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Abstract—This paper presents a hybrid flash file system (HFFS) based on both

NOR flash and NAND flash memory. In a conventional NAND flash-based flash file

system, there is a trade-off between life span and durability in the frequent writing

of small amounts of data. Because NAND flash supports only a page-level I/O, at

least one page is wasted in the synchronous writing of small amounts of data. The

wasting of pages reduces the utilization and life span of the NAND flash. To

alleviate the utilization problem, some NAND flash-based flash file systems write

small amounts of data asynchronously with RAM buffers, though buffering in RAM

decreases the durability of the system. Our HFFS eliminates the trade-off between

life span and durability. It synchronously stores data as a log in the NOR flash,

whenever we append small amounts of data to a file. The merged logs are then

flushed to the NAND flash in a page-aligned fashion. The implementation of our

HFFS is based on our previous NAND flash-based file system, called CFFS [1].

The experimental results reveal that our HFFS provides a longer life span than a

conventional NAND flash-based synchronous flash file system with a similar level

of durability.

Index Terms—Storage management, file system management, NOR flash,

NAND flash, embedded device.
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1 INTRODUCTION

THERE are two types of flash memory: NOR flash and NAND flash.
Both types of flash memory are widely used as a storage medium
of embedded systems such as sensor devices, mobile devices, and
event data recorders because they provide affordable capacity,
shock resistance, and low power consumption.

The two types are distinctive in terms of density, performance,

and operating characteristic [2], [3]. The density of the NAND flash

is much greater than that of the NOR flash. In terms of

performance, both types are comparable except with regard to

the erase time. The erase time of the NOR flash (around 0.7 second)

is 350 times longer than the one of the NAND flash (2 ms).

However, the NOR flash supports byte-addressable access, but the

NAND flash does not. The NOR flash is usually used in a system

that needs to boot out of flash, execute code from flash, and store

only small amounts of data because it supports byte-addressable

operations and a fast read speed. Furthermore, because the NAND

flash provides a higher capacity and a faster write speed than the

NOR flash, the NAND flash is widely used for data storage

applications.
However, the NAND flash can be read or programmed only in

the unit of a page (512 bytes or 2 Kbytes). Once a page is

programmed, it cannot be overwritten before being erased.

Hence, at least one page is consumed for writing even small

amounts of data.
In embedded systems, the major file operations are the

updating or appending of small amounts of data, yet most of the

capacity is occupied by large files. For instance, sensor devices or

an event data recorder [4], [5], [6] periodically collect a few bytes of

sensed data, but store large amounts of historic data over long

periods. In a mobile phone, small records such as text messages

and an address book are updated sporadically, while compara-

tively large images and media files occupy most of the storage

area. Other embedded systems, such as manufacturing systems,

frequently update configuration files and parameters and maintain

a large log of the system’s status.
A typical design of the storage system in a sensor or embedded

device is shown in Fig. 1. As shown in Fig. 1a, the first generation

of the devices was equipped only with the NOR flash. NOR flash

provides one storage region for the codes and another for the data.

However, as the collected data accumulates, a greater storage

capacity is required. The NAND flash is therefore applied to the

devices. Recent devices, as shown in Fig. 1b, combine the NOR

flash with the NAND flash. Because of its unique characteristics,

the NOR flash is generally used for storing boot codes because it

supports execution in-place. The NAND flash, on the other hand,

is used for storing the collected event data. However, because of

the page-based I/O nature of a NAND flash, applications that

frequently update records that are much smaller than the size of a

page of a NAND flash greatly reduce the utilization of the

medium. Moreover, low utilization deteriorates the life span of

flash memory.
To alleviate the low-utilization problem in a NAND flash-based

file system, small amounts of data are written asynchronously after

being merged in a RAM buffer. The asynchronous writing

prolongs the life span but degrades the durability because it

increases the possibility of data being lost in a crash. Because

embedded systems are likely to suffer from uncertain power

outages, data durability and reliability are critical features of those

systems.
As shown in Fig. 1c, nonvolatile RAM, such as a battery backed-

up SRAM (BBSRAM) [7], can then be used to merge the small

amount of data while ensuring durability. However, it is a pseudo-

nonvolatile RAM that needs to be continuously recharged in order

to ensure data retention. In addition, because of the presence of the

battery, the BBSRAM has numerous weaknesses in terms of cost,

humidity, shock, vibration, space, and maintenance.
We propose a hybrid flash file system (HFFS) which combines

both types of flash memory in the file system layer for reliable and

durable embedded systems like Fig. 1d. The HFFS synchronously

stores a small amount of data as a log in the NOR flash because the

NOR flash is byte addressable. When the NOR flash logs enough

data to fill a page of NAND flash, the data are merged and copied

in the NAND flash. The HFFS therefore does not generate

excessive garbage in the NAND flash in the synchronous

appending of a small amount of data. Our HFFS also provides a

single combined partition for applications without distinguishing

between the NOR flash and the NAND flash. Hence, the HFFS

simplifies applications in the use of both the NOR flash and the

NAND flash.
Our HFFS eliminates the trade-off between life span and

durability; it provides the same level of durability as a conven-

tional synchronous NAND flash-based flash file system but also

supports a prolonged life span.
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2 BACKGROUND AND RELATED WORKS

In this section, we present a brief overview of flash memory
constraints and previous works on flash-based storage systems.

2.1 Flash Memory Constraints

Flash memory has three physical constraints. The first constraint is
a constraint in which an in-place update is not allowed because
any written areas should be erased before they can be repro-
grammed. Out-of-place updates are responsible for most of the

constraints in the design of flash filing systems. The second
constraint is a size problem in which the size of the erase unit is
much larger than that of a program unit. The erase unit is called an
erase block. In a recent flash chip, the size of an erase block is
128 Kbytes, whereas the write unit is a word or a page of 2 Kbytes.
Thus, live data and obsolete data may exist in an erase block. A

cleaning operation like garbage collection is then required to move
the live data into a free erase block before the erasure. The third
constraint is the limited life span of an erase block due to the
number of erase counts. Usually 100,000 erase cycles are
guaranteed for each erase block. The erase cycles should be even
throughout all of the erase blocks in order to level the wear of the

erase blocks.

2.2 Flash-Based Storage System

Many works have focused on efficient flash-based storage systems
and they can be classified into two main strategies. The first
strategy involves the creation of a virtual block device layer, called
a flash translation layer [8], between a legacy file system and flash
chips. The flash translation layer hides the flash memory
constraints from the legacy file system. The other strategy is to

implement a flash-aware file system which is designed specifically
for direct use on flash chips without translation layers. The flash-
aware file system, which differs from legacy file systems, should be
aware of the flash properties of out-of-place updates.

Many small embedded devices in a ubiquitous sensor network
are equipped with flash memories and flash-aware file systems.
The ELF [9], MicroHash [10], and TINX [11] systems are designed
to store sensed data in the NAND flash of sensor devices. The most
important design constraints are a small memory requirement and
low power consumption.

In addition, the JFFS2 [12] and YAFFS [13] systems were
designed for general embedded systems equipped with several
megabytes of NAND flash. These designs, which are based on a
traditional log structured file system [14], can perform out-of-place

updates and cleaning. However, the JFFS2 and YAFFS systems were
designed for small flash memory of less than several megabytes. For
these systems, the entire flash medium should be scanned at the
mounting time. Moreover, because the scanning time is propor-
tional to the size of the flash memory, the time required for
mounting a large flash memory would be intolerable. Another

consideration is the fact that every file abstraction and data
structures for resource management should always be loaded into
the RAM. In terms of mounting time and memory requirements, the

previous JFFS2 and YAFFS systems are not scalable. In JFFS2,

most of the NAND flash area should be scanned to load file

system-specific data structures in the RAM. However, YAFFS

scans the entire spare region for loading file system structures and

part of the data regions that contain metadata. To alleviate the

scalability problem for large flash memories, researchers on CFFS

[1] and JFFS3 [15] have proposed a reduction in the scanning time

and memory requirements.
However, the previous NAND flash-based flash file systems

failed to consider the durability and life span of frequent small

updates and there was a trade-off between durability and the life

span. For a durable system, the file system should be mounted as a

synchronous mode, resulting in the wasting of a single page of the

NAND flash for the writing of even a small amount of data.

Asynchronous writing, on the other hand, sacrifices data durability.

3 NOR AND NAND FLASH-BASED HYBRID FLASH FILE

SYSTEM

In this section, we describe the architecture, data structures, and

operations of our proposed HFFS. We also present an analysis of

the life span and the threshold size that determines whether data is

logged to the NOR flash or stored in NAND flash. Finally, we

discuss performance issues with respect to the shortcomings of the

NOR flash.

3.1 Architecture

Fig. 2 shows how the HFFS uses both types of flash memory as a

storage medium. First, NAND flash consists of multiple erase

blocks, which are the unit of the erase operations. Each erase block

contains a fixed number of pages, which are the unit of I/O

operation. A page is a basic allocation unit and each page may

contain file data or metadata. Second, the NOR flash also consists

of multiple erase blocks and each erase block has multiple log

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008 1003

Fig. 1. Storage alternatives for embedded devices: (a) Only NOR flash, (b) NOR flash and NAND flash for storing codes and data, (c) NAND flash with a nonvolatile RAM,

and (d) proposed hybrid architecture in which logs of small updates are stored in the NOR flash and others are stored in the NAND flash.

Fig. 2. The architecture of a hybrid flash file system (HFFS).



blocks. A log block, which is reserved for a file and contains
multiple variable-sized logs that correspond to the file, is a basic
allocation unit for the NOR flash. The size of the log block is
defined when the file system is created.

There are two resource management modules for both types of
flash memory. The resource management covers the management
of erase blocks, garbage collection, and the allocation of free pages
or log blocks.

Other than these two resource management modules for both
types of flash memory, there is a file management module. For
each file, there are three corresponding types of data: metadata, file
data, and logs. The file management module should maintain the
metadata, file data, and logs of each file.

The file metadata is stored in the NAND flash, but the file data
can be written in either the NAND flash or the NOR flash. When
the file data is small enough, it is transformed to a log and the log
is written in the NOR flash. Otherwise, the file data is written in
the NAND flash.

3.2 Data Structures

The data structures of the HFFS are based on a previous NAND
flash-based file system, the CFFS [1]. The CFFS inherited the data
structures of NAND flash, though we designed the log-related
data structures of the NOR flash for our proposed system. Fig. 3
shows the data structures of the RAM, NOR flash, and NAND
flash; the arrow lines highlight the relations between each of the
data structures.

Each file abstraction has pointers to a file map and a log map.
The file map maintains addresses to physical pages of data in the
NAND flash. The log map keeps track of logs that are written in
the NOR flash. Furthermore, each file has corresponding metadata
in the NAND flash and the page address of the metadata is kept in
the file abstraction. The metadata page contains the name, size, and
other attributes of the file. The file abstraction and the file map are
constructed in the RAM at the mount time, as with the CFFS.
However, the log map is constructed in the RAM upon the first
access by scanning the corresponding log block.

The layout of a log block is shown at the bottom of Fig. 3. The

log block header leads and the multiple logs follow. The log block

header includes a serial number, a file ID, and a status field. As a

means of resolving ambiguity between an old log block and a new

log block, the serial number is incremented whenever a log block is

allocated. The status field is needed to identify the status of a log

block. A log consists of a log header and log data. The log header

consists of the size of the log and the file offset that describes the

position of the log in the file. Fig. 4a shows the data structures of a

log header and a log block header.
The log map describes the log block and maintains a list of logs

with the two data structures shown in Fig. 4b, namely, a log block

descriptor and a log descriptor. The log block descriptor contains

the total log length and fullness of the log block. In addition, each

log descriptor has the log’s size, file offset, and location inside the

log block.
When a small amount of data is first appended to a file, an

empty log block is allocated to the file. At that time, a log map is

created in the RAM with a log list that includes the new log. A

subsequent small amount of data is subsequently appended to the

tail of the log block as a form of log. Furthermore, the

corresponding log descriptor is appended to the tail of the log

list of the log map. When the log block is filled with enough logs,

every log is flushed to the NAND flash and the corresponding log

descriptors are freed from the RAM.

3.3 File Operations

File operations normally follow the same process as in the previous

implementation of the CFFS so that access is directed just to the

NAND flash. However, when a file is associated with logs, the

operations become slightly complex. The file operations are

described in the following.

3.3.1 Reading a File

Fig. 5 gives a description of the flow of a read operation. When a

file is first accessed, the file’s metadata is read as a means of

checking whether the file has logs in the NOR flash. If the log block

address in the metadata is invalid, the file does not have logs in the

NOR flash and the read operation is subsequently directed to the

NAND flash. On the other hand, if the file has logs in the NOR

flash, the log block is scanned and the corresponding log map is

loaded in the RAM before the data or attributes of the file are read.

Because a log header contains the length of the following log data,

we can locate the next log header. Furthermore, by reading all of

the log headers, we can construct a log map that is a doubly linked

list of log descriptors. When the log map is completely loaded in

the RAM, the requested read operation is serviced by the reading

of logs that are described in the linked list of logs.
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Fig. 3. Data structures in the RAM, NOR flash, and NAND flash.

Fig. 4. Main data structures used in our HFFS: (a) Data structures of a log block

header and a log header and (b) data structures for a log map.



3.3.2 Appending a Small Amount of Data to a File

Fig. 6 shows the flow of a write operation. When an application

appends a small amount of data to a file, the size of the data is

checked first. Only data that is smaller than a predetermined

threshold is stored as a log in the NOR flash; larger amounts of

data are stored in the NAND flash. The threshold of the data size

was determined by using life span analysis, as explained in

Section 3.3.5.
To write file data as a log, we need to check if the log block

address in the metadata is valid. If the log block address is invalid,

the file does not have logs in the NOR flash; hence, a new empty

log block is allocated to the file and a new log map is constructed in

the RAM.
If the log block address is valid, the file has logs in the NOR

flash; hence, the log block should be scanned and the correspond-

ing log map should be loaded in the RAM before the data is

appended.
Finally, the new data is appended at the tail of the log block, a

new descriptor of the log is appended to the log map in the RAM,

and the file metadata is updated with an address of the newly

allocated log block.
However, while appending logs, the log block grows and is

filled with logs. When the log block is filled with enough logs, all

of the logs in the log block are transferred to data pages of the

NAND flash. We refer to this job as flushing. The flushing job

includes the loading of file data from the log block to RAM, the

allocation of free data pages in the NAND flash, the writing of

loaded file data to the NAND flash, and the making of an obsolete

mark for the flushed log block. The log block eventually becomes

obsolete and can be erased later.

3.3.3 Cleaning Obsolete Erase Blocks

An obsolete erase block of the NOR flash should be erased at the

proper time before it is needed. Given that a block erase time of the

NOR flash is around 0.7 second, we could not perform the block

erase operation synchronously to support real-time capability.

Instead, we run a cleaning thread in the background. Whenever

the cleaning thread finds an obsolete erase block, it performs an

erase operation on the obsolete block. However, the read or write

requests are capable of preempting the cleaning thread. When an

erase operation is in progress, the erase operation can be

suspended to perform a read or write operation and the erase

operation will be resumed later.

3.3.4 Ensuring Consistency and Recovering from a Crash

Our HFFS synchronously writes the log in the NOR and atomically

flushes the merged logs in the NAND; thus, there is no consistency

problem between logs in the NOR and data in the NAND. Even if

two different threads try to access a single file, the writing
operation of one thread is completed before the other thread

accesses it. However, if a file system crashes before completing the

writing of a log in the NOR, the current design of the HFFS may
cause a data consistency problem, where the log header is written

well, but the log data contains some dummy data. In order to

remedy the above consistency problem, a commit mark can be
written at the end of the log data.

When a file system is remounted after a crash, a recovery

operation is needed to return it to a consistent state. The status flag of
one byte in the log block header is used for recovery, which indicates

the status of the corresponding logblock: free (0xFF), allocated (0xFC),

flushing (0xF0), and flushed (0xC0). This multiple programming is
possible in the NOR flash because the programming operation can

change each bit from a 1 to a 0. The status flag will be changed from

0xFF to 0xC0 sequentially. When a file system is remounted, the
NOR flash is scanned and each status flag of the logblocks is read.

When the status indicates free or flushed, then the logblock was

completely flushed or erased; thus, there is nothing to do. However,

if the status indicates allocated or flushing, then the file system has
crashed during logging in the logblock or flushing the logblock. In

these cases, the log data will be loaded and merged in the RAM and

the merged log data will be flushed in the NAND flash. Even though
the logblock is partially flushed, the previously flushed pages in the

NAND will be ignored. In this manner, our HFFS provides atomicity

in flushing the merged logs in the NAND flash.

3.4 Analysis of the Life Span of NOR and NAND Flash

To determine the threshold size of a log, we performed an analysis

of the life spans of the NOR flash and NAND flash. Because one of

our goals is to prolong life span, we determined the expected life
spans of both the conventional NAND flash-based file system and

our proposed HFFS.
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Fig. 5. The flow of a read operation.

Fig. 6. The flow of a write operation.



Let Lh be the life span of our HFFS, which is the time until the

NOR or the NAND flash totally wear. The Lh is equal to the
smallest life span between both types of flash memory,
minðLnorh ; Lnandh Þ, where Lnorh and Lnandh are the life span for the

NOR flash and NAND flash, respectively.
The parameters Snor, Snand, and Spage present the size of the

NOR flash, the size of the NAND flash, and a page of the NAND
flash. Let Sld be the size of a log data for each update. The
parameter Slh is the size of a log header that includes a log length

and an offset and Elim is the erase cycle limit for an erase block.
Let us assume that there are only periodic small updates in the

file system with a frequency of f . In addition, both flashes are
assumed to have perfect wear leveling. If Rnor

h is the average rate of
updates in the NOR flash (bytes per second), the life span of the

NOR flash will be ðSnor � ElimÞ=Rnor
h . Since ðSld þ SlhÞ bytes of data

are synchronously written with the frequency f , the rate Rnor
h is

equal to ðSld þ SlhÞ � f and the life span of the NOR flash can be

expressed as follows:

Lnorh ¼ Snor � Elim

Rnor
h

¼ Snor �Elim

ðSld þ SlhÞ � f
: ð1Þ

Similarly, Rnand
h , the average rate of updates in the NAND flash,

will be Sld � f since the merged log data is written asynchronously.

The life spans of the NAND flash can then be expressed as follows:

Lnandh ¼ Snand �Elim

Rnand
h

¼ Snand � Elim

Sld � f
: ð2Þ

If Snand is much larger than Snor, Lh is close to Lnorh .
If we let Lc be the life span of the conventional NAND flash-

based file system, Lc is expressed as follows:

Lc ¼
Snand � Elim

Spage � f
ð3Þ

because at least one page is consumed even for small updates.
For the HFFS to have a longer life span than the conventional

file system, Lh should be larger than Lc. That is,

Lh � Lnorh ¼ Snor �Elim

Sld þ Slh � f
>
Snand � Elim

Spage � f
¼ Lc: ð4Þ

The size of a log data, Sld, then becomes

Sld <
Snor
Snand

� Spage � Slh: ð5Þ

Therefore, to prevent the NOR flash of the HFFS from being
worn out sooner than the NAND flash of a conventional flash file
system, only data that is sufficiently small to meet (5) should be

stored as logs. For instance, when we are given a NAND flash of
128 Mbytes (with 2 Kbytes pages) and a NOR flash of 4 Mbytes, the
amount of data should be less than 58 bytes because each log

header includes 6 bytes. Hence, only data that totals less than
58 bytes can be stored in NOR flash. Any other data that is larger

than 58 bytes is stored in the NAND flash, as with a conventional
NAND flash-based file system.

3.5 Performance Issues

The NOR flash has faster access but a much slower write and erase
time than the NAND flash. We discuss the performance short-

comings of the NOR flash in terms of the erase latency, the write
latency, the flushing time, and the wear leveling.

3.5.1 Erase Latency

The NOR flash has a much logner erase time than the NAND flash.

Erasing one block of 64 Kbytes takes around 0.7 second in a typical
NOR flash [3] but 2 milliseconds in a recent NAND flash [2]. The

very long erasing time greatly reduces the write throughput and
the real-time performance of the NOR flash.

However, we can hide the long erase delay by running a
cleaning thread in the background. Recent flash chips support two
advanced features to provide preemptiveness of an erase opera-
tion, namely, the erase suspend/resume feature and the simultaneous
read/write feature [16].

Use of the erase suspend/resume enables an erase operation to be
interrupted and paused so that data can be accessed from a block
that is not being erased. When a read or a write request interrupts
an erase operation, the erase operation is suspended until the
request is serviced completely. However, although the erase
suspend/resume provides the preemptiveness of an erase operation,
it increases the total erase time. To erase a block, a flash memory
issues a number of erase pulses. When an erase operation is
suspended, any incomplete erase pulses should be restarted. The
erase suspend/resume feature slightly reduces the erase efficiency
and increases the erase time.

Flash chips with a simultaneous read/write feature enable a read
operation to occur while an erase or program operation is being
executed. As a result, the erase time is not prolonged. However,
this feature does not enable simultaneous erasing and program-
ming; hence, a program operation is incapable of preempting an
erase operation.

3.5.2 Write Latency

Generally speaking, the write latency of NOR flash is longer than
that of NAND flash, but it depends on the size of the written data.
Because NOR flash is byte addressable, the write latency is linearly
proportional to the size of the written data. However, the fixed
time for programming one page elapses whenever a small amount
of data is written in the NAND flash. For instance, the time taken
to write one word (2 bytes) is almost the same as the time taken to
write one page (2 Kbytes) in the NAND flash. The write latencies
for writing data of less than 32 bytes are comparable in both types
of flash memory.

3.5.3 Flushing

The flushing process blocks other read or write requests until it is
completed because the flushing should be performed atomically
for consistency. The delay depends on the size of a log block. As a
log block becomes larger, the flushing is deferred further and the
flushing delay is prolonged.

Let Tf be the time taken for the flushing. Because flushing
consists of reading a log block from the NOR flash and writing
merged data to the NAND flash,

Tf ¼ trnorlb þ twnandp �Np; ð6Þ

where trnorlb is the time taken to read a log block from the NOR

flash, twnandp is the time taken to write a page in the NAND flash,

and Np is the number of pages to be written in the NAND flash.
Since Np ¼ d Sld

SldþSlh � Slb=Spagee,

Tf ¼ trnorbyte � Slb þ twnandp � Sld
Sld þ Slh

� Slb
Spage

� �
: ð7Þ

As described in (7), the flushing delay is mainly proportional to
the size of a log block. For instance, it takes 13.7 milliseconds to
flush a log block of 64 Kbytes, which contains logs of 16 bytes and
log headers of 6 bytes. Therefore, the size of a log block should be
carefully chosen in order to meet a given real-time system
requirement.

3.5.4 Wear-Leveling Effect

In our HFFS, every small item of data is sequentially logged in the
NOR flash just until it is flushed to the NAND flash. Thus, a
complex wear-leveling scheme is unnecessary for the NOR flash.
Instead, we allocated an empty erase block in a sequential order,
thereby enabling the wear of the erase blocks to be leveled
naturally. Furthermore, the HFFS provides a better garbage
collection performance of the NAND flash than a conventional
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flash file system, which generates excessive garbage while
synchronously appending frequent small amount of data.

4 EVALUATION

We used Linux 2.6 to implement our CFFS-based HFFS. Even
though our CFFS outperforms the conventional NAND flash-based
file system such as the YAFFS in the aspect of scalability, the
schemes of writing small amounts of data are similar to each other;
both of them showed similar results in the following experiments.
Thus, we compared the results of HFFS with those of the YAFFS,
which is more popular.

Both types of flash memory are emulated in the RAM regions.
We used nandsim and mtdram [17] for the NAND and the NOR
emulation, respectively. In addition, as shown in Table 1, we
modeled delay factors in our emulated flash chips based on the
datasheets of real chips [2], [3]. The emulated memories sleep
during the requested operations, enabling us to measure the I/O
performance. Furthermore, our emulated memories are modified
to be capable of counting the number of erase operations on each
block. Hence, we can measure the wear of the erase blocks.

We synthesized two workloads of an automotive black box [6]
and a mobile phone. First, the automotive black box periodically
records event data such as velocity, engine speed, and wheel
positions, which is very useful for future reference after a collision.
Our synthesized workload collects event data of 16 bytes every
10 milliseconds and synchronously appends the data to a file.
Second, the daily usages of a mobile phone are simulated. It
appends 16 bytes of entries to three files for the last dialed
numbers, received calls, and missed calls. In addition, two message
files with variable-length messages, ranging from 16 to 96 bytes,
are stored for incoming and outgoing messages. During the
simulation of 1,000 days, the phone receives and sends 20 messages
per day, receives 20 and dials 20 calls, misses five calls, and
cumulates 64 Mbytes of media files.

The life span of our HFFS is measured and compared with that
of the YAFFS. We also introduce a flash utilization to see how
much excessive garbage is reduced. Next, we discuss durability
issues. In addition, we measured the write performance to see if
the HFFS overcomes the performance shortcomings of NOR flash
and we compared the wear leveling performance between our
HFFS and the YAFFS.

4.1 Life Span

To measure the life span of our HFFS and the YAFFS, we
configured the synchronous mode of the YAFFS to synchronously
write data to the NAND flash, thereby ensuring that both systems
had the same level of data durability.

The erase cycle limit is reduced to 50 cycles for both emulated
flash memories because it would take years to complete the
experiment with 100,000 erase cycles. However, 50 cycles seems to
be adequate for comparing relative results.

In the automotive black box workload, our HFFS lives four times
longer than the YAFFS, as shown in Fig. 7. The life span is around
9 hours for YAFFS with only NAND flash but around 36 hours in the
HFFS. When we set the erase cycle limit at 100,000 cycles, the life
span is only two years (18,000 hours) for the YAFFS, but 8 years
in the HFFS.

4.2 Excessive Garbage Reduction

In order to see how much excessive garbage is generated, we
introduce a new metric called a flash utilization Uf , which is
The size of total written data

The size of total programmed area . Thus, the greater Uf means that less
excessive garbage is generated. In Table 2, the flash utilizations are
listed for the YAFFS under synchronous mode, the YAFFS under
asynchronous mode, and our HFFS, when we simulated a mobile
phone workload. The size of total written bytes is 70.25 Mbytes in
three systems, but the sizes of the total programmed areas are
largely different. The YAFFS under synchronous mode pro-
grammed over 330 Mbytes, including the copying of the valid
pages for garbage collection; however, the YAFFS under asyn-
chronous mode programmed only around 72 Mbytes because
small updates are merged in the RAM. Our HFFS programmed
around 72 Mbytes in the NAND flash and around 4 Mbytes in the
NOR flash. In our HFFS, small updates are merged in the NOR
flash and they are flushed in the NAND flash again; therefore, the
writing of a small amount of data is duplicated in the NOR and
NAND. The Uf of our HFFS is slightly less but is close to that of the
YAFFS under asynchronous mode.

4.3 Durability

We compared how long the data resides in the RAM before being
written in the NAND flash. First, we configured the asynchronous
mode of the YAFFS to buffer a small amount of data in the RAM.
We then made a buffer of 2 Kbytes, which is the size of a NAND
page. When the buffered data reached 2 Kbytes, the data were
subsequently flushed to the NAND flash. Note that the buffer
delay is related to the data writing rate and the size of each datum.
For example, any written data can reside in a volatile RAM for up
to two seconds in an automotive black box application that writes
16 bytes of sensed data every 10 milliseconds. Thus, data acquired
in two seconds is likely to be lost if the system suffers an
unexpected power outage. The loss of data for that two seconds
will be critical in systems that require high reliability, such as an
automotive black box or an accounting system. Our HFFS, on the
other hand, synchronously writes any small amount data in the
nonvolatile flash memory and the data can be recovered in the
event of an unexpected power outage.

4.4 Write Latency

Fig. 8 shows the write latencies as the system continues to append
16 bytes to a file. We ran the YAFFS in a synchronous mode. In the
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TABLE 1
Experimental Setup for the Emulation of NOR and NAND Flash

Fig. 7. Percentage of retired erase blocks when appending a log of 16 bytes every

10 ms.

TABLE 2
Flash Utilization (PBnand and PBnor Are the Total Programmed Bytes

in the NAND and NOR Flash)



YAFFS, the garbage collection is triggered to perform frequently
because small appendages frequently generate garbage. Each
garbage collection process takes 4 milliseconds.

In most instances, the write latencies of the HFFS are smaller
than those of the YAFFS. The HFFS merges a small amount of data
and stores the merged data in the NAND flash in a page-aligned
manner; thus, small appendages do not generate any garbage.
Hence, we could not observe any delay due to garbage collection.
However, as shown in Fig. 8b, we observed the longest delay when
the log block was as large as 64 Kbytes. This delay is caused by a
prolonged flushing job whereby a considerable amount of
appended data is copied from the NOR flash to the NAND flash.
To minimize the delay, we should limit the size of a log block,
which is the unit of a flushing job. When we set the log block size
to 32 Kbytes, as shown in Fig. 8c, the worst-case delay was reduced
to around 7 milliseconds.

4.5 Wear Leveling Effect

To see the wear leveling performance, we increased the erase cycle
limit to 100,000 cycles. We then expanded a file by appending
16 bytes for each sample until the size of the file reached 64 Mbytes,
which is half of the NAND flash size. Because of the problem of
excessive garbage, the YAFFS performs many garbage collection
operations. As shown in Fig. 9, the erase cycles in the NAND flash
range from 62 to 176.

The HFFS does not generate garbage because it merges a small
amount of data in the NOR flash. The erase count of the NAND
flash is at most one cycle over the whole erase blocks, whereas the
erase count of the NOR flash is less than 50 cycles. Moreover, the
wear level is distributed evenly over all of the erase blocks in both
the NOR flash and the NAND flash.

5 CONCLUSION

We designed and implemented HFFS based on NOR flash and
NAND flash. In a conventional NAND flash-based flash file
system, there is a trade-off between the life span and durability.
Because NAND flash supports only a page-level I/O, a single page
of 2 Kbytes is required in order to synchronously write a small
amount of data.

Our HFFS prolongs the life span and enhances the durability of
written data more effectively than conventional NAND flash-based
file systems. When we append a small amount of data to a file, the
data are synchronously stored as a log in the NOR flash. The merged
logs are then flushed to the NAND flash in a page-aligned fashion.

By doing this, we avoid data loss in the event of an unexpected
power outage. Furthermore, by increasing the utilization of
NAND flash, we can prolong the life span than a conventional
NAND flash-based file system. Finally, the HFFS provides a single
combined partition to facilitate its usage in applications.
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Fig. 8. Write delays of writing 16 bytes per each sample: (a) YAFFS, (b) HFFS with
the 64-Kbytes NOR log block, (c) HFFS with the 32-Kbytes NOR log block, and
(d) HFFS with the 8-Kbytes NOR log block.

Fig. 9. Erase counts over erase blocks of NOR and NAND flash (EBN is the erase

block number).
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