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Abstract

Case based reasoning (CBR) models often solve problems
by retrieving multiple previous cases and integrating those
results. However, conventional CBR makes decisions by
comparing the integrated result with the cut-off point
irrespective of the degree of the adjacency between them.
This can cause increasing misclassification error for the
target cases adjacent to the cut-off point, since the results
of previous cases used to produce those results are
relatively inconsistent with each other. In this article, we
suggest a new interactive CBR model called Grey-Zone
Case Based Reasoning (GCBR) that makes decisions
focusing additional attention on the cases near the cut-off
point by interactive communication with users. GCBR
classifies results automatically for the cases placed outside
the cut-off point boundary area. On the other hand, it
communicates with users to make decision for the cases
placed inside the area by verifying characteristics of the
dataset. We suggest the architecture of GCBR and
implement its prototype.

(Keywords: Interactive Case Based Reasoning; Cut-off
Point; Boundary Area; Proximity; Correlation; Artificial
Intelligence.)

1. Introduction

Case based reasoning (CBR) uses the results of previous
similar cases to solve current problems. The results of
retrieved cases can be different from each other in many
circumstances, thus it classifies the results by integrating
the previous results and comparing them with the cut-off
point. At this stage, conventional CBR does not consider a
degree of the adjacency between them. For example, let us
represent the absence of disease as 0 and the presence of
disease as 1, and set the cut-off point as 0.5. If there are
two cases that have the integrated result 1 and 0.501, then
conventional CBR classifies both of them as the presence

bekim@kgsm.kaist.ac.kr

of disease even though their levels of consistency are very
different. This can increase the risk of misclassification for
the target cases adjacent to the cut-off point, since the
results of previous cases used to produce those results are
relatively ificonsistent with each other. In the previous
example, the result, 1 means every previous similar case
shows the presence of disease. On the other hand, the
result 0.501 means the number of previous neighbors that
have the presence of disease is slightly higher than the
number with the absence of disease. Thus, it seems
plausible to pay more attention to the cases placed near the
cut-off point for classifying the results.

In this article, we suggest a new interactive CBR model
called Grey-Zone Case Based Reasoning (GCBR) that can
make decisions paying additional attention to the cases
near the cut-off point by interactive communication with
users. GCBR classifies results automatically for the cases
placed outside the cut-off point boundary area. However, it
communicates with users for the cases placed inside of the
area by understanding characteristics of dataset. In order to
do this, we introduce the concept of certainty-percentage.
Certainty-percentage means the degree of consistency in
terms of how much the selected neighbors produce
consistent results. If every selected neighbor produces the
same results than the certainty-percentage of that result
becomes 100%; on the other hand, if there isn’t any
consistent result among the selected neighbors, then the
result is situated at the exact cut-off point and the
certainty- percentage becomes 0%.

The rest of this paper is organized into four chapters.
Chapter 2 presents the related research. Chapter 3
introduces the new interactive case based reasoning
method, called Grey-Zone Case Based Reasoning
(GCBR). Next, chapter 4 shows the prototype of GCBR.
Finally, a summary and concluding remark are presented
in chapter 5.
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2. Research Background
2.1 Case Based Reasoning

Case Based Reasoning (CBR) is an approach for solving a
new problem by remembering a previous similar situation
and by reusing information and knowledge of that
situation (Aamodt and Plaza, 1994). This concept assumes
that similar problems have similar solutions, so CBR is an
appropriate method for a practical domain focused on real
cases rather than on rules or knowledge to solve problems.
A general CBR cycle is described by the following four
processes by Aamodt and Plaza (1994).

1. RETRIEVE the most similar case or cases.

2. REUSE the information and knowledge in that case to
solve the problem.

3. REVISE the proposed solution.

4. RETAIN the parts of this experience likely to be useful
for future problem solving.

In the retrieve process, many CBR models retrieve
multiple similar neighbors rather then the single nearest
neighbor. The results of the retrieved neighbors can be
different from each other, thus CBR uses integrated results
considering the degree of similarity and the number of
neighbors. After that, it makes classification decisions by
comparing the integrated results with the cut-off point.
Figure 1 shows the procedure of the general CBR model.

Step 1. Begin with target case X(2).

Step 2. Seek the J neighboring cases X(t,) in the past which
are closest to X(#) according to the distance function:

di = d[X(1), Xt)]

Step 3.Compute the sum of weights:

Step 4. Determine the relative weight of the / o neighbor:
d ]

dTO T
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Step 5. Find the result O(t;) of each case X(t;) in the set of
neighbors.

Step 6. Calculate the result O® of the target case X(t) as
the weighted sum of results:

o) = iw,.O(t,.)

Step 7. Compare the result O() with the cut-off point
and decide classification result.

Figure 1. The procedure of general CBR using multiple
neighbors

One of the issues for using conventional CBR is how
many previously experienced cases to retrieve, since it can
strongly influence the performance of CBR. Generally
many CBR models use a fixed number of neighbors
without considering the optimal number for each target
case, thus it does not guarantee optimally similar
neighbors for various target cases. This leads to the
weakness of lowering the predictability due to deviation
from desired similar neighbors. Chun and Park (2005)
suggested a CBR model that adapts the optimal number of
neighbors for each target case, however they focus on the
number of neighbors rather than similarity. Park el al.
(2006) suggested a case extraction method called
Statistical CBR (SCBR) that retrieves the optimal number
of neighbors based on the probabilistic similarity. The
brief outline of SCBR can be summarized as follows (Park
et al., 2006).

¢ The Outline of SCBR

Step 1. Scale the data.

Step 2. Learn the distribution of distances using the
learning dataset.

Step 3. Find the optimal cut-off probability from the
learning dataset.

Step 4. Select the neighbors within the distance threshold
calculated from the obtained optimal cut-off probability
for the validation dataset from Step 2 and Step 3.

Step 5. Perform CBR using the selected neighbors and
calculate the result.

2.2 Interactive Case Based Reasoning

Interactive case-based reasoning (CBR) has been a topic of
interest since early 2000. Interactive CBR is an extension
of the CBR paradigm in which a user is actively involved
with the inferencing process (Aha et al, 2001). This
paradigm was initiated due to commercial requirements
rather than academic concerns, since reflecting user
opinions in the CBR models can produced more
customized results and gives more satisfaction to the users.
However, from an academic perspective, this makes it
difficult to evaluate the performance of interactive CBR
models because the performance can be changed by user
selection.

Although, there is a gap between academic interest and
commercial concerns, the necessity of practical use of
interactive CBR in the research area should not be
overlooked. There is some previous research on interactive
CBR. Mekenna and Smyth (2001) suggest an interactive
visualization tool for case-based reasoners. This approach
behind the CASECADE authoring system, which allows
case authors to interact with, and be guided by a model of
case competence through a variety of novel visualization
tools (Mekenna and Smyth, 2001). Leake and Wilson
(2001) do research on supporting aerospace design by
integrating a case-based design support framework with
interactive tools for capturing expert design knowledge
through “concept mapping”. They try to provide a useful
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design aid and develop general interactive techniques to
facilitate case acquisition and adaptation (Leake and
Wilson, 2001). In order to communicate with users, the
visualization tool or interface is essential for Interactive
CBR. Yang and Wu (2001) present the interactive
user-interface component of the CASEADVISOR system
that helps to compress a large case base into several small
ones. They achieve it by merging similar cases together
through a clustering algorithm (Yang and Wu, 2001).
Mchserry (2001) presents a prototype environment for
interactive CBR in sequential diagnosis, called CBR
Strategist, which is designed to meet the user-interface
requirements of intelligent systems for sequential
diagnosis (Mchserry, 2001). Aha (1998) tries to improve
retrieval efficiency without sacrificing retrieval precision
by dialogue inferencing in conversational CBR (Aha,
1998). There is some other previous research that focuses
on trying to communicate with users during CBR
processes (Goker, 2000; Jurisica, 2000; Simazu, 2001;
Aktas, 2004).

3. Grey-Zone Case Based Reasoning

In this chapter, we suggest a new interactive CBR method
called Grey-Zone Case Based Reasoning (GCBR) that
leaves the results of target cases placed in the cut-off point
boundary area “undecided” to let the user make decisions
individually though more analysis. We name this area a
“grey-zone” since it is in the middle of definite results,
white and black metaphorically, such as the presence and
absence of disease or good credit and bed credit.

CBR finds the results of target cases from the previous

similar neighbors. In some cases the results of neighbors
are consistent but in others they are not. The concept of
this paper is initiated from curiosity as to whether there is
any relationship between the consistency of the results and
classification accuracy. Intuitively, it seems plausible to
assume that the more consistent the results of the previous
neighbors are, the more accurate the classification results
of the target cases are. Then, whether the average
certainty-percentage of the correctly classified group is
higher than those of the misclassified group is also
questionable. Those questions are important, because if the
assumptions are true then the target cases near the cut-off
point should be treated more carefully.
In order to get the answers for these questions, we perform
preliminary analysis. The results of this analysis are
introduced in section 3.1. Based on this analysis we
structured the architecture of GCBR. The suggested
architecture of GCBR is introduced in section 3.2. Finally
we explain the algorithm of overall GCBR in section 3.3.

3.1 Preliminary Analysis
There are two assumptions we try to figure out. The first

assumption is that the certainty-percentages of the results
are positively correlated with classification accuracies. The

high certainty-percentage means many previous similar
cases support the result, thus the result seems more reliable
from the past viewpoint. In order to verify this assumption
we perform a  correlation analysis  between
certainty-percentage and accuracy. The second assumption
is that the average certainty-percentage of a correctly
classified group is higher then those of a misclassified
group. The reasoning behind this assumption is deductive.
In order to find out the answers for this, we divide the
results into two groups and execute a t-test.

In these experiments, we use diabetes dataset taken
from the UCI repository on machine learning (Blake &
Merz, 1998). The dataset were collected by the National
Institute of Diabetes and donated by V. Sigillito. The
dataset originally contained 768 cases and 9 attributes, but
we use 760 cases to construct 10 subsets of equal size. It
consists of 2 classes where 492 cases show the presence of
diabetes and 268 cases when it is absent. We use the first 8
attributes to diagnose diabetes and compare the results
with the final attribute.

3.1.1 Correlation between certainty-percentage and
accuracy

In this section we try to figure out the correlation between
certainty-percentage and accuracy. In order to do this, we
calculate accuracies using the cases that satisfy the
certainty-percentage’s upper boundary as it changes from
1% to 100%. For example, if the certainty-percentage limit
is 30% then the cases that have less certainty-percentage
than this limit can be used for calculating the accuracy.
Figure 2 shows the graphical depiction of the accuracy of
the cases that meet the limit of these certainty-percentages
for diabetes dataset.

After that, we perform correlation analysis to find out if
there is any relationship between certainty-percentage and
accuracy. Correlation analysis measures the degree of
association between two variables. We use Perarson’s
correlation coefficient value in this experiment, since it is
the most common measure that reflects the degree of the
linear relationship between two variables. It ranges from 1
to -1, which means perfectly positively correlated to
perfectly negatively correlated. Table 1 shows the results
of correlation analysis using diabetes datasets. The null
hypothesis is that there is no correlation between
certainty-percentage and accuracy. The result of this
analysis indicates that there is a strong positive correlation
between certainty-percentage and accuracy for diabetes
dataset, since the correlation coefficient over 0.6 is usually
regarded as a strong positive correlation.

Diabetes
Pearson correlation coefficient 0.92741
P-value <0001

Table 1. Overview of correlation analysis
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Figure 2. Accuracy of PCBR as the
certainty-percentage changes (Diabetes)

3.1.2 Comparison of a correctly classified group and a
misclassified group

The second assumption is the average certainty-percentage
of a correctly classified group is significantly higher than a
misclassified group. In order to verify this, we classify the
results into the correctly classified group and misclassified
group and then perform a two-sided t-test on unpaired
means with unknown variance. The null hypothesis is the
average certainty-percentages of the correctly classified
group and misclassified group are equal. Table 2 shows
the result of the t-test. It indicates that the average
certainty-percentage of the correctly classified group is
significantly higher than for diabetes dataset at the 95%
confidence interval. We also display the frequencies of
cases as they fall into each of the specified
certainty-percentage categories using a histogram to
provide get detailed information of the results. Figure 3
shows the histograms of the correctly classified groups and
Figure 4 shows the histogram of misclassified groups for
diabetes dataset using the statistical tool, eviews. The
X-axis of the histograms is certainty-percentage and the
Y-axis is frequency of cases. As you see in Figure 4, there
are more cases adjacent to O certainty percentage for
misclassified datasets. Conclusively, the average
certainty-percentage of a correctly classified group is
higher than the other and there are more cases near the
cut-off point.

Correctly classified group | Misclassified group
Obs. # 580 180
Mean 57.328 40.754
Std. Dev 30.709 30.824
T-result 5.11E-10

Table 2. Overview of each group and the t-test results

Figure 3. Histograms for diabetes
(Correctly classified group)

Figure 4. Histograms for diabetes
(Misclassified group)

3.2 The architecture of Grey-Zone CBR

Grey-Zone Case Based Reasoning (GCBR) leaves the
results of target cases near the cut-off point “undecided” to
let the user make decisions individually though additional
analysis. Then we have to determine the desirable
grey-zone. In order to make the decision, it is necessary to
consider both the user’s needs and the characteristics of
the datasets. The level of grey-zone means the degree of
analysis that the user has to do, thus it is necessary to find
out the costs that the user is willing to pay for setting the
grey-zone. Also, understanding the characteristics is
essential. The relationships between certainty-percentages
and accuracies are different according to each dataset as
we explained in section 3.1.

In this section, we explain the architecture of GCBR.
GCBR is the structure for the purpose of providing
effective information for users and making useful
recommendations then reflecting the user’s final decision
in the model.

The outline of GCBR is: First, provide the information
that helps user understand the characteristics of the dataset.
GCBR gives the information about the previous two
assumptions, that the certainty-percentage of the results is
positively correlated to classification accuracy and the
average certainty-percentage of the correctly classified

_ group is higher than the misclassified group. Second, the

user sets their recognized costs for each of the three cases
— correctly classified, misclassified, and undecided cases.
Third, GCBR suggests the grey-zone that minimizes the
total cost  using the following formula:

C, =¢C Xxn +C Xn +C Xn

tot correct correct wrong wrong grey grey

(c: cost of each case, n: the number in each case)
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Fourth, the user set the grey-zone in reference to the
information. Fifth, GCBR calculates the results and
classify them except for the cases placed in the grey-zone
area. The cases inside grey-zone area remain as
«undecided”. Sixth, GCBR supports the user in making the
appropriate decision for the cases inside grey-zone. In
order to support the user in this stage, GCBR gives the
information on which neighbors are used for the
“undecided” results and lets the user add or remove
neighbors. Seventh, the user makes the final decision.
Figure 5 describe the outline of SCBR and Figure 6 shows
the architecture of GCBR graphically.

Step 1. Provide information for the user to understand the
characteristics of the dataset.
- Give the information as to whether the
certainty-percentage of the results is correlated to
classification accuracy by Pearson’s correlation test.
- Give the information as to whether the average
certainty-percentage of the correctly classified group
is higher than the misclassified group by the t-test.

Step 2. Get the recognized costs of each of the three cases:
correctly classified, misclassified, and undecided
cases - from the user.

Step 3. Suggest the grey-zone for the user that minimizes
the total cost.

Step 4. Let the user set the grey-zone area.

Step 5. Caiculate the results and classify them except for
the cases placed in the grey-zone area.

Step 6. Support the user in making the appropriate
decision for the cases inside of grey-zone area.
- Provide the information on which neighbors are
used for the cases that are classified as “undecided”.
- Give the function that inserts or removes neighbors
for the “undecided” cases and recalculate the result to
support the user’s final decision.

Step7. Let the user make the final decisions for the
“undecided” cases.

Figure 5. The Outline of GCBR
3.3 The algorithm of Grey-Zone Case Based Reasoning

The algorithm of Grey-Zone CBR (GCBR) is described in
this section. In the first step, it interacts with the user to get
the suitable grey-zone for the situation. In order to do this,
it provides the histograms of certainty-percentage and
recommends the grey-zone area. In the second step, it
selects the neighboring cases in the learning dataset that
satisfies the optimal cut-off probability criterion and
calculates distances between neighbors and the target case.

1.Provide the information
User GCBR

2. Set costs for each case z )
@)
.!‘. ="t .
——

3.Recommend the grey-zone
4. Set the grey-zone area

5.Classify the results

6. Support users for grey-zone cases

l’? Make decision

Gray-Zone

0% 100%

Certainty-Percentage

Figure 6. The architecture of GCBR

We apply SCBR to find the optimal neighboring cases in
this stage. In the third step, it sums up the distances. In the
fourth step, it determines the relative weight of the
neighbor. In the fifth step, it sums up each weight into the
same output classes. If the number of output classes is ¢,
then the relative weight is summed up in ¢ kinds of classes.
In the sixth step, it selects the class that has the highest
sum of weight and calculates the certainty-percentage. If
the selected class is s, then the target case could be
classified as s, unless. the certainty-percentage is less then
the grey-zone area. In the seventh step, it separates the
cases inside the grey-zome area as “undecided” and
classifies the rest of the cases. Finally, it interacts with the
user and reflects the final decision of the user in GCBR. In
order to do this, it provides information on which
neighbors are used for the result of the target case
classified as “undecided”. It also provides an additional
function to add or remove neighbors and recalculates the
result to support the user’s decision. But the user makes
the final decision. The algorithm for the GCBR is
presented in Figure 7.

Step 1. Interact with the user and get the grey-zone set by
the user. Suggest the grey-zone that minimizes the

total cost c,,, however the final decision is made

by the user:
cml = ccorrect X noormcl + erong x nwrong + cgrey X ng"'-’y

(c: cost of each case, n: the number of each case)

Step 2. Seek the J neighboring cases x(z,) in the past

which are closest to the target case x(f) according
to the distance function. : d, = d[x(t,. ) x(t)]
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Step 3. Compute the sum of distances. : dyyy = ZJ: d
i=]

Step 4. Determine the relative weight of the i
neighbor. : W, = Jl ][1_ 4, ]

dTDT

Step 5. Sum up each weight w, that has the same

output class in w

class; ?°*?

w

class, *
(n: The total number of output classes)
Step 6. Identify the class that has the highest sum of

weights w,,,, and calculate the certainty-percentage
Lyen w100
n

p.: p = (wclass- n—1

Step 7. Separate the cases inside the grey-zone area as
“undecided” and classify the rest of the cases.

Step 8. Interact with the user and reflect the final
decision of the user in GCBR.

Figure 7. The algorithm of GCBR

4. Prototype of GCBR

In this chapter, the prototype of GCBR and how it works
are described. The prototype of GCBR is implemented by
JAVA. Figure 8 shows the initial interface of GCBR. The
user sets the size of training, validation and test datasets
then provides the information about the relationship
between certainty-percentage and accuracy to the user. The
screen providing this information is presented in Figure9.
After that, the user can either directly decide a cut-off
certainty-percentage or make the decision after simulating
how much cut-off certainty-percentage minimizes the total
cost in a given circumstance. If the “Simulation” button is
pushed in Figure 8, the new interface pops up like Figure
10. This interface helps the user to simulate the desirable
grey-zone in terms of cost concerns. GCBR gets the
information about the user’s recognized costs for each of
the three cases — correctly classified, misclassified, and
undecided cases and then suggests the desirable cut-off
certainty-percentage for the user for minimizing the total
cost in this state. Whether the user admits this suggestion
or not is up to her/him. After the user sets the degree of the
grey-zone and executes GCBR in Figure 10, the calculated
results for the test dataset are returned as in Figure 11.
However, the target cases less than the designated cut-off
certainty-percentage are not classified into any group, thus
the user has to make a decision for those cases. Finally,
GCBR pops up a new interface as in Figure 12 for helping
the user decide the result of the target cases classified as
“undecided”. The new interface gives the information on

which previous similar cases are retrieved for each
“undecided” target case and lets the user add the other
cases or remove the neighbors. Even though GCBR helps
the user by providing this function, the user makes the
final decision. The upper side of Figure 12 is for
supporting the user in making decisions and the bottom
side is for reflecting the user’s final decision to the result.

¢ Grey-Zone CBA
Grey-Zone CBR

Flle name: |E:‘WGCBRWDiabetes txt

Training % : (80% «~| v Ceoss Validation
Validation %: (10% ~
Testing% : 10% <!

Simulation |

Cut-off Certainty %: 33 %

Execute Stop

Copyright(2008) Yoon-Joo Park

Figure 8. Initial interface of GCBR

I Coflminty Dorcenitefia & Accuracy

Correistion bstween Cartainty-Percentage and Accuracy

Miscia3smed Group |

Hypethsis: The certainty-parcentages of both greups are the same
ROUIT REJICT U0 PulT RYPOTNEsss a7 U P3% COnfiaance intorval
P-Vaiue: 2.8021156-10)

Figure 9. Providing information to for the user

¢ GCHBR Suggestion S

GCBR Suggestion

Cost of each case
Correct Wrong: Undecided = |0 3

[Cakuiste] Reset

Suggested Cur-off Certainty % is 33%

Figure 10. Interaction with the user concerning the cost
of each case
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between certainty-percentage and accuracy. Also we
perform the t-test to verify that the average

certainty-percentage of the correctly classified group is

PR o significantly different from those of the misclassified

Gt ety Portanlage 3% group using diabetes dataset. Through these analyses, we
identify that the validity of the assumptions for the dataset.
GCBR is constructed based on these analyses. GCBR
provides users with effective information for helping make

. Es1 Bl S Gowsang decisions, understanding the user’s needs and reflecting

eE ol S ioer O s the user’s opinion in the model. We introduce the

BEG Abeenice 10006 nEente Curresl . . R

o Busenca  ae0rn Avsence ot architecture of GCBR that provides more deliberate and

BES Ahewne 1707% Ahsence Coarrert Grey-zong . .

i v i s o i customized results to users and we also implement the

[0} n.99% Prasents wWreng Grey-Zone prototype in this Study.

[ B0 2% Absence Corect . . .

P 2400%  mnsencs  Comet  GreyZone We expect that this effort will help increase

1ok Por Nae e el classification accuracy for the cases adjacent to the cut-off

865 20w chonn ol point and encourage the practical use of CBR in many real

(347 15 075% hEenie Y- 20N, .

l?',: EEREDS Ausence life areas. ~

648 156 06% Anzente

gay 81 35% ADLENCE

TG0 mns Ahgene Correl

0 s ADLETICE frorrect

PG Apygente A351% Pragente Wrong Grey-Zone

e Ahsence 1615'% Prosence Wiong Grav-Zong

iGe ahgente 26.06% Frzaence Vrong Crev-Zong

705 Ehsence 44 10 ADEENCE Corect

ica Absence 8§.20% Freaenta YWrong GrewZoane

767 Alsence 33 35 ADcEnce Corect

You can see more detalied results at dyoon\paper vesultl

Figure 11. Result summary of GCBR

ﬁrﬁ?i :Peﬁi'slm

Decision for Grey-Zone

Heighboring Cases Other Cases
Undecided Cases Case 92 A ond [Cosed -
i
¢ retrieves  [Case 275 Case 3
ane 00 =i Case 18 i |cases
e
Case 23 i [CaseB
Case 17 » Case 7 v

[Runl Reset| Export |

»> Tha resuit of case 688 using CBR: Absance

Decislex Presence «

Update | Exit

Figure 12. Interface for the undecided cases

S. SUMMARY AND CONCLUSIONS

This article suggests a new interactive CBR model! called
Grey-Zone Case Based Reasoning (GCBR) that can make
a decision considering the cases near the cut-off point by
interactive communication with users. GCBR classifies
results automatically for the cases outside of the
grey-zone; however it communicates with users to make a
decision for the cases inside of the grey-zone by ensuring
users understands that the characteristics the dataset and
reflects the user’s opinion.

In order to make an effective GCBR model we perform
preliminary statistical analysis to figure out the correlation
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