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ABSTRACT 

Recently, a disk type integrated motor-bearing system using Lorentz force design principle has been 
developed in the laboratory. It is composed mainly of a stator with six windings and two rotor disks of 
eight-pole permanent magnets. One of the disadvantages of the Lorentz force type integrated motor-
bearing system is that it requires an angular position sensor to perform commutation between the torque 
control current and the angular position of the rotor. 

In this paper, an angular self-sensing algorithm is proposed and implemented to a Lorentz force type 
integrated motor-bearing system, so that the system can be made compact in size, light, and reliable. It is 
based on the principle that the flux linkages of stator windings, calculated from the voltage and torque 
control current, are the functions of the rotor angle. The tracking angular position error is proven to 
converge toward zero using the Lyapunov stability method, and the experimental results show that the 
initial error decays within about 4 seconds. It is found that the angle resolution of the algorithm remains 
about 1º over the speed range of 100 to 1000 rpm. The error sources are analyzed and experimentally 
identified. 
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INTRODUCTION 
Active magnetic bearing (AMB) is an electromagnetic device that supports the rotor using controlled 

electromagnetic forces without any contact. AMBs have been successfully used in many applications 
due to such advantages as free of mechanical contact and lubrication, high peripheral speed and 
precision operation, and adjustability of the bearing stiffness and damping within physical limits. 
However there still remain some problems to be addressed with AMB. One of the problems is that it 
requires a rather long axial shaft length to accommodate an electric motor to drive the rotor as well as 
AMB, lowering the flexural critical speeds. One of the solutions used to reduce the axial shaft length of 
motors with AMBs is to combine the motor with AMB magnetically. This combined device is called the 
integrated motor-bearing system (IMB), which is frequently referred to as “bearingless motor”. 
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Compared with motors supported by AMBs, IMBs are compact and thus advantageous to small-sized 
rotating systems such as artificial heart pumps [1] and hard disk drives. Recently various types of IMBs 
have been developed [2] and proposed including the permanent magnet type [3], reluctance type [4], 
inductance type [5], etc. It is common that many of these designs use the attractive force between a rotor 
and stator (reluctance-type force) for position control of the rotor. Recently, several papers have 
proposed permanent magnet IMB designs that use Lorentz-type force to produce both motoring torque 
and bearing forces [6-7]. 

In order to perform the rotational speed and radial position control, various angular position sensors 
such as encoders and resolvers are necessary; the angular position information is essential to accurately 
produce the radial control forces in the required directions. However the use of these position sensors 
causes problems such as reduction in reliability, increase in motor volume in the axial direction, and 
higher cost. To overcome these drawbacks, many efforts to realize light weight, compact permanent 
magnet synchronous motors (PMSM), not requiring angular position sensors, have already been reported 
[8]. Note here that permanent magnet IMB has a similar configuration to PMSM. 

In this paper, an angular self-sensing algorithm based on flux linkage increment with respect to the 
angular position of a rotor [9] for Lorentz force type permanent magnet IMB is presented. Using 
mathematical synthesis, it is shown that the actual angular position can be achieved from the machine 
voltage equations for each stator winding; only the line currents and voltages are measured for the 
calculation of flux linkages. Furthermore, using Lyapunov stability analysis method, it is shown that the 
tracking angular position error converges to zero in spite of the proposed integration form of self-
sensing algorithm. To verify the feasibility of the proposed method, extensive experimental tests are 
conducted over the speed range of 100rpm to1000rpm. It was found through experiments that the initial 
error decays within approximately 4 seconds and the angle resolution of the algorithm remains about 1º 
over the whole speed range. 

1. OVERVIEW OF THE LORENTZ FORCE TYPE IMB [6] 
Figure1 shows the cross-sectional view of the Lorentz force type permanent magnet IMB developed 

in the laboratory. The system consists mainly of two components, stator and rotors; the stator has 6 equi-
spaced concentrated coreless windings and the rotor has 4 pole permanent magnets as shown in Fig. 2. A 

Fig.1 Cross-sectional view of IMB
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pair of rotor disks is placed at both sides of a single stator disk like a sandwich. Since the opposite poles 
of magnets face each other as shown in Fig.3, the axial magnetic flux can pass through the stator 
windings. 

Figure4 illustrates the basic principle of torque and radial force generation. The dots and crosses in 
the circles represent the magnetic flux coming out of and going into the page, respectively, and the loop 
in the windings indicates the current flow, with the arrow on the loop showing the current flow 
direction. According to the Lorentz law, electromagnetic forces, which are represented by the thick 
arrows, are produced in the upper and lower sides of windings for the counter-clockwise current flows in 
the right and left windings. The reaction forces on the rotor have the counter direction to the forces 
generated in the windings, resulting in a couple moment. The contour arrow at the center indicates the 
motoring torque. For radial force generation, the current flow in the left side winding is reversed; the 
resulting reaction force on the rotor will head in the upper direction. As the rotor rotates, the magnetic 
flux polarity alternates periodically, so the current flow must be controlled to flow synchronous to the 
angular position of the rotor. 

2.  THEORETICAL ANALYSIS OF LORENTZ FORCE TYPE IMB [6] 
For the theoretical analysis of the system, magnetic flux density generated by 4 pole permanent 

magnets of the rotor are assumed, in the sinusoidal form, as 
 

 cos(4 - 4 )R rB B θ θ=  ( 1 ) 
 
where B  is the amplitude of the flux density, rθ  is the mechanical angular position of the rotor and θ  
is the angular coordinate. 
 

 2cos( )
3

i
m M dI I iθ ψ π= + +  ( 2 ) 

 
where dθ  is the electrical angular position of the rotor, ψ  is the torque angle, MI  is the magnitude of 
the current, and 0,1,2,3,4,5i =  represents the numbering of six stator windings. 

The motoring torque produced by these currents can then be obtained using the Lorentz law as 
 

 26 sin( )sin
5MT I Bkrl π ψ=  ( 3 ) 

 

Fig.4 Generation of (a) torque and
(b) radial force of IMB
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where k , r , and l denote the number of turns in a concentrated winding, the effective radius of stator 
windings and the effective length of winding. 

Similarly to the previous procedure for the generation of motoring torque, consider the currents for 
the radial control force, in the form of 
 

 1cos( )
3

i
c C dI I iθ φ π= + +  ( 4 ) 

 
where CI  and φ  represent the magnitude of the current and the phase shift. We obtain the expressions 
for the radial control forces in the x and y directions as 
 

 
3 cos
3 sin

x C

y C

F I Bkl
F I Bkl

φ
φ

=
=

 ( 5 ) 

3. ANGULAR SELF-SENSING ALGORITHM 
The flux linkage is defined as the amount of the flux passing through each stator winding by the 

permanent magnets of the rotor, which can be expressed as 
 

 
( ) ( )

2 22 sin( )cos(4 )
3

)
5

(

i
m R w

m r

t B t A

Bkrt l i

λ

π θ πλ

=

= +
 ( 6 ) 

 
where wA  is the effective area of stator winding facing the magnets. It can be easily realized that the 
flux linkage is a function of the angular position of the rotor. 

When the resistances and inductances in all windings are assumed to be identical and constant, the 
voltage equation of each stator winding can be given by 
 

 ( ) ( ( ) ( ))( ) ( ) ( )
i i i

i i m c m
i m c

d I t I t dv t R I t I t L
dt dt

λ+
= + + +  ( 7 ) 

 
where iv , R , and L  is the voltages, resistance, and inductance of each winding, respectively. The last 
term, which is defined as differentiation of the flux linkage i

mλ , is called the back electromotive force 
(back EMF). Hence, by differentiating equation (6), the back EMF can be obtained from 
 

 2 22 sin( ) cos(4 )
5 3 2

i
m

r r
d Bkrl i
dt
λ ππ ω θ π= + +  ( 8 ) 

 
where rω  is the rotational speed of the rotor. This equation indicates that the back EMF is proportional 
to the rotational speed. 

As shown in the torque current equation (2), the phases of the torque currents in the i th and 
( 3i + )th windings facing each other are identical, while the radial control currents have opposite phases 
as shown in equation (4). Therefore, by simply summing the voltage equations for the i th and ( 3i + )th 
windings, new voltage equation reduces to 
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 3( ) ( ) ( )( )
2

i i
ii i m m
m

v t v t dI t dRI t L
dt dt

λ++
= + +  ( 9 ) 

 
Letting tΔ  be the sampling interval, equation (9) can be transformed into 
 

 3( ) ( ) ( ) ( )
2

i i ii i
m m m

v t v t RI t t L I t λ++⎛ ⎞− Δ − Δ = Δ⎜ ⎟
⎝ ⎠

 ( 10 ) 

 
Note that the actual flux linkage increment can be obtained by calculation using the measured line 

voltages and currents in the stator windings at discrete time instants. Similarly to equation (10), equation 
(8) can be transformed into 

 

 2 22 sin( ) cos(4 )
5 3 2

i
m r rBkrl i πλ π θ π θΔ = + + Δ  ( 11 ) 

 
Comparing the actual flux linkage increment equation (10) obtained from the measurement with the 

analytical flux linkage increment equation (11) and rearranging the results, we obtain 
 
 ( )i

m e r i rk eλ θ θΔ = Δ % %  ( 12 ) 
 
where 
 

 2 2( ) sin( ) cos(4 )
5 3 2i r re B i πθ π θ π= ⋅ + +% %  ( 13 ) 

 
Here, i

mλΔ  is the flux linkage increment of each stator winding, ( 2 )ek krl=  is the back EMF constant, 

rθ%  is the estimated angular position, and rθΔ %  is the increment of the estimated angular position. As 
shown in equation (12), for known parameters R , L , and ek , the angular rotor position can be 
calculated by measuring the voltages and currents in the stator windings. However, for the angular 
positions where the back EMF functions vanish, it is not possible to estimate the angular position by 
using equation (12). To resolve this singularity problem, equation (12) can be rewritten as 
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 ( 14 ) 

 
Multiplied the above three equations by 2 ( )re θ% , 1( )re θ%  and 0 ( )re θ% ,respectively, and adding the resulting 
equations, we can derive the angular position increments of the rotor as 
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0 1 2

2 0 1

0 1 1 2 2 0

( ) ( ) ( )1
( ) ( ) ( ) ( ) ( ) ( )

m r m r m r
r

e r r r r r r

e e e
k e e e e e e

λ θ λ θ λ θθ
θ θ θ θ θ θ
Δ + Δ + Δ

Δ = ⋅
+ +

% % %
%

% % % % % %
 ( 15 ) 

 
Note that, once the estimated angular position ( )r tθ%  at a specific time instant is known, then the 

angular position increments can be calculated from equation (15). The one-step forward angular position 
of the rotor is then represented by 
 
 ( ) ( ) ( )r r rt t t tθ θ θ+ Δ = + Δ% % %  ( 16 ) 
 
From equations (15) and (16), we can derive the angular position at any time instant, avoiding the 
singularity problem in estimation procedure. 
 

4. LYAPUNOV STABILITY ANALYSIS 
As shown in equation (16), the proposed self-sensing algorithm is inherently of an integration form. 

Thus it should be checked, for practicality of such algorithm, if the outputs diverge infinitely due to 
presence of DC components, low signal to noise ratio, and so on. In this section, we will prove that the 
estimated output obtained by the proposed algorithm converges to zero, using the Lyapunov stability 
analysis. 

Assuming that an angular position error at a specific discrete instant is kε , we can describe the 
estimated angular position rθ%  as 
 
 r r kθ θ ε= +%  ( 17 ) 
 

We also assume that Lyapunov function candidate is the square value of error kε , i.e. 
 
 2( ) kV k ε=  ( 18 ) 
 

Since the above function is positive definite, in order for the error to converge to zero, it should hold 
 
 2 2

1( ) 0k kV k ε ε+Δ = − <  ( 19 ) 
 
where 1kε +  is defined as 
 

 
1

1
22 cos( 4 )
3

k k r r

k rk k rε

ε ε θ θ

ε θ π ε θ+

+ = + Δ −Δ

= − Δ − + −Δ

%

 ( 20 ) 

 
Dividing the above equation by the sampling time tΔ  and rearranging the result, we can express the 
error dynamics as 
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 22cos( 4 ) 1
3 rε π ε θ⎛ ⎞= − − + + Δ⎜ ⎟

⎝ ⎠
&  ( 21 ) 

 
From the above equation, we can find many equilibrium points including zero. But we consider only 

the equilibrium point at zero, implying that the estimation error is allowed to converge to zero. From 
equation (15) and (19), we can derive 
 

 

2( ) 2cos( 4 ) 1
3

22 2cos( 4 ) 1
3

( )

r k

k k r

V k

V k

θ π ε

ε π ε θΔ =

⎧ ⎫Δ = −Δ − + +⎨ ⎬
⎩ ⎭

⎧ ⎫⎛ ⎞× − − + + Δ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 ( 22 ) 

 
Therefore the condition for the estimation error ε  to converge to zero at 5kHz sampling frequency 
becomes 
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( ) 0
0 11937

k

r

V k when
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ε
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< <⎩ ⎭

o o

 ( 23 ) 

 

Fig. 5 Block diagram of experiment setup for self 
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5. EXPERIMENT RESULTS 
Figure 5 shows the overall configuration of the control loop in the experiment: an open loop control 

for speed control and a simple PD control for radial displacement control. The radial displacement 
signals of the rotor measured by a pair of proximity probes were fed into a DSP(dSPACE) through an 
A/D converter for the radial displacement control. A pair of control signals generated by the DSP was 
input to a power amplifier through a D/A converter, regulating the control currents to the stator 
windings. The estimated angular position of the rotor was then compared with the measured angles by 
the optical incremental encoder. 

Figure 6 shows that the angle estimation error initially increased up to 8° and then converged nearly 
to zero (about 0.3°) within approximately 4 seconds, as the rotational speed was increased from 0 rpm to 
100 rpm, while the radial motion of the rotor was not allowed. The results suggest that the proposed self-
sensing algorithm can be applied even from the start-up state of the system, which is not normally 
expected from most of the previous angular position estimation methods based on back EMF. 

Figure 7 shows the steady state angle estimation error at the constant rotational speed of 500 rpm 
with the rotor radial motion not allowed. As seen in Figs. 6 (b) and 7(b), the angle estimation error does 
not diverge even after a long lapse of time from the start-up, characterized by two types of error: the off-
set and periodic errors. It is believed that the offset error results from the estimation error of flux linkage 
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due to the rotor eccentricity and the parameter uncertainty such as resistances, inductances, etc. The 
periodic error is due to the uneven magnetic flux distribution of the permanent magnets on the rotor, 
because the fundamental frequency of the periodic error is the six times the rotational speed, which is 
the same as the number of the stator windings. 

As shown in equation (10), the proposed algorithm is independent of the radial displacement control 
currents. Figure 8 compares the mean and standard deviation of the angle estimation error over the speed 
range of 100 to 1000 rpm. Note that the error mean is larger for the radial displacement control, while 
the standard deviation is of the same magnitude. The maximum angle estimation error is not larger than 
1° over the whole speed range of interest. Thus it can be concluded that the proposed simple algorithm 
(10) is very effective in estimation of the rotor rotation angle with fair accuracy. 

Figure 9 compares two whirl orbits under the rotor radial control, one from feedback of the 
estimated angular position and another from measurement by the encoder. Note that there is little 
difference in control performance by two different methods. 
 
CONCLUSIONS 

In this paper, an angular self-sensing algorithm for the Lorentz force type IMB with six stator 
windings and eight rotor permanent magnets is proposed. It features that the absolute angular position of 
the rotor is estimated indirectly from calculation of flux linkages using the measured line voltages and 
currents to each stator winding. And the Lyapunov stability analysis proved that the angle estimation 
error converges to zero, in spite of the inherent integration form of the proposed algorithm. The 
experimental results show that the proposed algorithm can be applied even from the start-up state of the 
system, and the angle estimation error does not diverge for a sufficiently long lapse of time. It is also 
experimentally shown that the steady-state error mean decreases as the rotational speed increases, while 
the resolution of the angle estimation is kept less than 1° over the speed range up to 1000 rpm. The 
experimental results show that there is little difference in control performance between use of the 
estimated and measured angular positions for rotor radial control. 
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