-Scholes method
solver needs proper conversion from the discretely paid
dividend amounts into the continuously paying rate. In case
of a currency option, the dividend rate is analogous to the
interest rate of the underlying currency because the cur-
rency pays interests as a stock pays dividends. Since the
interest rate itself is a continuously paying rate, such a
conversion for the stock option’s dividends is not required

for the currency option’s interest rate.

According to the model and solver representation scheme
shown in Figure 1, this option pricing example can be
illustrated as Figure 3. The financial MMS maintains
compatibility between the two models (STOCK_OPTION
and CURRENCY_OPTION) and the solver
BLACK_SCHOLES by managing their port mappings
shown in Figure 3, and thus it can facilitate suggestion of
the solver for the two models and solution of them by
matching their ports with the corresponding ones of their
compatible solver, BLACK_SCHOLES. In this capacity,
however, from the solver’s perspective, the models have
semantic and/or syntactic conflicts with one another in their
ports [8,18], and such conflicts require the port mappings to
be customized for each model. Typically, the following
three types of modeling conflicts are observed among the
models:

* The semantic conflict implies that depending on the
problem semantics of the individual models, the port
mappings vary and thus a solver needs to look up dif-
ferent ports in each model to get its inport values. In
Figure 3, the ports of STOCK_OPTION and
CURRENCY_OPTION that correspond to the port
DIVIDEND_RATE of BLACK_SCHOLES are dif-
ferent from each other. In case of STOCK_OPTION,
the port DIVIDEND should have a mapping with
DIVIDEND_RATE of BLACK_SCHOLES while in
case of CURRENCY_OPTION, the port INTER-
EST_RATE should.

* The naming conflict arises when models use syno-
nyms to describe the same ports, or homonyms for
different ones. The port EXERCISE PRICE of
STOCK_OPTION and the port STRIKE PRICE of
CURRENCY OPTION are synonyms. Both ports
need to have a mapping with the port EXER-
CISE_PRICE of BLACK_SCHOLES.

* The structural conflict arises when the same ports in
individual models are represented in different data
formats. The port DIVIDEND of STOCK_OPTION

&OPTION DATA OPTION_DATA for properties pertinent to option products

OPTION (STOCK) /ce/ Thereisan QPTION on STOCK.

OPTION_TYPE (OPTION) /a/ QPTION_TYPE indicates whether OPTION is call or put.

EXERCISE_TYPE (OPTION) /a/ EXERCISE TYPE indicates whether OPTION is European or American.

EXERCISE PRICE (OPTION) /a/ EXERCISE PRICE is the prearranged price at which the holder of OPTION can buy or sell STOCK.
MATURITY DATE (OPTION) /a/ MATURITY DATE isthe date at or by which the holder of OPTION can buy or sell STOCK.

OPTION_PRICE (OPTION) /va/ :

STOCK /pe/ Thereisa STOCK in a financial market.
STOCK_PRICE (STOCK) /va/
S_PRICE_VOL (STOCK_PRICE) /va/ :
DIV_PAY DATEiL (STOCK) /a/
DIVIDEND (DIV_PAY DATEi) /a/

Real+ OPTION has a current OPTION_PRICE in a financial market.
&STOCK_DATR STOCK_DATA for properties pertinent to stock products

: Real+ STOCK has a current STQCK_PRICE in a financial market.

0 < Real < 1 STOCK_PRICE has a STOCK PRICE_VOLATILITY.
: Integer >= 19000101 STOCK hasalist of DIVIDEND PAYING DATE.
: Real+ Ateach DIVIDEND_PAYING_DATE, there is a DIVIDEND in $.

&VALUATION RESULTS VALUATION RESULTS for evaluating OPTION

NPV (OPTION) /va/

: Real+ OPTION hasa NET_PRESENT VALUE.

Figure 2 — An Example Model for STOCK_OPTION (Structured Modeling Language).

— 454 —

represented as a matrix (i.e., a list of the two values:
dividend paying dates and dividend amounts) should
be converted to a single number following the data
format of the port DIVIDEND RATE of
BLACK_SCHOLES (i.e., a number as a rate). How-
ever, the port INTEREST_RATE of
CURRENCY_OPTION represented as a number can
be delivered to DIVIDEND RATE of
BLACK_SCHOLES directly.

Models
Naming STOCK_OPTION
Conflict
EXERCISE_PRICE f, Solver
o
MATURITY_DATE p | s,
. » = be ™ K H
DIVIDEND R BLACK_SCHOLES
b -~
| ~.% ["4 EXERCISE_PRICE
NPV SN
S ti N {4 MATURITY
N ~ AT
Conflict ~y2’ "4 DIVIDEND_RATE
’ & .
' CURRENCY_OPTION | ,*',* T+ —
Structural , l,’ s
Conflict # STRIKE_PRICE o L
,
I MATURITY_DATE ||’ S
o INTEREST_RATE [| <

Figure 3 — An Option Pricing Example.

Regarding these three modeling conflicts, the MMS should
specify not only the adequate port mappings between
individual models and their compatible solvers (for resolv-
ing the semantic and naming conflicts) but also suitable
data format conversion methods in each port mapping (for
resolving the structural conflict). In this paper, such port
mappings and data format conversion methods are called
interfacing rules.

In the following sections, we explain how the model-solver
integration framework proposed in this paper resolves these
three modeling conflicts by managing the interfacing rules
for port-mappings and data format conversion between the
two models (STOCK_OPTION and CUR-
RENCY_OPTION) and the solver BLACK_SCHOLES.
Based on the interfacing rules, we also present how the
framework facilitates the autonomous solver suggestion and
intelligent model solution capabilities.

Model-Solver Integration Framework

The model-solver integration framework has two primary
tasks: management of the interfacing rules and execution
of the solver suggestion and model solution. To support
these two tasks, the port mapping dictionary exists as an
information registry to manage the interfacing rules for the
customized port mappings and data format conversion
methods between models and solvers. Referring to the port
mapping dictionary, the model and solver agents are placed
to perform the autonomous solver suggestion and intelligent
model solution, and resolve the semantic, naming, and
structural conflicts.

Model Class

A model class is an abstract data structure realizing the
model type. Since the model type has a set of ports as its
external interface for interacting with its outside environ-
ment (i.e., human modelers, solvers and databases), the
model class aggregates the port class, implementing the
port type. Figure 4(a) shows an object-oriented schema for
the model class represented in Unified Modeling Language
(UML) [4].

In Figure 4(a), the model class and the port class are named
Model and Port. To handle a wide range of data formats
effectively, Port can transform into several sub-classes
including NumberPort, StringPort, DatePort,
ListPort, and MatrixPort. In determining the data
format of a port, two factors are specifically considered:
the data domain (e.g., number, string, and date) and the data
cardinality (e.g., scalar value, list, and matrix). For the data
domain, StringPort, NumberPort, and DatePort
are to represent a string, a number, and a date value in the
attribute Value, respectively. For the data cardinality,
ListPort and MatrixPort are to capture a list or a
matrix of values by containing multiple Port. Based on
the class diagram, Figure 4(b) presents an object data
example for the model STOCK_OPTION of Figure 3 using
the object diagram of UML.

Solver Class

The solver class (Solver) realizing the solver type has a
set of ports for interfacing with the model ports. To facili-
tate solver capability, Solver provides three operations,
SetPort (), Calculate(), and GetPort(). By
calling these operations, the MMS can communicate with a
Solver object to set inport values, execute the model
solving calculation, and get an outport value, respectively.
The Solver class is further specialized into sub-classes to
support the solver-specific algorithms of individual solvers.
Each sub-class representing a particular solver inherits all
the attributes and operations from Solver, and customizes
the operation Calculate () by implementing its solver-
specific algorithm. Such class inheritance from Solver to
the sub-classes leads to effective division of tasks and
responsibilities between the two. Solver defines the
general external structure dedicated to the model interfaces
(i.e., the aggregated Port class) and manipulation opera-
tions for MMS communication; the sub-classes focus on the
solver-specific algorithm implementations needed for the
individual solvers.

These inheritance mechanisms between Solver and its
sub-classes are specifically useful when a variety of solvers
exist in the solver library since they facilitate the MMS to
manage those solver objects in a unified way using the
three seemingly generic commands (SetPort (), Cal-
culate(), and GetPort()) provided by Solver,
regardless of their individual algorithm implementations.

— 455 —

Port Mapping Dictionary

As mentioned earlier, the MMS should manage the interfac-
ing rules for the adequate port mappings and the data
format conversion methods between individual models and
their compatible solvers. The port mapping dictionary, as
a dedicated tool for the interfacing rule management,
maintains them in a tabular form where each row represents
an individual interfacing rule that specifies the port pairs to
be mapped and their data format conversion method.
Typically, every row of the dictionary has the six attributes
(i.e., columns): model, solver, model port, solver port,
port type, and conversion script. The attributes model and
solver indicate the model and solver names that the inter-
facing rule is applied to; the attributes model port and
solver port indicate the corresponding port names of the
model and solver to be linked; the attribute port type
determines whether it is for an inport or an outport; finally,
the attribute conversion script describes the detailed in-
structions of the data format conversion.

Specifically, conversion script is expressed as an algebraic
formula built on two kinds of operands, port references and
environmental variables. A port reference means a port
value and is denoted by a port name enclosed by amper-
sands (&) at both ends (e.g., &KEXERCISE_PRICE&); an
environmental variable refers to a pre-defined system
variable and is denoted by a capital string (e.g., TODAY for
the current date). These operands can be recursively com-
posed by a set of operators. The operators include domain
casting operators for converting the data domain of a port

(e.g., TO_NUM for conversion to integer and TO_STR for
conversion to string), aggregation operators for converting
the data cardinality of a port (e.g., SUM for summation of a
list and AVG for average of a list), and other mathematical
operators for various numerical calculations (e.g., LOG for
logarithm and SQRT for square root). Figure 5(a) shows a
conceptual structure of the port mapping dictionary with the
option pricing example of Figure 3 where two models
(STOCK_OPTION and CURRENCY_OPTION) and one
solver BLACK SCHOLES are under consideration.

Figure 5(b) presents example commands showing how the
MMS can use the port mapping dictionary, named Port -
MappingDictionary, in conducting the autonomous
solver suggestion and intelligent model solution. The first
command shows how to retrieve the compatible solver
names of the model STOCK OPTION from the port
mapping dictionary. Since the compatible solvers must have
interfacing rules with the model in the dictionary, this
command finds the solvers by extracting the attribute solver
from the interfacing rules that have the model name
“STOCK_OPTION?” in the attribute model. Thus, using this
command, the MMS can identify and suggest the compati-
ble solvers autonomously by referring to the port mapping
dictionary without any direct user intervention. The second
command retrieves the interfacing rules for the inports
between the STOCK_OPTION model and the
BLACK_SCHOLES solver from the port mapping diction-
ary. Using the interfacing rules obtained by this command,
the MMS can match the model ports with the solver ports

Model Port

Inports: Port[]

: 1 outport %

- 1 inport
ModelName: String <>—————-——~ PortName: String

Outports: Port[] element
j element
i 1
| [1 \/]
StringPort NumberPort DatePort ListPort MatrixPort
Value: String Value: Number Value: Date Elements: Port[] Elements: Port[][]

Row: Number
Col: Number

Col: Number

(a) A Schema for the Modet Class (Class Diagram of UML)

pI: NumberPort

PortName=
“MATURITY_DATE”
Value=*2002/6/12"

p3: MatrixPort element p5: DatePort
PortName= PortName=
“DIVIDEND” “DIV_PAY_DATE"

Value=2002/1/5"

Row=2
Col=1 \
') ¢

>

inport, inport
PortName= ml:
“EXERCISE_PRICE” Model
Value=40
alue ModelName=
“STOCK_OPTION”
p2: DatePort /O‘
inport outport

p4: NumberPort p6: NumberPort
PortName=“NPV” PortName=
Value="" “DIV_AMOUNT”
Value=10

(b) An Object Data Example for STOCK_OPTION (Object Diagram of UML)

Figure 4 — Model Class Definition.

— 456 —

adequately and convert the data formats of model ports if
they are different from those of the corresponding solver
ports. The third command converts the data format of the
port DIVIDEND according to the conversion script
scriptl obtained from the port mapping dictionary. The
converted port (sp) returned by this command, will be
further linked to the corresponding port of the solver (i.e.,
DIVIDEND RATE of BLACK SCHOLES).

Model and Solver Agents

On the basis of the classes Model, Solver, and Port -
MappingDictionary, two software agents, model
agent and solver agent, are defined at a higher level to
perform the autonomous solver suggestion and intelligent
model solution. Referring to the port mapping dictionary,
these two agents cooperate with each other for exchanging
port values between models and solvers while resolving the
three modeling conflicts.

The model agent, which interacts with the user views
directly, assists a user’s model-solving activities by provid-
ing two types of information to the user view: compatible
solver names of the model to be solved and the results of
the model solution. First, to provide the compatible solver
names, the model agent looks them up in the port mapping
dictionary using such commands as shown in Figure 5(b).
These solver names are then displayed in the user view, and
the user selects an appropriate one among the solver names

depending on the user’s problem-solving purposes. Second,
once the user selects a solver and makes a request for the
model solution, the model agent sends a model-solving
request message to the solver agent. This message consists
of the solver name to be used and the inport values required
for the solver to execute its calculation operation. In creat-
ing the message, the model agent consults the port mapping
dictionary to understand how to generate the inport values
of the solver by referring to the interfacing rules between
the model and the solver. Afterwards, when the solver agent
returns the results of its model solution, the model agent
provides them to the user through the user view.

In this context, the solver agent performs the model solu-
tion and returns its results to the model agent in response to
the model-solving request message from the model agent.
When the solver agent receives the model-solving request
message, it retrieves the solver specified in the message
from the solver library, fills the inports of the solver with
the inport values contained in the message, and executes the
calculation operation of the solver. This solver execution
process can be done by such commands as shown in Figure
5(b). Once the calculation of the solver is finished, the
solver agent sends a model-solving result message to the
model agent. In sending the message, as the model agent
does to create the model-solving request message, the
solver agent also consults the port mapping dictionary to
understand the interfacing rules for the outport mappings
between the model and the solver.

model solver model port solver port tr;;et conversion script

STOCK_OPTION BLACK_SCHOLES | EXERCISE_PRICE | EXERCISE_PRICE | Inport

STOCK_OPTION BLACK_SCHOLES | MATURITY_DATE | MATURITY Inport &MATURITY & = (&MATURITY_DATE& - TODAY) / 365
STOCK_OPTION BLACK_SCHOLES | DIVIDEND DIVIDEND_RATE | Inport &DIVIDEND_RATE&=LOG(1+SUM(&DIVIDEND&([*][2])

/ &S TOCK_PRICE&)

STOCK_OPTION BLACK_SCHOLES | NPV NPV Outport

CURRENCY_OPTION | BLACK_SCHOLES | STRIKE_PRICE EXERCISE_PRICE | Inport

CURRENCY_OPTION { BLACK_SCHOLES | MATURITY_DATE | MATURITY Inport &MATURITY& = (&AMATURITY_DATE& —~ TODAY) / 365
CURRENCY_OPTION | BLACK_SCHOLES | INTEREST RATE DIVIDEND_RATE | Inport

CURRENCY_OPTION { BLACK_SCHOLES | NPV NPV Outport

/* Querying compatible solvers with a model */

(a) A Conceptual Structure of the Port Mapping Dictionary for Option Pricing Example

select distinct r.Solver
from r in PortMappingDictionary.rules

where r.Model

“"STOCK_OPTION” ;

/* Querying interfacing rules */

select r.ModelPort,

r.ConversionScript
from r in PortMappingDictionary.rules

where r.Model

r.SolverPort,

"STOCK_OPTION”

and r.Solver = “BLACK_SCHOLES*

and r.PortType = “Inport”

/* Converting data format of a port */

// Suppose that scriptl is a conversion script
// for converting data format of the port

// DIVIDEND of STOCK_OPTION

define sp

as PortMappingDictionary.ParseScript

(scriptl,

element (select mp
from m in Models, mp in m.inports
where mp.PortName = “DIVIDEND”

and m.ModelName =

“"STOCK_OPTION“))

(b) Example Commands for Using the Port Mapping Dictionary

Figure 5 — Port Mapping Dictionary Definition.

— 457 —

Figure 6 shows detailed steps of the solver suggestion and
model solution processes performed by the model and
solver agents using the sequence diagram of UML. The
model and solver agents perform the solver suggestion and
model solution autonomously by communicating with each
other and referring to the interfacing rules maintained in the
port mapping dictionary. In addition, since the interfacing
rules provide the port mappings and data format conversion
methods between the individual models and their compati-
ble solvers, the agents can intelligently exchange port
values between the two while resolving the three modeling
conflicts. By virtue of this autonomous and intelligent
characteristic of the two agents, what the user should do to
solve a model is only select an appropriate solver among
the suggested ones on the user view. This simplicity and
user-friendliness of the model-solving activities improves
productivity and usefulness of the MMS by allowing even
non-professional ordinary users to easily use the diverse
sets of models and solvers provided by the MMS.

Conclusions

The provision of an intuitive and user-friendly model-
solution process is an important functional requirement for
the MMS since the model and solver semantics are usually
too complicated for most ordinary users to identify the
compatibilities between the models and solvers or to

understand their parameter matching patterns. Recognizing
this requirement of the MMS, this paper proposes a model-
solver integration framework that enables the MMS to
suggest the compatible solvers of a model autonomously
without direct user intervention and to solve the model by
matching the model and solver parameters intelligently
without any serious modeling conflicts (i.e., the semantic,
naming, and structural conflicts). Among the advantages
attained in the model-solver integration framework, the
following three are worthy of attention.

First, by defining the constructs including model, solver,
port mapping dictionary, model agent, and solver agent
without any restrictions on the modeling paradigms, the
framework can serve as a building foundation for MMSs in
a wide variety of problem domains with multiple modeling
paradigms. In the framework, every model statement or
solver parameter is uniformly captured as a port regardless
of its data format, and thus the model-solver interactions
are considered as data exchanges between the model and
solver ports. Based on this standardized model-solver
interfacing scheme, the port mapping dictionary, model
agent, and solver agent consolidate all the primitive solver
suggestion and model solution mechanisms generically
applicable to diverse sets of models and solvers.

Second, since the interfacing rules between models and
solvers are not hard-coded into the MMS and are managed
in the port mapping dictionary, the framework can easily

User View Model Agent Model

Port Mapping

Dic tionarl Solver Agent Solver

: (1) retrieve a m: del to solve

Solver
Suggestion

(2) query solvers compatible witl'a the model g
(3) query the copmpatible solversj

Process

Il

........................

4) send the names of the compatible solvers
5

(5) request for gmdel solution using a solver

(6Lquery the mtsrfacing rules |

::I (7) create thb model-solving

request méssage

} (8) send the model-solving request message

eemememmemmmmeevemeemmmmecsssmemm—aae=—————

Model
Solution
Process

! (9) retrieve the solver
e]

: (10) set the ingc:}rt values

(l 1) execute thq

calculation g]peratlon

(12) perform |

the calculatibn
.‘__...

1 (13) get the ouﬂ)ort values
qs
(14) query the ihterfacing rules

[e —

™1 (15) create the model-
solving reéult message

L g 17) send the mpdel-sotving resu!ts

: (16) send the dee] solving resuit message

Figure 6 — Solver Suggestion and Model Solution Processes (Sequence Diagram of UML).

— 458 —

adapt to the changes in the models and solvers. When a new
model or solver is added to the MMS or an existing one is
modified, the framework can additively accommodate and
make it functional with other existing ones only by updat-
ing the related interfacing rules in the port mapping diction-
ary without any re-implementation or re-compilation of the
entire system.

Third, the autonomous and intelligent characteristics of the
model and solver agents make a user’s model-solving
activities very streamlined and user-friendly. The model and
solver agents perform the autonomous solver suggestion
and intelligent model solution while hiding the complicated
interactions between the models and solvers from the user.
Thus, without having precise knowledge of model-solving
procedures, users can experiment and solve a model with
multiple problem solving purposes using diverse sets of
solvers.

A prototype system for the model-solver integration frame-
work has been developed with JAVA programming lan-
guage with the sponsorship from the Institute of Informa-
tion Technology Assessment in Korea. Specifically the
current research is extended into the distributed computing
environment focusing on the Web Services based systems
integration platform [5].

Acknowledgements

This research was supported by University IT Research
Center Project.

References

[1] Banerjee, S. and Basu, A. (1993). “Model Type Selec-
tion in an Integrated DSS Environment,” Decision
Support Systems, Vol. 9, pp. 75-89.

[2] Beynon, M., Rasmequan, S., and Russ, S. (2002). “A
New Paradigm for Computer-Based Decision Sup-
port,” Decision Support System, Yol. 33, pp. 127-142.

[3] Bhargava, HK., Krishnan, R., Roehrig, S., Casey, M.,
Kaplan, D., and Miiller, R. (1997). “Model Manage-
ment in Electronic Markets for Decision Technologies:
A Software Agent Approach,” Proceedings of the 30th
Hawaii International Conference on System Sciences,
pp- 405-415.

[4] Booch, G., Rumbaugh, J., and Jacobson, 1. (1999). The
Unified Modeling Language User Guide. Indianapolis,
MA: Addison-Wesley.

{5] Booth, D., Haas, H.,, McCabe, F., Newcomer, E.,
Champion, M., Ferris, C., Orchard, D., Eds. (2004).
“Web Services Architecture,” W3C Working Group
Note, http://www.w3.0rg/TR/2004/NOTE-ws-arch-
20040211/,

[6] Brooke, A., Kendrick, D., Meeraus, A., and Raman, R.
(1998). “GAMS: A User’s Guide,” GAMS Develop-
ment Corporation, http://www.gams.com/docs/gams/
GAMSUsersGuide.pdf.

[7] Dolk, D.R. (2000). “Integrated Model Management in
the Data Warehouse Era,” European Journal of Opera-
tional Research, Vol. 122, pp. 199-218.

[8] Eck, R.D., Philippakis, A., and Ramirez, R. (1990).
“Solver Representation for Model Management Sys-
tems,” Proceedings of the 23rd Hawaii International
Conference on Systems Sciences, pp. 474-483.

[9] Fourer, R., Gay, D.M., and Kernighan, B.W. (1990).
“A Modeling Language for Mathematical Program-
ming,” Management Science, Vol. 36, pp. 519-554.

[10] Geoffrion, A.M. (1989). “The Formal Aspects of
Structured Modeling,” Operations Research, Vol. 37
pp. 30-51.

[11] Geoffrion, AM. (1992). “The SM Language for
Structured Modeling: Levels 1 and 2,” Operations Re-
search, Vol. 40, pp. 38-57.

[12] Goul, M., Philippakis, A., Kiang, M.Y., Fernandes, D.,
and Otondo, R. (1997). “Requirements for the Design
of a Protocol Suite to Automate DSS Deployment on
the World Wide Web: A Client/Server Approach,” De-
cision Support Systems, Vol. 19, pp. 151-170.

[13] Huh, S.-Y. (1993). “Modelbase Construction with
Object-Oriented Constructs,” Decision Science, Vol.
24, pp. 409-434,

[14] Huh, S.-Y. and Kim, H.-M. (2004). “A Real-Time
Synchronization Mechanism for Collaborative Model
Management,” Decision Support Systems, Vol. 37, pp.
315-330.

{15] Hull, J.C. (1997). Options, Futures, and Other Deriva-
tives. Upper Saddle River, NJ: Prentice-Hall.

[16] Kone, M.T., Shimazu, A., and Nakajima, T. (2000).
“The State of the Art in Agent Communication Lan-
guages,” Knowledge and Information Systems, Vol. 2,
pp- 259-284.

[17] Muhanna, W.A. (1994). “SYMMS: A Model Manage-
ment System That Supports Model Reuse, Sharing,
and Integration,” European Journal of Operational
Research, Vol. 72, pp. 214-243,

(18] Muhanna, W.A. and Pick, R.A. (1994). “Meta-
Modeling Concepts and Tools for Model Management:
A Systems Approach,” Management Science, Vol. 40,
pp- 1093-1123.

[19] Rizzoli, A.E., Davis, J.R., and Abel, D.J. (1998).
“Model and Data Integration and Re-use in Environ-
mental Decision Support Systems,” Decision Support
Systems, Vol. 24, pp. 127-144.

[20] Ryu, Y.U. (1998). “Constraint Logic Programming
Framework for Integrated Decision Supports,” Deci-
sion Support Systems, Vol. 22, pp. 155-170.

[21] Shim, J.P., Warkentin, M., Courtney, J.F., Power, D.J.,
Sharda, R., and Carlsson, C. (2002). “Past, Present,
and Future of Decision Support Technology,” Decision
Support Systems, Vol. 33, pp. 111-126.

[22] Zeleznikow, J. and Nolan, J.R. (2001). “Using Soft
Computing to Build Real World Intelligent Decision
Support Systems in Uncertain Domains,” Decision
Support Systems, Vol. 31, pp. 263-285.

— 459 —

