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ABSTRACT 
 Campbell diagram (whirl speed chart) has long been an important tool in the design and operation 
of rotating machinery for engineers to understand which modes are likely to be excited by the excitation 
sources of interest, which speed regions are safe for operation, and so on. However, it may lead to 
erroneous interpretation on the role of modes in the response prediction, unless their relative stability 
and strength are clearly addressed. Modal damping (logarithmic decrement) determines the 
magnification factor, particularly near the corresponding resonant speed. Thus, only the lightly damped 
modes make significant contributions to the response of rotor near the corresponding modal frequencies, 
while the heavily damped modes may be ignored even in the Campbell diagram. For a general rotor 
system, which possesses both anisotropy and asymmetry, there exists an infinite number of modes so 
that the corresponding whirl speed chart is heavily crowded with modes. Some of them are the original 
forward and backward modes, but the majority of modes are associated with their modulated (with twice 
the rotational speed and the integer multiples) and conjugate modes, that may not be as serious as the 
original modes. One of the effective ways to utilize Campbell diagram is to indicate the modal strength 
depending upon each modal response contribution to the probable excitation sources. In this paper, 
modes are classified depending upon modal strength into two: strong and weak modes. The strong 
modes are defined such that they still remain even when the system anisotropy and asymmetry disappear. 
The weak modes are the modes that start appearing when the system anisotropy and asymmetry are 
introduced. The order of strength for the weak modes can be identified in consideration of the degree of 
the system anisotropy and asymmetry. 
 
Keywords:  Modal strength, Norm order of eigenvectors, Campbell diagram, Strong and weak modes, 
Directional frequency response functions, Periodically time-varying system 

INTRODUCTION 
 Rotating machines nowadays are designed such that they can be safely operated beyond or passing 
through many critical speeds. Rotating machinery consists of many structural elements such as shaft, 
disk, blade, bearing/seal/damper, casing, and foundation. Not only each machine structure reveals its 
own local dynamic characteristics, but the whole machine as an assemblage of part structures also 
reveals global dynamic characteristics. The dynamic properties of most common interest in rotating 
machinery typically include the critical speeds, stability of modes and forced response. The critical 
speeds of a rotor are defined as the rotational speeds at which the associated modal frequencies, rigid or 
flexible, coincide with the probable excitation sources of paramount interest. Perhaps one of the most 
convenient graphical presentations is known as the Campbell diagram, which is often referred to as the 
whirl speed chart [1], where the whirl speeds, or equivalently the modal frequencies, and the probable 
excitation sources are plotted against the rotational speed, as illustrated in Figs. 1 and 2. Campbell 
diagram is helpful for design and practice engineers to judge on the margin of safe operation in the 
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design as well as field operation 
processes. The Campbell diagram has 
been popularly adopted in the design of 
rotors with bladed disks such as turbines, 
where the blade natural frequencies and 
the excitation lines associated with the 
blade passing frequency and the integer 
multiples are easily identified as shown 
in Fig. 1 [2,3]. However, its usage is 
limited in the sense that it does not 
provide practice engineers with the 
essential information such as the 
stability and forced response of the 
actual rotor system, particularly when 
the system possesses both stationary and 

rotating asymmetry. In other words, it does 
not tell us about which critical speeds have 
to be considered seriously in design and 
operation – the severity of the rotor 
response at each critical speed. For the 
critical speeds of an isotropic rotor system 
associated with unbalance excitation, the 
backward whirl speeds are traditionally 
indicated by broken lines, in order to 
indicate the less importance of the 
backward critical speeds in the unbalance 
response of the isotropic rotor system, as 
illustrated in Fig. 2 [4]. 
 One method of accommodating the 
stability information, which has been well 
adopted by many scholars in the past, is 
simply to add the information on the modal 
damping as well as frequency for each 
mode in the Campbell diagram, as shown in 
Fig. 3 [5]. Note that, in most practical 
applications if the system becomes unstable, 
it is usually the first forward mode whirl 
which yields the instability while the 
remaining modes remain stable [5]. The 
relative stability based on the modal 
damping can sure be addressed, but as the 
number of modes increases, the additional 

Fig. 1. Turbine blade and Campbell diagram: 24
nozzles [2, 3]; The size of circle is roughly scaled to
the logarithmic response magnitude in dB at the
free end of blade. 

Fig. 2. Campbell Diagram for Twin Spool Jet Engine: Solid
and broken lines indicate forward and backward whirl
modes, respectively.  1.25 146( )HP LP HzΩ = Ω +  [4] 
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information complicates the understanding of the plot, 
obscuring the essence of information.  
 Forced responses, including the most common 
unbalance responses, of a rotor at critical speeds 
essentially tell us about what actually happens with the 
rotor in operation subject to known excitation forces. 
Figure 1 is a typical Campbell diagram with the severity 
of the forced responses at critical speeds marked by the 
size of circles [2]. It succeeded in revealing clearly which 
critical speeds are important. However, the forced 
responses never represent the real rotor characteristics, 
unless the accurate quantitative information of all 
excitation forces, say the precise unbalance distribution, 
are available, which is an impractical, if not impossible, 
requirement. 
 Fortunately, the rotordynamic modeling and analysis 
have been quite successful in the past, since the 
rotordynamic modeling based on FEM or TMM is 
relatively simple in nature compared with other 

complicated structures and the parameter uncertainties are rarely encountered. From the rotordynamic 
analysis, we can obtain useful modal information such as the modal damping and frequency, and, above 
all, the modal vector. Based on the modal information, we can simulate forced response for excitation 
forces given. Often we assume the nature of excitation forces and freely simulate all probable situations. 
However, the forced response varies as the excitation force is changed. It means that, unless the exact 
information of excitation force is given, the forced response represents one realization of innumerable 
situations encountered in practice. 
 Modal damping certainly has to do with the relative stability of mode. Presence of modes with 
positive damping at a rotational speed indicates the unstable free response of the rotor at that speed, the 
response becoming large as the linearity assumption allows. Modes of light damping contribute more to 
the transient response than modes of heavy damping. However, it is not completely correct to say that 
modes of light damping contribute more to the steady-state response than modes of heavy damping. In 
fact, the magnification factor near the modal frequency for the harmonic response is inversely 
proportional to modal damping, but the response is also proportional to the residue that is a product of 
the modal and adjoint vectors as well as the force itself. Thus, the modal vector, whose importance is 
often forgotten, should be accounted whenever the severity of the response is addressed [6]. In this paper, 
a new method of presenting the modal strength in the Campbell diagram is proposed, which is based on 
the norm of the associated modal vector. 
 
1. MODAL ANALYSIS OF ANISOTROPIC OR ASYMMETRIC ROTOR [6] 
 Rotors can be classified into four types: isotropic rotor with both rotating and stationary symmetry, 
anisotropic rotor with not stationary, but rotating symmetry, asymmetric rotor with not rotating, but 
stationary symmetry, and general rotor without both stationary and rotating symmetry. The equation of 
motion for types of rotor systems other than general rotor can be written, using the complex (stationary 
for anisotropic rotors and rotating for asymmetric rotors) coordinates, as [6] 
  { }( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t+ + + Δ + Δ + Δ =f f f b b bM p C p K p M p C p K p g&& &&& & ,          (1) 

where iM , iC  and iK  denote the complex valued N×N generalized mass, damping and stiffness 
matrices, respectively; the subscripts ,i = f b  refer to the mean and deviatoric values, respectively; 

Fig. 3. Whirl Speed Map [5] 
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( ) ( ) ( )t t j t= +p y z  and ( ) ( ) ( )t t j t= +y zg f f are the N×1 complex response and input vectors, respectively; 
( )ty  and ( )tz  are the real valued response vectors, and, ( )tyf  and ( )tzf  are the real valued input vectors, 

in the direction of Y and Z (  and ξ η ) in the stationary (rotating) 
coordinates, forming a plane perpendicular to the bearing axis, 
respectively, as shown in Fig. 4; Ω  is the rotational speed of the 
shaft; N is the dimension of the complex coordinate vector; j is the 
imaginary number; the bar indicates the complex conjugate; the 
terms preceded by Δ imply the first-order perturbation matrices due 
to presence of asymmetry. Note here that the parenthesized terms 
appear due to the loss of symmetry in the rotor or stator part. Note 
that the system matrices, including the effect of the gyroscopic 
moment, internal damping, and fluid-film bearing characteristics, 
may be dependent upon the rotational speed. However, they become 
constant for given rotational speed. 
 Equation (1) can be rewritten as 
 

                   ( ) ( ) ( ) ( )t t t t+ + =Mq Cq Kq f&& &                                  (2) 
 
where 

2 2 2 2 2 2N N N N N N× × ×

Δ Δ Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ Δ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

f b f b f b

b f b f b f

M M C C K K
M C K

M M C C K K 2 1 2 1

( ) ( )
( ) , ( )

( ) ( )N N

t t
t t

t t
× ×

⎧ ⎫ ⎧ ⎫
= =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

p g
q f

p g . 
Assuming the solution form of ( ) t

ct eλ=q u , one obtains the sets of homogeneous equations associated 
with equation (2) as [6,7] 
 ( )i i

r crλ =D u 0   and ( )iT i T
cr rλ =v D 0 , Nr ±±±= ,...,2,1 , FBi ,= ,        (3) 

where the lambda matrix of degree two is given by 
2 f r

r f

( ) ( )
( )

,( ) ( )
λ λ

λ λ λ
λ λ

⎡ ⎤Δ
= + + = ⎢ ⎥Δ⎣ ⎦

D D
D M C K

D D

%

%
      (4a) 

with 
2 2

f r

2 2
f r

( ) , ( ) ,

( ) , ( ) ,

λ λ λ λ λ λ

λ λ λ λ λ λ

= + + Δ = Δ + Δ + Δ

= + + Δ = Δ + Δ + Δ
f f f r r r

f f f r r r

D M C K D M C K

D M C K D M C K% %
      (4b) 

and the right and left latent vectors take the form of 

{ }ˆ
TT T

c =u u u   ,   { }ˆ
TT T

c =v v v       (4c) 

The latent roots (eigenvalues) λ  are determined from the characteristic polynomial of order 4N 
                                                   ( ) 0λ =D         (5) 
Here, the pair of eigenvalues, equal in subscript value but different in sign of subscript, are dependent 
upon each other; they are complex conjugate pairs, as will be shown later. And the superscripts B and F 
implicitly refer to the backward and forward modes, respectively [6].  

The latent vectors, obtained from equation (3), are normalized so as to satisfy the bi-orthonormality 
condition given by 

c c c c( ) T Ti k k i k i ki
r s s r s r srλ λ δ+ + =v Mu v Cu ,    Nsr ±±= K,1, ; FBki ,, =       (6a) 

or, for ,r s i k= = , 

Fig. 4. Stationary and rotating
coordinate system for a simple
general rotor. 
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' '

' '

( ) ( )ˆ[ '( )] {   } 1
ˆ( ) ( )

T T T
c c

λ λ
λ

λ λ
⎡ ⎤Δ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥Δ ⎣ ⎦⎣ ⎦
f r

r f

uD D
v D u v v

uD D

%

%
      (6b) 

where  

  '( ) ( ) 2 ,d
d

λ λ λ
λ

= = +D D M C       (6c) 

and the Kronecker delta is defined as 

                                            
1; when and
0; otherwise.

ki
sr

i k r s
δ

= =⎧
= ⎨
⎩

      (6d) 

Since the eigensolution takes the form of 

{ } { }ˆ( ) ( ) ( )
T TT T T T tt t t eλ= =q p p u u ,      (7a) 

it holds, for each eigensolution,  
                         ˆ( ) ,  ( )

ki i
sr rtt ti k i

r s rt e t e eλλ λ= = =p u p u u       (7b) 
or, equivalently, 
                                               ˆk i

s r=u u   and   k i
s rλ λ= .      (7c) 

In order to satisfy the above two relations (7c), it should hold  
                                                   kirs =−= , .        (8) 
From the first set of conditions, it can be shown that the eigenvalues and right latent vectors, which are 
associated with the pair of positive and negative subscripts, satisfy the relations given by 
 

                          , ( )i i i
r r rλ λ λ− =  ,    

ˆ
,  

ˆ ˆ

ii ii i
r ri i

cr c r
r rr r r

−
−

− −

⎧ ⎫⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫
= = = = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭⎩ ⎭

u uu u uu u
u uu u u

,        (9) 

Nr ±±±= K,2,1 , FBi ,= . 
 
Similarly, one can obtain the relation between the left latent vectors as 
 

             
ˆ

ii
ri

r
rr −

⎧ ⎫⎧ ⎫
= =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

c

vv
v

vv
,

ˆ
ˆ

i ii
ri

r
rr r

−
−

−

⎧ ⎫ ⎧ ⎫⎧ ⎫
= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭⎩ ⎭

c

vv vv
vv v

,   Nr ±±±= K,2,1 , FBi ,= .       (10) 

 
Note that the eigenvalue i

rλ−  can be derived as the complex conjugate of i
rλ  and that the corresponding 

latent vectors can also be derived from each other as given in equations (9) and (10).  
The complex response vector ( )tp  can then be expanded in terms of the right latent vectors as 

 

                                                    
,

( ) '{ ( )}
N

i i
r r

i B F r N
t tη

= =−

= ∑ ∑p u ,    (11a) 

 

where the principal coordinates ( )i
r tη  satisfy the 4N sets of modal equations given by 

 
 ˆ( ) ( ) ( ) ( )i i i iT iT

r r r r rt t t tη λ η− = +v g v g& ,  Nr ±±±= K,2,1 , FBi ,=                              (11b) 
 

{ }( ) ˆ( ) ( ) ( )
i
r ti iT iT

r r rt e dλ τη τ τ τ−= +∫ v g v g .    (11c) 
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Here, ∑
−=

N

Nr

'  is the summation operator excluding 0=r . Note here that the modal response ( )i
r tη  is 

proportional to the modal forces ( )iT
r tv g  and ˆ ( )iT

r tv g , which, in turn, are directly related to the adjoint 

modal vectors iT
rv  and ˆ iT

rv . From equation (11), we can derive the input-output relation in the frequency 
domain as 

  ( )
( )
( )ˆ ˆ

j
j

j

ω
ω

ω

⎧ ⎫⎪ ⎪⎡ ⎤= ⎨ ⎬⎣ ⎦ ⎪ ⎪⎩ ⎭
gp gp

G
P H H

G
    (12a) 

where 

( )

( )

, , 1

ˆ
, , 1

'
,

ˆ
'

.

i i i T i i TTN N
r r r r

i i
i B F r N i B F r r rr

i i i T i i TTN N
r r r r

i i
i B F r N i B F r r rr

j
j j j

j
j j j

ω
ω λ ω λ ω λ

ω
ω λ ω λ ω λ

− −

= =− = = −

− −

= =− = = −

⎡ ⎤⎡ ⎤
= = +⎢ ⎥⎢ ⎥

− − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤
= = +⎢ ⎥⎢ ⎥

− − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

gp

gp

u v u vuvH

u v u vuvH

    (12b) 

Here ( )jωP , ( )jωG  and ˆ ( )jωG are the Fourier transforms of ( )tp , ( )tg  and ( )tg , respectively, and, 

gpH  and ĝpH  are referred to as the normal directional frequency response matrix (n-dFRM) and the 

reverse directional frequency response matrix (r-dFRM), respectively.  
 

2. STABILITY AND STRENGTH OF MODES 
 The modal solution of rotor systems can be summarized as 
 

            , ( )i i i i i i i
r r r r r r rj jλ σ ω λ λ σ ω−= + = = − ,    ˆ ˆ, ( ), , ( )i i i i i i

r r r r r r− −= =u u u v v v ,                             (13) 
Nr ±±±= K,2,1 , FBi ,= . 

where i
rσ  and i

rω  are the modal damping and frequency, respectively. The stability of mode is 
determined by the modal damping i

rσ . If i
rσ  is positive (negative), the mode becomes unstable (stable). 

For the stable system, all modes should be negative damped. Thus, in order to indicate the overall 
system instability, plotting of the modal damping associated with the most unstable modes is enough. 
For stable rotor systems, the modal damping theoretically indicates the relative stability or the stability 
margin, but the actual forced response may not be directly related with the relative stability. The forced 
response ( )tp  is made up with modal vector weighted modal responses ( )i i

r r tηu  as in Eq.(11a). And the 

modal responses ( )i
r tη  are again related to adjoint vectors ˆ( )i i

r r− =v v . Thus the contribution of each 
mode to the forced response should be determined based on the norm of modal and adjoint vectors. 
Using the results of the perturbation of eigenvalue problem [8]  

0 1λ λ λ= + Δi i i
r r r     (14a) 

we obtain, for r > 0, 
               0 1( ) ( ) ( )λ λ λ= + Δ Δi i i

r r r Of fD D , 0 1( ) ( ) ( )λ λ λ− − −= + Δ Δ% i i i
r r r Of fD D .     (14b) 

From equations (3) and (14), we can derive the relations between modal vectors, for r > 0, as  
 

       1
rˆ ( ) ( )i i i i

r r r rλ λ−= − Δfu D D u%   and   1
r ˆ( ) ( )i i i i

r r r rλ λ−
− − − −= − Δfu D D u%                                            (15a) 

 
or, the relations between the norms of modal vectors as  
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            ˆ ( )i i
r rO Δu u   and  ˆ( ) ( )i i i

r r rO O− −Δ Δu u u                                                   (15b) 
 
where ( )ΔO  means the perturbation of the first order. Here, Note that the similar relations to equations 
(15) can be readily obtained with the adjoint vectors. Using the results in Eq. (15), we can derive, letting 

(1)i i
r r Ou v ,  

 

 

( )

( )

2

, 1 , 1

, 1 , 1
ˆ

(1) ( )
,

( ) ( )
.

i i T i i TN N
r r r r

i i i i
i B F r i B F rr r r r

i i T i i TN N
r r r r

i i i i
i B F r i B F rr r r r

O Oj
j j j j

O Oj
j j j j

ω
ω λ ω λ ω λ ω λ

ω
ω λ ω λ ω λ ω λ

− −

= = = =− −

− −

= = = =− −

⎡ ⎤ ⎡ ⎤Δ
⎢ ⎥ ⎢ ⎥≤ + +

− − − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤Δ Δ
⎢ ⎥≤ + +⎢ ⎥− − − −⎢ ⎥ ⎣ ⎦⎣ ⎦

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

gp

gp

u v u v
H

u v u v
H

       (16) 

 

Note that O(1) means the norm order is independent of the perturbation Δ . It can be concluded from 
equations (15) and (16) that [9] 

1. The norm of the original forward and backward modal and adjoint vectors is O(1), independent 
of the perturbation Δ  due to presence of asymmetry in the rotor system. 

2. The norm of the conjugate forward and backward modal and adjoint vectors is ( )O Δ , directly 
proportional to the perturbation. These additional modes tend to vanish as the system asymmetry 
diminishes, never contributing to the forced responses. 

3. The modes associated with the vector norm of O(1) are referred to as the strong modes, whereas 
the modes of vector norm of order less than and equal to ( )O Δ  are referred to as the weak 
modes. The strong modes are almost independent, in contribution to forced response, of the 
degree of system asymmetry. 

4. The ratio of the residue value of the n-dFRF between the original (strong) and conjugate (weak) 
modes becomes 2( )O Δ . It implies that the strong modes, which are associated with the mean 
property of the rotor, are easily detected, but the weak modes, which are associated with the 
deviatoric property of the rotor, are hardly detected in the normal dFRF unless the degree of 
asymmetry becomes prominent.  

5. The residue value of the r-dFRF for all, strong and weak, modes becomes the order of Δ  in 
magnitude. And the r-dFRF tends to vanish, as the asymmetry of the rotor decreases. Thus the 
magnitude of the r-dFRF, relative to that of the n-dFRF for strong modes, is a good indicator for 
presence of asymmetry in the rotor. 

 
3. MODAL ANALYSIS OF GENERAL ROTOR 
 General rotors normally possess both stationary and rotating asymmetry, leading to a complicated 
periodically time-varying equation of motion. The modal analysis of such system has already been 
developed, but the detailed procedure will not be treated because the derivation is mathematically 
involved [10,11]. Instead, the main feature of the analysis will be briefly demonstrated with a simple, 
but general, rotor model in the following section. 
 
4. SIMPLE GENERAL ROTOR: USE OF 4 4N N×  REDUCED ORDER MATRIX  
       This section illustrates the modal analysis procedure using modulated coordinates with a simple 
general rotor system (with N = 1) shown in Fig. 4.  The equation of motion for the system can be written 
as 
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       j2 tp( ) (2 - j )p( ) p( ) e p( ) p( ) g( )t t t t t tζ α δ Ω+ Ω + + + Δ =&& &         (17) 
 
where δ  and Δ  represent the degree of asymmetry and anisotropy, respectively, and α  represents the 
gyroscopic effect. The periodically time-varying linear differential equation (17) can be converted to an 
equivalent time-invariant linear differential matrix-vector equation of infinite dimension [10,11]. 
Although the reduced matrix-vector equation of order 6N or higher turns out to be computationally 
efficient in calculation of the eigensolutions, we now demonstrate the norm order analysis of 
eigenvectors with the reduced matrix of order 4N, for simplicity but still without loss of generality 
[10,11]. The 4 4N N×  reduced order matrix equation of motion may be written as 
 
                                             ( ) ( ) ( ) ( )t t t t+ + =M p C p K p g&& &%% %% % % %       (18) 
 
where  

{ } { }; 1 ;0 ;0 ; 1 ; 1 ;0 ;0 ; 1p ( ) p ( ) p ( ) p ( ) ,   g ( ) g ( ) g ( ) g ( )
T TT T T T T T T Tt t t t t t t t− − − −= =p g% %

2

2

1 0 0 0 2 (4 ) 0 0 0 1 2(2 ) 4 0 0
0 1 0 0 0 2 0 0 1 0

, ,  
0 0 1 0 0 0 2 0 0 1
0 0 0 1 0 0 0 2 (4 ) 0 0 1 2(2 ) 4

j j
j

j
j j

ς α α ς δ
ς α δ

ς α δ
ς α δ α ς

+ − Ω ⎡ ⎤− − Ω + Ω⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥+ Ω Δ⎢ ⎥⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥⎢ ⎥ ⎢ ⎥− Ω Δ
⎢ ⎥⎢ ⎥ ⎢ ⎥− − Ω − − Ω − Ω⎣ ⎦ ⎣ ⎦ ⎣ ⎦

M C K%% %  

introducing the modulated complex coordinate and force, ;p n  and ;g n , n being an arbitrary integer, 
defined as  

2 2
; ;p ( ) p( ) , g ( ) g( )j n t j n t
n nt t e t t eΩ Ω≡ ≡  . 

The associated latent value problem then becomes 
                ( ) cλ =D u 0%%   and  ( )T T

c λ =v D 0%%                                                      (19a) 
where the lambda matrix of degree two is given by 

2

( ) 0 0
ˆ( ) 0

( ) 0 ( )
ˆ0 0 ( )

b
a

a

b

λ δ
δ λ

λ λ λ λ δ

δ λ

⎡ ⎤
⎢ ⎥Δ⎢ ⎥= + + = ⎢ ⎥Δ
⎢ ⎥
⎢ ⎥⎣ ⎦

D M C K%% % %                                                   (19b) 

with 
2 o o

1(0) 1(0)( ) (2 ) 1 ( )( )F Ba jλ λ ς α λ λ λ λ λ= + − Ω + = − −  

 

( )( )

( )( )

o o o o
1(0) 1(0) 1( 1) 1( 1)

2 o o
1(0) 1(0)

o o o o
1(0) 1(0) 1(1) 1(1)

( ) 2 2 ( )( )

ˆ( ) (2 ) 1 ( )( )
ˆ( ) 2 2 ( )( )

F B F B

F B

F B F B

b j j

a j

b j j

λ λ λ λ λ λ λ λ λ

λ λ ς α λ λ λ λ λ

λ λ λ λ λ λ λ λ λ

− −

− −

− − − −

= + Ω− + Ω− = − −

= + + Ω + = − −

= − Ω− − Ω− = − −

    (19c) 

 

Here, o
( )
i

r mλ , , ; 1; 0, 1i B F r m= = ± = m , are the eigenvalues of the associated isotropic system, i.e. the 
simple rotor with 0δ = Δ = . The characteristic equation associated with equation (19) reduces to 
 

      { }{ } ( )( )2 2 2
1( ) 1( )

0, 1
,

ˆ ˆˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0i i
m m

m
i B F

a b a b b bλ λ λ δ λ λ δ λ λ λ λ λ λ
= −
=

= − − − Δ = − − =ΠD%       (20) 

Note here that it holds, from equation (19c), introducing the definition of ( , ) ( ) ( )O O Oδ δΔ = + Δ , 
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( )( ) ( )

( ) ( )( ) ( )
( )

( )( ) ( )
( ) ( )( ) ( )

( )

, for ( ) 1(0) , for ( ) 1( 1)
~ , ~

1 1

, for ( ) 1(0) , for ( ) 1( 1)ˆˆ ~ , ~
1 1

i i
r m r m

i i
r m r m

O r m O r m
a b

O otherwise O otherwise

O r m O r m
a b

O otherwise O otherwise

δ δ
λ λ

δ δ
λ λ

⎧ ⎧Δ = Δ = −⎪ ⎪
⎨ ⎨
⎪ ⎪⎩ ⎩
⎧ ⎧Δ = − Δ = − +⎪ ⎪
⎨ ⎨
⎪ ⎪⎩ ⎩

          (21) 

The latent value problem can be formulated as 

( ); 1

( );0
( ) ( )

( );0

( ); 1

0 0 0
ˆ 0 ˆ 0

( ) 0 0
ˆ ˆ 00 0

i
r m
i
r mi

r m cr m i
r m
i
r m

b u
a u

a u
ub

δ
δ

λ
δ

δ

−

−

⎧ ⎫⎡ ⎤ ⎧ ⎫
⎪ ⎪⎢ ⎥ ⎪ ⎪Δ ⎪ ⎪ ⎪ ⎪⎢ ⎥= =⎨ ⎬ ⎨ ⎬⎢ ⎥Δ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭⎣ ⎦ ⎩ ⎭

D u%                                                      (22a) 

 { } { }( ) ( ) ( ); 1 ( );0 ( );0 ( ); 1

0 0
ˆ 0

ˆ ˆ( ) 0 0 0 00
ˆ0 0

T i i i i i
cr m r m r m r m r m r m

b
a

v v v v a

b

δ
δ

λ
δ

δ

− −

⎡ ⎤
⎢ ⎥Δ⎢ ⎥= =⎢ ⎥Δ
⎢ ⎥
⎢ ⎥⎣ ⎦

v D%      (22b) 

The eight eigenvalues and the corresponding right and left latent vectors are related to each other, i.e. for 
,i F B= , 

 
; 1 ;0 ;0 ; 1 1(0)1(0)

; 1 ;0 ;0 ; 1 1(0)1(0) 1(0)

1( 1) 1(0) ; 1 ;0 ;0 ; 1 1( 1)

1( 1) 1( 1) 1(0) ; 1

eigenvalue left latent vector right latent vector

ˆ ˆ( , , , )
ˆ ˆ( , , , )

2 ˆ ˆ( , , , )
2 (

iTi

iTi i

i i iT

i i i

v v v v

v v v v
j v v v v

j v

λ
λ λ

λ λ
λ λ λ

− −

− − −−

− − − −

− + − −

=
= − Ω

= = + Ω

; 1 ;0 ;0 ; 1 1(0)

; 1 ;0 ;0 ; 1 1(0)

; 1 ;0 ;0 ; 1 1( 1)

; 1 ;0 ;0 ; 1 1( 1);0 ;0 ; 1 1( 1)

ˆ ˆ( , , , )
ˆ ˆ( , , , )
ˆ ˆ( , , , )
ˆ ˆ( , , , )ˆ ˆ, , , )

iT

iT

iT

iTiT

u u u u
u u u u
u u u u
u u u uv v v

− −

− − −

− − −

− − − +− − +

⎧
⎪
⎪
⎨
⎪
⎪
⎩

      (23) 

 
By removing the row with the elements of order less than 1 from the lambda matrix ( )( )i

r mλD% , we can 

derive:    for ( ) 1(0)r m =  where ( )( ) ( , )i
r ma Oλ δ Δ , 

 
1

( ); 1

( );0 ( );0 ( );0

( ); 1

ˆ0 0
1 ˆˆ ˆ 0 ˆˆˆˆ ˆ0 0

i
r m
i i i
r m r m r m
i
r m

bu b
u a u bb u

abbu abb

δδ
δ

δ δ

−

−

−

⎧ ⎫Δ⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪= −Δ ≅ −Δ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ − −⎩ ⎭⎩ ⎭ ⎣ ⎦ ⎪ ⎪⎩ ⎭

 
( ); 1

( );0 ( );0

( ); 1

( )
ˆ ( )

( )ˆ

i
r m

i i
r m r m

i
r m

u O
u O u

Ou

δ

δ

−

−

⎧ ⎫ Δ⎧ ⎫⎪ ⎪⎪ ⎪ ⎪ ⎪→ Δ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪

⎩ ⎭⎪ ⎪⎩ ⎭

     (24a) 

for ( ) 1(0)r m = −  where ( )ˆ( ) ( , )i
r ma Oλ δ Δ , 

          
1

( ); 1

( );0 ( );0 ( );0

( ); 1

ˆ0 0
1 ˆˆ ˆ0 ˆ

ˆˆ 00

i
r m
i i i
r m r m r m
i
r m

abu b
u a u bb u

abbu bb

δδ
δ

δδ

−

−

−

⎧ ⎫−⎡ ⎤⎧ ⎫ −⎧ ⎫ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪= −Δ ≅ −Δ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ Δ⎩ ⎭⎩ ⎭ ⎣ ⎦ ⎪ ⎪⎩ ⎭

   
( ); 1

( );0 ( );0

( ); 1

( )
ˆ( )

( )ˆ

i
r m

i i
r m r m

i
r m

u O
u O u

Ou

δ

δ

−

−

⎧ ⎫
⎧ ⎫⎪ ⎪⎪ ⎪ ⎪ ⎪→ Δ⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪Δ⎩ ⎭⎪ ⎪⎩ ⎭

     (24b) 

for ( ) 1( 1)r m = −  where ( )( ) ( , )i
r mb Oλ δ Δ , 

 

1

( );0

( );0 ( ); 1 ( ); 1

( ); 1

ˆˆ ˆ 0
ˆ0 ˆˆˆˆ 00

i
r m
i i i
r m r m r m
i
r m

abu a
u a u b u

aabu b

δ
δδ

δδ

−

− −

−

⎧ ⎫⎡ ⎤⎧ ⎫ Δ −⎧ ⎫ ⎪ ⎪⎢ ⎥ −⎪ ⎪ ⎪ ⎪ ⎪ ⎪= Δ ≅ −Δ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ Δ⎩ ⎭⎩ ⎭ ⎣ ⎦ ⎪ ⎪⎩ ⎭

 
( );0

( );0 ( ); 1
2

( ); 1

ˆ ( )
( )

( )ˆ

i
r m

i i
r m r m

i
r m

u O
u O u

Ou

δ
δ
δ

−

−

⎧ ⎫
⎧ ⎫⎪ ⎪⎪ ⎪ ⎪ ⎪→ Δ⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪Δ⎩ ⎭⎪ ⎪⎩ ⎭

    (24c) 
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for ( ) 1(1)r m = − , where ( )
ˆ( ) ( , )i

r mb Oλ δ Δ , 

 
1

( ); 1

( );0 ( ); 1 ( ); 1

( );0

0 0
ˆ ˆ ˆ ˆ0

ˆ
ˆ0

i
r m
i i i
r m r m r m
i
r m

u b
u a u b u

aab
u a ab

δ δ
δδ

δ

−
−

− −

⎧ ⎫ Δ⎡ ⎤ ⎧ ⎫ ⎧ ⎫
−⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥= Δ ≅ −Δ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥Δ −⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎩ ⎭

   
2( ); 1

( );0 ( ); 1

( );0

( )
ˆ ˆ( )

( )

i
r m

i i
r m r m

i
r m

u O
u O u

Ou

δ
δ
δ

−

−

⎧ ⎫ ⎧ ⎫Δ⎪ ⎪ ⎪ ⎪⎪ ⎪→ Δ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪

⎩ ⎭⎪ ⎪⎩ ⎭

     (24d) 

Note that the similar relations to equations (24) hold for the left latent vectors. Substituting the above 
relations (24) into the bi-orthonormality condition 

( )

( )( ) [2 ]
i
r m

iT i iT i i
cr cr cr r m cr

d
d λ λ

λ λ
λ =

⎡ ⎤ = +⎢ ⎥⎣ ⎦
v D u v M C u%% % { }

( ); 1

( );0
( ); 1 ( );0 ( );0 ( ); 1

( );0

( ); 1

' 0 0 0
0 ' 0 0 ˆ

ˆ ˆ 1
0 0 ' 0

ˆ0 0 0 '

i
r m
i
r mi i i i

r m r m r m r m i
r m
i
r m

b u
a u

v v v v
a u

ub

−

− −

−

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥= =⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

(

(

         (25a) 

we can derive  

( ); 1 ( ); 1 ( );0 ( );0 ( );0 ( );0 ( ); 1 ( ); 1ˆ ˆ ˆ ˆ (1)i i i i i i i i
r m r m r m r m r m r m r m r mv u v u v u v u O− − − −+ + +              (25b) 

or,   

( );0 ( );0(1), (1)i i
r m r mu O v O , for r(m) = 1(0); ( );0 ( );0ˆ ˆ(1), (1)i i

r m r mu O v O , for r(m) = -1(0);  (25c) 

( ); 1 ( ); 1(1), (1)i i
r m r mu O v O− − , for r(m) = 1(-1); ( ); 1 ( ); 1ˆ ˆ(1), (1)i i

r m r mu O v O− − , for r(m) = -1(+1) 

 

In equation (25a), ‘ denotes the differentiation with respect to λ . Table 1 summarizes the results for the 
right latent vectors obtained from the 6 6N N×  reduced order matrix equation, where the results from 
equations (24) and (25) are shaded. Note that the column associated with ( );0

i
r mu  indicates the modal 

strength; the modes, whose orthonormalized modal vectors are order of 1 (less than 1) in magnitude are 
referred to as ‘strong (weak) modes.’ The weak modes tend to vanish as the degree of anisotropy and 
asymmetry diminishes. Referring to Table 1, we can conclude that the modes associated with ,

1(0)
B Fλ  are 

the strong modes, the rest of modes being the weak modes. In particular, the pair of modes associated 
with ,

1(1)
B Fλ−  are the weakest modes, in the sense that they are vulnerable to the presence of either 

asymmetry or anisotropy and that they are not likely to be easily captured in practice. 

Table 1. Modal strength obtained from 6 6N N×  reduced order matrix equation.  
(Shaded area shows the results from 4 4N N×  reduced order matrix equation.) 

,
( )

B F
r mλ  ( );1ˆ i

r mu  

( );1ˆi
r mv  

( ); 1
i
r mu −  

( ); 1
i
r mv −  

( );0ˆ i
r mu  

( );0ˆi
r mv  

( );0
i
r mu  

( );0
i
r mv  

( ); 1ˆ i
r mu −  

( ); 1ˆi
r mv −  

( );1
i
r mu  

( );1
i
r mu  

1(0) ; ,
1(0)( ) ( , )B Fa Oλ δ Δ  2( )O δ Δ  ( )O δΔ  ( )O Δ  (1)O  ( )O δ  ( )O δΔ  

-1(0); ,
1(0)ˆ( ) ( , )B Fa Oλ δ− Δ  ( )O δΔ  ( )O δ  (1)O  ( )O Δ  ( )O δΔ  2( )O δΔ  

1(-1); ,
1( 1)( ) ( , )B Fb Oλ δ− Δ  ( )O δΔ  (1)O  ( )O δ  ( )O δΔ  2( )O δ Δ  2 2( )O δ Δ

-1(1); ,
1(1)

ˆ( ) ( , )B Fb Oλ δ− Δ  2 2( )O δ Δ 2( )O δ Δ  ( )O δΔ  ( )O δ  (1)O  ( )O Δ  

1(1); ,
1(1)( ) ( , )B Fc Oλ δ Δ  2 3( )O δ Δ 2 2( )O δ Δ 2( )O δΔ  ( )O δΔ  ( )O Δ  (1)O  

-1(-1); ,
1( 1)ˆ( ) ( , )B Fc Oλ δ− − Δ  (1)O  ( )O Δ  ( )O δΔ  2( )O δΔ  2 2( )O δ Δ  2 3( )O δ Δ
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 The directional frequency responses can be expressed as 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )

1(0);0 1(0);0 1(0);0 1(0);0 1( 1);0 1( 1);0 1( 1);0 1( 1);0 1(0);0 1(0);0 1(0);0 1(0);0 1(1);0 1(1);0 1(1);0

1 0 1 0 1 1 1 1 1 0 1 0 1 1

gp
u v u v u v u v u v u v u v u v

H ( )
F F B B F F B B F F B B F F B

F B F B F B F
j

j j j j j j j
ω

ω λ ω λ ω λ ω λ ω λ ω λ ω λ
− − − − − − − − − − − −

− − −

≤ + + + + + + +
− − − − − − − ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1(1);0

1 1

2 2 2 2 2 2 2 2

1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1

(1) (1) ( ) ( ) ( ) ( ) ( ) ( )~                                           (26)

B

B

F B F B F B F B

j

O O O O O O O O
j j j j j j j j

ω λ

δ δ δ δ
ω λ ω λ ω λ ω λ ω λ ω λ ω λ ω λ

−

− − − −

−

Δ Δ Δ Δ
+ + + + + + +

− − − − − − − −

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2

1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1
0 0g; p;ĝp

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )H ( ) H ( ) ~
F B F B F B F B

O O O O O O O Oj j
j j j j j j j j

δ δ δ δω ω
ω λ ω λ ω λ ω λ ω λ ω λ ω λ ω λ− − − −

Δ Δ Δ Δ Δ Δ Δ Δ
= + + + + + + +

− − − − − − − −
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3 3

1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1
-1 0g; p;gp

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )H ( ) H ( ) ~
F B F B F B F B

O O O O O O O Oj j
j j j j j j j j

δ δ δ δ δ δ δ δω ω
ω λ ω λ ω λ ω λ ω λ ω λ ω λ ω λ− − − −

Δ Δ Δ Δ Δ Δ Δ Δ
= + + + + + + +

− − − − − − − −
(  

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )

3 2 3 2 2 2

1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1
1 0g; p;gp

( ) ( ) ( ) ( ) ( ) ( )H ( ) H ( ) ~
F B F B F B F B

O OO O O O O Oj j
j j j j j j j j

δ δδ δ δ δ δ δω ω
ω λ ω λ ω λ ω λ ω λ ω λ ω λ ω λ− − − −

Δ Δ Δ Δ
= + + + + + + +

− − − − − − − −
%

   

 
The third and fourth dFRFs defined in 
equation (26) may be referred to as the 
modulated dFRFs, respectively [9,10].  
Here, it can be concluded that:  
 1. gpH ( )jω  is useful to identify the 
strong modes, 
 2. ĝpH ( )jω  is a good indicator of degree 

of anisotropy, irrespective of presence of 
system asymmetry, 
 3. gpH ( )jω%  is a good indicator of degree 
of asymmetry, irrespective of presence of 
system anisotropy, and 
  4. gpH ( )jω(  is very sensitive to the 
coupled effect of system anisotropy and 
asymmetry. 

So far, for demonstration purpose, the 
4 4N N×  reduced order matrix equation of 
motion has been treated, but it can be easily 
extended to higher order matrix equation of 
motion. As the reduced order increases, the 
accuracy of eigensolutions certainly 
improves. And it has been found that the 
6 6N N×  reduced order matrix equation of 
motion gives sufficiently accurate 
eigensolutions of practical interest [11]. 
One of the benefits of the suggested norm 
order analysis is that the norm order of 
eigenvectors obtained from a lower order 
matrix equation remains unchanged as the 

Fig. 5. Whirl speed chart for the simple gyroscopic 
rotor with both stationary and rotating asymmetry: 

0.6, 1, 0.02, 0.2 , 1nα ω ς δ= = = = Δ = Ω =  

(    (1)O ,      ( , )O δ Δ ,     ( )O δΔ ,      higher order) 
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matrix order increases, as shown in Table 1. In conclusion, the modal strength given in Table 1 is always 
valid, irrespective of the matrix order used for norm order analysis of eigenvectors.  

Figure 5 shows the whirl speed chart for the simple general rotor with the parameters  
0.6, 1,nα ω= =  0.02, 0.2 , 1ς δ= = Δ = Ω = . The natural frequencies were obtained from the 8 8N N×  

reduced order matrix equation. Note that the modal strengths are indicated by the thickness of the 
corresponding natural frequencies, as the rotational speed is varied.  

Figure 6 shows four types of dFRFs of the rotor with the degree of anisotropy and asymmetry 
varied. Note that the strong modes (1F, 1B), which are related with the associated isotropic system, are 
clearly observed in the n-dFRF (Fig. 6a), but the weak modes, which exist due to the deviatoric nature 
from system symmetry (isotropy), are hardly observed. The n-dFRF is not sensitive to the change in 
degree of asymmetry and anisotropy. On the other hand, the r-dFRF, as shown in Fig. 6b, is very 
sensitive to degree of anisotropy but insensitive to the asymmetry. The split of neighboring peaks in the 
r-dFRF is mainly due to the gyroscopic effect. Figure 6c shows that the modulated dFRF (m-dFRF) of 
index –1 is very sensitive to degree of asymmetry δ , but robust to the change of anisotropy.  Note here 
that the r-dFRF and m-dFRF of index -1 are almost decoupled in the sense that the r-dFRF (the m-dFRF 
of index -1) remains almost unchanged due to the degree of asymmetry (anisotropy). On the other hand, 
as shown in Fig.6d, the m-dFRF of index 1 reflects the effect of both anisotropy and asymmetry, 
although the magnitude is only the order of the anisotropy times the asymmetry, i.e. )(~ δΔO . 

 
 

-3 -2 -1 0 1 2 3
1E-3
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1
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100

λF
1(0)

H
gp

frequency (rad/sec)

 Δ=0.2 δ=0.2    Δ=0.2 δ=0.04
 Δ=0.04 δ=0.2  Δ=0.04 δ=0.04

λB
1(0)

        
-3 -2 -1 0 1 2 3

1E-3

0.01

0.1

1
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100

λF
1(0)

λB
-1(0)
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λB
1(0)

H
gp

frequency (rad/sec)

 Δ=0.2 δ=0.2    Δ=0.2 δ=0.04
 Δ=0.04 δ=0.2  Δ=0.04 δ=0.04

 
         (a)                                                                        (b) 
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H
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0.1

1
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H
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         (c)                                                                        (d) 

Fig. 6. (a) gpH ( )jω , (b) ĝpH ( )jω , (c) gpH ( )jω%  and (d) gpH ( )jω(  of the simple gyroscopic rotor with both 

stationary and rotating asymmetry: 0.6, 1, 0.02, 0.5nα ω ς= = = Ω =  
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CONCLUSIONS 
       A new effective method of improving the Campbell diagram by indicating the modal strengths is 
proposed, which is based on the norm analysis of the system eigenvectors of interest. The method is 
particularly useful for design and operation of general rotor systems with either stationary or rotating 
asymmetry. It is shown that, for the general rotor systems, modes can be classified into strong and weak 
modes. The strong modes are the modes that are likely to contribute significantly to the response of rotor 
to all possible excitation sources. The weak modes, which are less significant in response contribution 
than strong modes, can also be classified more in detail, depending upon the norm magnitude of the 
associated eigenvectors. It is demonstrated with a simple analysis rotor model that the order of strength 
for the weak modes can also be identified from dFRFs in consideration of the degree of the system 
anisotropy and asymmetry 
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Appendix: Nomenclature, Subscripts/Superscripts, Symbols and Abbreviations 
 

Nomenclature 
2( )λ λ λ= + +D M C K : lambda matrix of degree 

 2. 
TT T⎡ ⎤= ⎣ ⎦f g g : 2N×1 complex input vector. 

( )tyf , ( )tzf  : real valued input vectors. 
( ) ( ) ( )t t j t= +y zg f f : N×1 complex input vector. 

gpH , ĝpH  : normal (n-dFRM), reverse (r-dFRM),  

 modulated (m-dFRM) directional 
 frequency response matrices, defined in 
 Eqs. (12b), (16) and (26). 

, , M C K  : complex valued 2N×2N generalized 
 mass, damping and stiffness matrices. 

iM , iC , iK  : complex valued N×N generalized  mass, damping and stiffness m
N : dimension of the complex coordinate vector. 

( )jωP , ( )jωG , ˆ ( )jωG : Fourier transforms of 
 ( )tp , ( )tg , ( )tg . 

( ) ( ) ( )t t j t= +p y z  : N×1 complex response vector. 
TT T⎡ ⎤= ⎣ ⎦q p p : 2N×1 complex response vector. 

ˆ,  u u : modal vectors associated with ,  p p . 

{ }ˆ
TT T

c =u u u  : right latent vector of ( )λD . 
ˆ,  v v : adjoint vectors associated with ,  p p . 

{ }ˆ
TT T

c =v v v : left latent vector of  ( )λD . 

( )ty  , ( )tz  : real valued response vectors. 
α  : gyroscopic moment effect. 
δ : perturbation due to presence of asymmetry. 
Δ : perturbation due to presence of annisotropy. 
ς  : damping ratio. 

( )tη  : principal coordinate. 
jλ σ ω= +  : latent root, eigenvalue. 

Ω  : rotational speed of the shaft. 

 
Subscripts 

,f b :  mean and deviatoric values, respectively. 
r(m) : mode number. 
 

Superscripts 
i = F, B : forward and backward modes. 
 

Symbols 

a = Ta a  : Euclidean norm of vector a  

 
max
∀ ≠

=
a 0

Aa
A

a
: matrix norm subordinate to 

  vector norm 
a%  : reduced order vector. 
A%  : reduced order constant matrix transformed 
 from time varying matrix A(t). 

 B, F : complex conjugates of backward and 
 forward modes. 
O(a) : order of smallness a. 
O(a,b) = O(a) + O(b)  
O(ab) = O(a)O(b) 

 : approximation. 

 
Abbreviations 
dFRF (dFRM) : directional frequency response 
 function (matrix). 
HP: high pressure spool. 
LP: low pressure spool. 

n-, r-, m-dFRF: normal, reverse, modulated 
dFRFs.  
NPF: nozzle passing frequency. 

 

 


